Partial match queries: a limit process

Nicolas Broutin Ralph Neininger Henning Sulzbach

Background/Introduction

Data structures/Algorithms

- Analysis of costs/running times in natural conditions
- expected cost
- performance guarantee provided by concentration

Methodology

- complex "objects" that decompose recursively (tree like, or related)
- general approach for convergence using contractions

Searching geometric data and quadtrees

2	4
1	3

Searching geometric data and quadtrees

2	\bullet	4
1		3

Searching geometric data and quadtrees

Model and Previous results

Point set $=\left\{\left(U_{i}, V_{i}\right), i \geq 1\right\}$ iid uniform in $[0,1]^{2}$
$C_{n}(s)$ the number of lines intersecting $\{x=s\}$ in a quadtree of size n
Theorem (Flajolet, Gonnet, Puech and Robson (1993))
For ξ uniform independent of $\left\{\left(U_{i}, V_{i}\right), i \geq 1\right\}$

$$
\mathbf{E}\left[C_{n}(\xi)\right] \sim \kappa n^{\beta} \quad \text { where } \quad \kappa=\frac{\Gamma(2 \beta+2)}{2 \Gamma(\beta+1)^{2}}, \quad \beta=\frac{\sqrt{17}-3}{2}
$$

Theorem (Chern and Hwang (2003))
Let $\phi(z)=(z+1)(z+2)-4$ and $\beta>\beta^{\prime}$ the roots of ϕ. For ξ uniform independent of $\left\{\left(U_{i}, V_{i}\right), i \geq 1\right\}$, one has the exact expression

$$
\mathbf{E}\left[C_{n}(\xi)\right]=\sum_{1 \leq k \leq n}\binom{n}{k}(-1)^{k+1} \frac{2(1-\beta)_{k-1}\left(1-\beta^{\prime}\right)_{k-1}}{k!(k+1)!}
$$

Corollary (Chern and Hwang (2003))
For ξ uniform independent of $\left\{\left(U_{i}, V_{i}\right), i \geq 1\right\}$

$$
\mathbf{E}\left[C_{n}(\xi)\right]=\kappa n^{\beta}-1+O\left(n^{\beta-1}\right)
$$

Idea of the method / heuristic for the constants

Recursive decomposition
We have $Y \stackrel{d}{=} \max \left\{U_{1}, U_{2}\right\}$ and $(I, J)=\operatorname{Mult}(\operatorname{Bin}(n-1, Y) ; V,(1-V))$ then

$$
C_{n}(\xi) \stackrel{d}{=} 1+C_{l}\left(\xi^{\prime}\right)+C_{J}\left(\xi^{\prime}\right)
$$

$$
\Rightarrow \quad \mathbf{E}\left[C_{n}(\xi)\right] \approx 2 \mathbf{E}\left[C_{n Y V}\left(\xi^{\prime}\right)\right]
$$

Plugging $\mathbf{E}\left[C_{n}(\xi)\right]=\kappa n^{\beta}$ yields

$$
1=2 \mathbf{E}\left[Y^{\beta} V^{\beta}\right]=2 \mathbf{E}\left[Y^{\beta}\right] \cdot \mathbf{E}\left[V^{\beta}\right]=\frac{4}{(\beta+2)(\beta+1)} \quad \Rightarrow \quad \beta=\frac{\sqrt{17}-3}{2}
$$

About the variance $\operatorname{Var}\left(C_{n}(\xi)\right)$
Even when conditioning on the first point, the two terms are still dependent on the query line

The cost at a fixed query line

Idea:

- if the query line is fixed at $s \in(0,1)$, then we do have independence
- however, its relative position changes in the subproblems
- \Rightarrow consider the entire process $\left(C_{n}(s), s \in(0,1)\right)$

Theorem (Flajolet, Labelle, Laforest and Salvy 1995)

$$
\mathbf{E}\left[C_{n}(0)\right]=\Theta\left(n^{\sqrt{2}-1}\right)=o\left(n^{\beta}\right)
$$

Note: in particular, $\mathrm{E}\left[C_{n}\left(U_{1}\right)\right]=o\left(n^{\beta}\right)$, and $C_{n}(s)$ is not concentrated.

