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Compressed Sensing

y = Fx+ ⇠

⇢ =
K

N
↵ =

M

N

h⇠2i = �

MxN random matrix with i.i.d. elements

the signal is an N components vector 
only K<N components are non-zero

the measurement is an M<N components vector

white noise with variance

= +y
x ⇠F

GIVEN RECONSTRUCT



Standard techniques

Minimization of the      norm under linear constraintl0

min
x

||x||0 with Fx = y

non-convex norm, exponentially hard to find

||x||0 = number of non-zero elements

Candès, Tao, Donoho Minimization of the      norm l1

||x||1 =
NX

i=1

|xi| convex norm, easy to minimize

The       norm well approximates the        norml1 l0



The Donoho-Tanner line

= +y
x ⇠F

↵ = 1

↵ < 1

K = ⇢N M = ↵N

↵ = ⇢

Square matrix, we can invert it

Rectangular matrix, under-determined

Information-theoretical limit

Let us consider the noiseless case with a 
measurement matrix with i.i.d. elements 
distributed according to a gaussian with zero 
mean and a variance of order 1/N.

3

this value, the `
1

reconstruction gives the exact result x = s with probability going to one in the large N limit, when
↵ < ↵

`1(⇢0

) the probability that it gives the exact result goes to zero. As shown in Fig. 2, ↵
`1(⇢0

) > ⇢
0

and therefore
the `

1

reconstruction is suboptimal: it requires more measurements than would be absolutely necessary, in the sense
that, if one were willing to do brute-force combinatorial optimization, no more than ⇢

0

N measurements are necessary.
We introduce a new measurement and reconstruction approach, s-BP, that allows to reconstruct the signal by a

practical method, which needs only ⇡ ⇢
0

N measurements. We shall now discuss its three ingredients: 1) a probabilistic
approach to signal reconstruction, 2) a message-passing algorithm adapted from belief propagation [15], which is a
procedure known to be e�cient in various hard computational problems [16, 17], and 3) an innovative design of the
measurement matrix inspired from the theory of crystal nucleation in statistical physics and from recent developments
in coding theory [18–21]. Some previous works on compressed sensing have used these ingredients separately. In
particular, adaptations of belief propagation have been developed for the compressed sensing reconstruction, both in
the context of `

1

reconstruction [11, 22, 23], and in a probabilistic approach [24]. The idea of seeding matrices in
compressed sensing was introduced in [25]. It is however only the combined use of these three ingredients that allows
us to reach the ↵ = ⇢

0

limit.
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FIG. 2: Phase diagrams for compressed sensing reconstruction for two di↵erent signal distributions. On the left-hand side
the ⇢0N non-zero components of the signal are independent Gaussian random variables with zero mean and unit variance. On
the right-hand side they are independent ±1 variables. The measurement rate is ↵ = M/N . On both sides we show, from top
to bottom: (a) The phase transition ↵`1 for `1 reconstruction [5, 11, 12] (which does not depend on the signal distribution).
(b) The phase transition ↵EM�BP for EM-BP reconstruction based for both sides on the probabilistic model with Gaussian �.
(c) The data points which are numerical reconstruction thresholds obtained with the s-BP procedure with L = 20. The point
gives the value of ↵ where exact reconstruction was obtained in 50% of the tested samples, the top of the error bar corresponds
to a success rate of 90%, the bottom of the bar to a success of 10%. The shrinking of the error bar with increasing N gives
numerical support to the existence of the phase transition that we have studied analytically. These empirical reconstruction
thresholds of s-BP are quite close to the ↵ = ⇢0 optimal line, and get closer to it when increasing N . The parameters used in
these numerical experiments are detailed in Appendix E. (d) The line ↵ = ⇢0 that is the theoretical reconstruction limit for
signals with continuous �0. An alternative presentation of the same data using the convention of Donoho and Tanner [5] is
shown in Appendix F.

A probabilistic approach

For the purpose of our analysis, we consider the case where the signal s has independent identically distributed (iid)

components: P
0

(s) =
Q

N

i=1

[(1 � ⇢
0

)�(s
i

) + ⇢
0

�
0

(s
i

)], with 0 < ⇢
0

< 1. In the large-N limit the number of non-zero
components is ⇢

0

N . Our approach handles general distributions �
0

(s
i

).
Instead of using a minimization procedure, we shall adopt a probabilistic approach. We introduce a probability

measure P̂ (x) over vectors x 2 RN which is the restriction of the Gauss-Bernoulli measure P (x) =
Q

N

i=1

[(1�⇢)�(x
i

)+
⇢�(x

i

)] to the subspace |y�Fx| = 0 [26]. In this paper, we use a distribution �(x) which is a Gaussian with mean x
and variance �2, but other choices for �(x) are possible. It is crucial to note that we do not require a priori knowledge
of the statistical properties of the signal: we use a value of ⇢ not necessarily equal to ⇢

0

, and the � that we use is not
necessarily equal to �

0

. The important point is to use ⇢ < 1 (which reflects the fact that one searches a sparse signal).

Donoho-Tanner,   L1 minimization

AMP Bayesian

Information-Theoretical limit



Bayesian setting

GOAL Reconstruct the signal, given the measurement vector, 
the measurement matrix and a prior knowledge of the 
(sparse) distribution of signal elements

Approximate Message Passing
Donoho, Maleki, Montanari (2009)

Powerful algorithm. 
Convergence issues.

Setting and motivation



Setting and motivation

Fµi =
�

N
+

1p
N

N (0, 1)
P (x) = (1� ⇢)�(x) + ⇢N (0, 1)

Simplest case in which Approximate Massage Passing (AMP) 
has convergence problems.

If the mean is sufficiently large then AMP displays violent divergencies.

This kind of divergencies are observed in many other cases and are the 
main obstacle to a wide use of AMP.

y = Fx+ ⇠

In this simple case there are workarounds that ensure convergence, 
like a “mean-removal” procedure.
BUT it is interesting because want to understand the origin of the non-
convergence that, we argue, is of the same nature in more complicated 
settings.



Bayesian Inference with Belief Propagation 

P (x|F,y) = P (x|F)P (y|F,x)
P (y|F)

P (y|F,x) =
MY

µ=1

1p
2⇡�

µ

e
� 1

2�µ
(yµ�
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2
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Z(y,F)
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i
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x

?
i =

Z
dxi xi ⌫i(xi)

⌫

i

(x
i

) ⌘
Z

{xj}j 6=i

P (x|F,y)

Bayes formula

Conditional probability of 
the measurement vector

E =
NX

i=1

(xi � si)
2
/N

MMSE estimator

Takes an exponential time, unfeasible



Bayes optimal setting

If we know exactly the prior distribution on the signal elements 
and on the noise we are in the so-called BAYES OPTIMAL setting

In the following we will consider that this is the case. 
When it is not the case, the prior can be efficiently learned 
adding a step to the algorithm that I will present. 
(I will not talk about this)



Belief Propagation (Cavity method)

mi!µ
mµ!i

P (x)
x

F(
xi)

Two kinds of nodes:  factors (matrix 
lines) and variables (signal elements)

Belief propagation works for : 
locally tree-like graphs or densely and 
weakly connected graphs.

Messages represent an approximation to 
the marginal distribution of a variable.

We can introduce a third kind of nodes: 
the prior distribution on the signal 
elements, local field.

Messages are updated according to a 
sequential or parallel schedule until 
convergence (fixed point).



Belief Propagation, r-BP and AMP

BP

r-BP

AMP

O(N2)

O(N2)

continuous messages

mi!µ
mµ!i

P (x)
x

F(
xi)

numbers

projection

operations

dense matrix, TAP
For the last step one assumes parallel update

O(N2)
In this case, fast matrix multiplication algorithms 
can be applied, reducing the complexity to

N log(N)Donoho, Maleki, Montanari (2009)
Krzakala et al. (2012)



AMP Algorithm
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V t =
1
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vi

The performance of the algorithm 
can be evaluated through

fk(⌃
2, R)

Q(x) =
1

Z(⌃2
, R)

P (x)
e

� (x�R)2

2⌃2

p
2⇡⌃2

k-th connected cumulants w.r.t. the measure

      and      are the AMP estimators for the mean and variance of the i-th signal component.ai vi



AMP Algorithm
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The performance of the algorithm 
can be evaluated through

The AMP algorithm does NOT depend explicitly on the value of the mean of the matrix.