Theorem (Curien and Joseph (2011))
For every fixed $s \in(0,1)$, one has

$$
\mathbf{E}\left[C_{n}(s)\right] \sim K_{1}(s(1-s))^{\beta / 2} n^{\beta}, \quad K_{1}=\frac{\Gamma(2 \beta+2) \Gamma(\beta+2)}{2 \Gamma(\beta+1)^{3} \Gamma(\beta / 2+1)^{2}}
$$

Main result

Theorem

There exists a random continuous function Z such that, as $n \rightarrow \infty$,

$$
\begin{equation*}
\left(\frac{C_{n}(s)}{K_{1} n^{\beta}}, s \in[0,1]\right) \xrightarrow{d}(Z(s), s \in[0,1]) . \tag{1}
\end{equation*}
$$

This convergence in distribution holds in the Banach space ($\mathcal{D}[0,1],\|\cdot\|$) of right-continuous functions with left limits (càdlàg) equipped with the supremum norm.

Proposition

The distribution of the random function Z in (1) is a fixed point of the following equation

$$
\begin{aligned}
Z(s) \stackrel{d}{=} & \mathbf{1}_{\{s<U\}}\left[(U V)^{\beta} Z^{(1)}\left(\frac{s}{U}\right)+(U(1-V))^{\beta} Z^{(2)}\left(\frac{s}{U}\right)\right] \\
& +\mathbf{1}_{\{s \geq U\}}\left[((1-U) V)^{\beta} Z^{(3)}\left(\frac{s-U}{1-U}\right)+((1-U)(1-V))^{\beta} Z^{(4)}\left(\frac{s-U}{1-U}\right)\right],
\end{aligned}
$$

where U and V are independent $[0,1]$-uniform random variables and $Z^{(i)}, i=1, \ldots, 4$ are independent copies of the process Z, which are also independent of U and V. Furthermore, Z in (1) is the only solution such that $\mathrm{E}[Z(s)]=(s(1-s))^{\beta / 2}$ for all $s \in[0,1]$ and $\mathrm{E}\left[\|Z\|^{2}\right]<\infty$.

What does it look like I

$\mathrm{n}=1000$

What does it look like II

Moments and supremum

Theorem

We have for all $s \in(0,1)$, as $n \rightarrow \infty$,

$$
\operatorname{Var}\left(C_{n}(s)\right) \sim\left(2 \mathrm{~B}(\beta+1, \beta+1) \frac{2 \beta+1}{3(1-\beta)}-1\right)(s(1-s))^{\beta} n^{2 \beta}
$$

Here, $B(a, b):=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x$ denotes the Eulerian beta integral $(a, b>0)$.

Theorem
Let $S_{n}=\sup _{s \in[0,1]} C_{n}(s)$. Then, as $n \rightarrow \infty$,

$$
n^{-\beta} S_{n} \xrightarrow{d} S=\sup _{s \in[0,1]} Z(s) \quad \text { and } \quad E\left[S_{n}\right] \sim n^{\beta} \mathbf{E}[S], \quad \operatorname{Var}\left(S_{n}\right) \sim n^{2 \beta} \operatorname{Var}(S) .
$$

Convergence in distribution by contraction I.

Cost of the construction of the quadtree / path length
$P_{n}=\sum_{i=1}^{n} D_{i}$ with D_{i} the depth of the i-th inserted point

- I_{n}^{r} the number of points inside the r-th child cell
- Q^{r} the volume or the r-th child cell

2	4
1	3

We have

$$
\begin{gathered}
P_{n} \stackrel{d}{=} \sum_{r=1}^{4} P_{l_{n}}+n-1 \text { and write } X_{n}=\frac{P_{n}-\alpha n \log n}{n} \\
\left(I_{n}^{1}, \ldots, I_{n}^{4}\right) \stackrel{d}{=} \operatorname{Mult}(n-1 ; U V, U(1-V),(1-U)(1-V),(1-U) V) .
\end{gathered}
$$

Shifting and rescaling we obtain:

Convergence in distribution by contraction II.