Fµi =
�

N
+

1p
N

N (0, 1)



Convergence
7

(a) (b)

Fig. 1: AMP, SwAMP, and `1 solvers compared for CS signal reconstruction for sensing matrices with positive
mean (left, a) and of low-rank (right, b) on sparse signals of size N = 10

4 and sparsity ⇢ = 0.2 with noise variance
� = 10

�8. The projections for (a) have been created following (19) using M = ↵N measurements with ↵ = 0.5.
The projectors for (b) have been created according to (20) and are low-rank for ⌘ < ↵ = 0.6. Finally, a comparison
between reconstruction error obtained by SwAMP and `1-minimization is given at the bottom of both (a) and (b)
for the same experimental settings.

at a large computational cost, however. Here, we have repeated the experiment of [19] using the SwAMP approach

instead of AMP and BP. In fact, for SwAMP, a sparse operator is a very advantageous situation in terms of

computational efficiency. Since the projector is extremely sparse by construction, we may explicitly ignore operations

involving null elements, thus considerably improving the algorithm’s speed, as seen in Fig. 2b. Here, we also see

that SwAMP’s computational complexity is on the order of O(N2
), as is AMP’s. Group testing experiments are

shown in Fig. 2a where we use random 0/1 projections, under the constraint that each projection should sum to 7,

to sample sparse 0/1 signals with K ⌧ N non-zero elements, where N is the signal dimensionality. While AMP

diverges when attempting to recover these signals, SwAMP converges to the correct solution in few iterations.

Additionally, SwAMP very closely matches the BP transition, thus providing recovery performance better than

convex optimization, just as BP does, but with much less computational complexity.

C. 1-bit Compressed Sensing

One of the confounding factors regarding the practical implementation of CS in hardware devices is the treatment

of measurement quantization. The original CS analysis provides recovery bounds based upon the assumption of

real-valued measurements. However, in practice, hardware devices cannot capture such values with infinite precision,

and so some kind of quantization on the measurements must be implemented. Specifically, if Q(·) is a uniform

June 18, 2014 DRAFT

Given a certain (sufficiently high) 
measurement ratio. 

Very small or zero noise.

Bayes optimal case.



State Evolution (infinite N)
Bayati, Montanari (rigorous in the zero-mean case) ‘11
Krzakala et al. (replicas in the zero-mean case) ‘12
Caltagirone, Krzakala, Zdeborova (replicas in the non-zero-mean case) ‘14

State evolution is the asymptotic analysis of the average 
performance of the inference algorithm when the size of the 
signal goes to infinity.

It gives a good indication of what happens in a practical situation 
if the size of the signal is sufficiently large.

It can be obtained rigorously in simple cases and non rigorously 
with the replica method in more involved cases. 



State Evolution (infinite N)

V t+1 =

Z
ds P (s)

Z
Dz ⇥ f2

✓
�+ V t

↵
, s+ zA(Et, Dt) + �2Dt

◆
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Z
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Z
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s� f1
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↵
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↵
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r
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1
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vi

Bayati, Montanari (rigorous in the zero-mean case) ‘11
Krzakala et al. (replicas in the zero-mean case) ‘12
Caltagirone, Krzakala, Zdeborova (replicas in the non-zero-mean case) ‘14



The Nishimori Condition

Et = V t Dt = 0

Et+1 = V t+1 Dt+1 = 0

Bayes optimal setting

Therefore, analytically, if the evolution starts (exactly) on 
the Nishimori Line it stays on it until convergence.

BUT

What is the effect of small perturbations with respect to the NL?

• Very small fluctuations due to numerical precision in the DE
• Fluctuations due to finite size in the AMP algorithm
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FIG. 1. (color online) Examples of the BP density evolution, y-axes is the mean-squared error of the current signal estimate
E = q�2m+⇢0s

2, the x-axes is the average variance V = Q�q. Each arrow is a normalized vector (V (t+1)�V

(t)
, E

(t+1)�E

(t)).
The signal model �(x) is Gaussian with zero mean and unit variance, the signal distribution �0(x) is Gaussian on the top and
{±1} on the bottom. The measurements are noiseless. On the left we show an example for relatively large measurement rate
where there is a unique fixed point E ! 0, V ! 0. On the right there is another fixed point E > 0, V > 0 which is the
attractive one for “uninformed” initial conditions. Notice that on the top plots the line V = E is stable: this is thanks to the
Nishimori condition when the signal is described by the correct model (⇢0 = ⇢ and �0 = �). In that case one can work in the
V = E sub-space.

where a, b, . . . denote the replica indices, � is the assumed measurement noise and generally � 6= �
0

.
In the case where the matrix F has iid elements with zero mean and variance 1/N , we introduce the order parameters

as follows

ma =
1

N

NX

i=1

xa

i

s
i

, a = 1, 2, . . . , n , (92)
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NX

i=1

(xa

i
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i

, a < b . (94)

We use a common trick of rewriting the identity
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Zero-mean case

Convergence on the NL

(Bayati, Montanari)

The non-zero mean adds a third dimension to the phase space!

D



Stability Analysis (I)
D

V

E

K = V � ED
�K

�D

(K⇤ = 0, D⇤ = 0)

The NL is a “fixed line”:

Kt+1 = fK(V t,Kt, Dt)

Dt+1 = fD(V t,Kt, Dt)



Stability Analysis (II)

�Kt = Kt �K⇤

�Dt = Dt �D⇤

✓
�Kt+1

�Dt+1

◆
= M ·

✓
�Kt

�Dt

◆

We linearize the equations with

M =

✓
@KfK(V t, 0, 0) @DfK(V t, 0, 0)
@KfD(V t, 0, 0) @DfD(V t, 0, 0)

◆



Stability Analysis (II)

�Kt = Kt �K⇤

�Dt = Dt �D⇤

✓
�Kt+1

�Dt+1

◆
= M ·

✓
�Kt

�Dt

◆

We linearize the equations with

When the signal is Gauss-Bernoulli with zero mean, the off-diagonal terms vanish.

M =

✓
@KfK(V t, 0, 0) 0

0 @DfD(V t, 0, 0)

◆



Stability Analysis (II)

@DfD(V t) = � ↵�2

�+ V t

Z
dsP (s)

Z
Dz f2

�
A2, s+ zA

�
= �↵�2V t+1

�+ V t
,

@KfK(V t) = �1

2

1

�+ V t

Z
dsP (s)

Z
Dz

�
f4
�
A2, s+ zA

�
+ 2(f2

�
A2, s+ zA

�
)2

+2
⇥
f1
�
A2, s+ zA

�
� s

⇤
f3
�
A2, s+ zA

� 
,

-3

-2.5

-2

-1.5

-1

-0.5

 0

-9 -8 -7 -6 -5 -4 -3 -2 -1

h D

log10V

a=1.9
a=2.5
a=2.9
a=3.6

� < �(1)
c

�(1)
c < � < �(2)

c

� > �(2)
c

⇢ = 0.1 ↵ = 0.3 � = 10�10

•               the eigenvalue is always less 
than 1 in modulus. 

•                          the eigenvalue 
becomes larger than 1 in a limited 
region. 

•                the eigenvalue is larger than 1 
in modulus down to the fixed point.

�D

�K



Density Evolution and AMP
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With random sequential update convergence problems disappear.