General problem:

A recursive family of equations $X_{n} \stackrel{d}{=} \sum_{r=1}^{4} A_{n}^{r} \cdot X_{I_{n}^{r}}^{r}+b_{n}$ with

- $\left(A_{n}^{1}, \ldots, A_{n}^{4}, I_{n}^{1}, \ldots, I_{n}^{4}, b_{n}\right)$ independent of $\left(\left(X^{1}\right), \ldots,\left(X^{4}\right)\right)$
- $\left(X_{n}^{r}, n \geq 1\right)$ iid copies of (X)

The equation "converges" to a limit equation:

$$
\begin{align*}
& A_{n}^{r}=\frac{I_{n}^{r}}{n} \rightarrow \operatorname{Leb}\left(Q_{r}\right) \\
& b_{n}=\frac{n-1}{n}-\frac{\alpha \log n}{n}+\alpha \sum_{r=1}^{4}\left(\frac{I_{n}^{r}}{n}\right) \log \left(\frac{I_{n}^{r}}{n}\right) \rightarrow 1+\alpha \sum_{r=1}^{4} \operatorname{Leb}\left(Q_{r}\right) \log \operatorname{Leb}\left(Q_{r}\right) \\
& \quad X \stackrel{d}{=} \sum_{r=1}^{4} \operatorname{Leb}\left(Q_{r}\right) \cdot X^{r}+1+\alpha \sum_{r=1}^{4} \operatorname{Leb}\left(Q_{r}\right) \log \operatorname{Leb}\left(Q_{r}\right) \tag{2}
\end{align*}
$$

Formalization: (2) a transfer map on a space of probability measures on \mathbb{R}.
$d_{2}(\phi, \varphi)=\inf \left\{\|X-Y\|_{2}: \mathscr{L}(X)=\phi, \mathscr{L}(Y)=\varphi\right\}$

- on $\mathscr{M}_{2}=\left\{\right.$ probability measures $\left.\mu: \int x^{2} d \mu<\infty\right\}$ no contraction (can shift!)
- on $\mathscr{M}_{2}^{0}=\left\{\mu \in \mathscr{M}_{2}: \int x d \mu=0\right\}$ contraction

Convergence for partial match processes

$$
\begin{aligned}
& \begin{array}{l}
\left(I_{n}^{(1)}, \ldots, I_{n}^{(4)}\right) \stackrel{d}{=} \operatorname{Mult}(n-1 ; U V, U(1-V), \\
\\
(1-U)(1-V),(1-U) V) \\
C_{n}(s) \stackrel{d}{=} 1+1_{\{s<U\}}\left[C_{I_{n}^{(1)}}^{(1)}\left(\frac{s}{U}\right)+C_{I_{n}^{(2)}}^{(2)}\left(\frac{s}{U}\right)\right] \\
+\mathbf{1}_{\{s \geq U\}}[\\
{\left[C_{I_{n}^{(3)}}^{(3)}\left(\frac{1-s}{1-U}\right)+C_{I_{n}^{(4)}}^{(4)}\left(\frac{1-s}{1-U}\right)\right]}
\end{array}
\end{aligned}
$$

Convergence for partial match processes

$$
\begin{aligned}
& \left.\begin{array}{l}
\left(I_{n}^{(1)}, \ldots, I_{n}^{(4)}\right) \stackrel{d}{=} \operatorname{Mult}(n-1 ; U V, U(1-V), \\
\\
(1-U)(1-V),(1-U) V) \\
C_{n}(s) \stackrel{d}{=} 1+1_{\{s<U\}}\left[C_{I_{n}^{(1)}}^{(1)}\left(\frac{s}{U}\right)+C_{I_{n}^{(2)}}^{(2)}\left(\frac{s}{U}\right)\right] \\
+\mathbf{1}_{\{s \geq U\}}[
\end{array} C_{I_{n}^{(3)}}^{(3)}\left(\frac{1-s}{1-U}\right)+C_{I_{n}^{(4)}}^{(4)}\left(\frac{1-s}{1-U}\right)\right]
\end{aligned}
$$

Heuristic: If $n^{-\beta} C_{n}(\cdot)$ converges, we should have $n^{-\beta} C_{n}(\cdot) \rightarrow Z(\cdot)$ satisfying

$$
\begin{aligned}
Z(s) \stackrel{d}{=} & 1_{\{s<U\}}\left[(U V)^{\beta} Z^{(1)}\left(\frac{s}{U}\right)+(U(1-V))^{\beta} Z^{(2)}\left(\frac{s}{U}\right)\right] \\
& +\mathbf{1}_{\{s \geq U\}}\left[((1-U) V)^{\beta} Z^{(3)}\left(\frac{s-U}{1-U}\right)+((1-U)(1-V))^{\beta} Z^{(4)}\left(\frac{s-U}{1-U}\right)\right]
\end{aligned}
$$

Convergence in $\mathcal{D}[0,1]$ by contraction arguments I.