7

(a) (b)

Fig. 1: AMP, SwAMP, and `1 solvers compared for CS signal reconstruction for sensing matrices with positive
mean (left, a) and of low-rank (right, b) on sparse signals of size N = 10

4 and sparsity ⇢ = 0.2 with noise variance
� = 10

�8. The projections for (a) have been created following (19) using M = ↵N measurements with ↵ = 0.5.
The projectors for (b) have been created according to (20) and are low-rank for ⌘ < ↵ = 0.6. Finally, a comparison
between reconstruction error obtained by SwAMP and `1-minimization is given at the bottom of both (a) and (b)
for the same experimental settings.

at a large computational cost, however. Here, we have repeated the experiment of [19] using the SwAMP approach

instead of AMP and BP. In fact, for SwAMP, a sparse operator is a very advantageous situation in terms of

computational efficiency. Since the projector is extremely sparse by construction, we may explicitly ignore operations

involving null elements, thus considerably improving the algorithm’s speed, as seen in Fig. 2b. Here, we also see

that SwAMP’s computational complexity is on the order of O(N2
), as is AMP’s. Group testing experiments are

shown in Fig. 2a where we use random 0/1 projections, under the constraint that each projection should sum to 7,

to sample sparse 0/1 signals with K ⌧ N non-zero elements, where N is the signal dimensionality. While AMP

diverges when attempting to recover these signals, SwAMP converges to the correct solution in few iterations.

Additionally, SwAMP very closely matches the BP transition, thus providing recovery performance better than

convex optimization, just as BP does, but with much less computational complexity.

C. 1-bit Compressed Sensing

One of the confounding factors regarding the practical implementation of CS in hardware devices is the treatment

of measurement quantization. The original CS analysis provides recovery bounds based upon the assumption of

real-valued measurements. However, in practice, hardware devices cannot capture such values with infinite precision,

and so some kind of quantization on the measurements must be implemented. Specifically, if Q(·) is a uniform

June 18, 2014 DRAFT

SwAMP algorithm, a possible solution Manoel, Krzakala,  Tramel, Zdeborova (2014)



SwAMP algorithm, a possible solution

Very effective solution that works well in many interesting cases!

Looses the property of involving only matrix multiplications.

7

(a) (b)

Fig. 1: AMP, SwAMP, and `1 solvers compared for CS signal reconstruction for sensing matrices with positive
mean (left, a) and of low-rank (right, b) on sparse signals of size N = 10

4 and sparsity ⇢ = 0.2 with noise variance
� = 10

�8. The projections for (a) have been created following (19) using M = ↵N measurements with ↵ = 0.5.
The projectors for (b) have been created according to (20) and are low-rank for ⌘ < ↵ = 0.6. Finally, a comparison
between reconstruction error obtained by SwAMP and `1-minimization is given at the bottom of both (a) and (b)
for the same experimental settings.

at a large computational cost, however. Here, we have repeated the experiment of [19] using the SwAMP approach

instead of AMP and BP. In fact, for SwAMP, a sparse operator is a very advantageous situation in terms of

computational efficiency. Since the projector is extremely sparse by construction, we may explicitly ignore operations

involving null elements, thus considerably improving the algorithm’s speed, as seen in Fig. 2b. Here, we also see

that SwAMP’s computational complexity is on the order of O(N2
), as is AMP’s. Group testing experiments are

shown in Fig. 2a where we use random 0/1 projections, under the constraint that each projection should sum to 7,

to sample sparse 0/1 signals with K ⌧ N non-zero elements, where N is the signal dimensionality. While AMP

diverges when attempting to recover these signals, SwAMP converges to the correct solution in few iterations.

Additionally, SwAMP very closely matches the BP transition, thus providing recovery performance better than

convex optimization, just as BP does, but with much less computational complexity.

C. 1-bit Compressed Sensing

One of the confounding factors regarding the practical implementation of CS in hardware devices is the treatment

of measurement quantization. The original CS analysis provides recovery bounds based upon the assumption of

real-valued measurements. However, in practice, hardware devices cannot capture such values with infinite precision,

and so some kind of quantization on the measurements must be implemented. Specifically, if Q(·) is a uniform
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Conclusions and Perspectives

• We found that the origin of the convergence problems is an instability of the 
Nishimori Line

• We provided a possible solution with the SwAMP algorithm.

• Relate this kind of instability in the density evolution to the shape of the 
replica potential. 

•  Perform the same kind of analysis for the case of dictionary learning.

THANK YOU!