Neininger and Sulzbach (2011+)
Let $\left(X_{n}\right)$ be $\mathcal{D}[0,1]$-valued random variables with

$$
X_{n} \stackrel{d}{=} \sum_{r=1}^{K} A_{n}^{(r)} \circ X_{I_{n}^{(r)}}^{(r)}+b_{n}, \quad n \geq 1
$$

where

- $\left(A_{n}^{(1)}, \ldots, A_{n}^{(K)}\right)$ are random linear and continuous operators on $\mathcal{D}[0,1]$
- b_{n} is a $\mathcal{D}[0,1]$-valued random variable
- $I_{n}^{(1)}, \ldots, I_{n}^{(K)}$ are random integers between 0 and $n-1$
- $\left(X_{n}^{(1)}\right), \ldots,\left(X_{n}^{(K)}\right)$ are distributed like $\left(X_{n}\right)$
- $\left(A_{n}^{(1)}, \ldots, A_{n}^{(K)}, b_{n}, I_{n}^{(1)}, \ldots, I_{n}^{(K)}\right),\left(X_{n}^{(1)}\right), \ldots,\left(X_{n}^{(K)}\right)$ are independent

Convergence in $\mathcal{D}[0,1]$ by contraction arguments \mathbf{I}.

Neininger and Sulzbach (2011+)
Let $\left(X_{n}\right)$ be $\mathcal{D}[0,1]$-valued random variables with

$$
X_{n} \stackrel{d}{=} \sum_{r=1}^{K} A_{n}^{(r)} \circ X_{I_{n}^{(r)}}^{(r)}+b_{n}, \quad n \geq 1
$$

where

- $\left(A_{n}^{(1)}, \ldots, A_{n}^{(K)}\right)$ are random linear and continuous operators on $\mathcal{D}[0,1]$
- b_{n} is a $\mathcal{D}[0,1]$-valued random variable
- $I_{n}^{(1)}, \ldots, I_{n}^{(K)}$ are random integers between 0 and $n-1$
- $\left(X_{n}^{(1)}\right), \ldots,\left(X_{n}^{(K)}\right)$ are distributed like $\left(X_{n}\right)$
- $\left(A_{n}^{(1)}, \ldots, A_{n}^{(K)}, b_{n}, I_{n}^{(1)}, \ldots, I_{n}^{(K)}\right),\left(X_{n}^{(1)}\right), \ldots,\left(X_{n}^{(K)}\right)$ are independent

Example: here, because of the rescaling, we have

$$
A_{n}^{(1)}: f \mapsto \mathbf{1}_{\{\cdot \leq U\}}\left(\frac{I_{n}^{(1)}}{n}\right)^{\beta} f\left(\frac{\cdot}{U}\right)
$$

Convergence in $\mathcal{D}[0,1]$ by contraction arguments \mathbf{I}.

Neininger and Sulzbach (2011+)
Let $\left(X_{n}\right)$ be $\mathcal{D}[0,1]$-valued random variables with

$$
X_{n} \stackrel{d}{=} \sum_{r=1}^{K} A_{n}^{(r)} \circ X_{I_{n}^{(r)}}^{(r)}+b_{n}, \quad n \geq 1
$$

where

- $\left(A_{n}^{(1)}, \ldots, A_{n}^{(K)}\right)$ are random linear and continuous operators on $\mathcal{D}[0,1]$
- b_{n} is a $\mathcal{D}[0,1]$-valued random variable
- $I_{n}^{(1)}, \ldots, I_{n}^{(K)}$ are random integers between 0 and $n-1$
- $\left(X_{n}^{(1)}\right), \ldots,\left(X_{n}^{(K)}\right)$ are distributed like $\left(X_{n}\right)$
- $\left(A_{n}^{(1)}, \ldots, A_{n}^{(K)}, b_{n}, I_{n}^{(1)}, \ldots, I_{n}^{(K)}\right),\left(X_{n}^{(1)}\right), \ldots,\left(X_{n}^{(K)}\right)$ are independent

Example: here, because of the rescaling, we have

$$
A_{n}^{(1)}: f \mapsto \mathbf{1}_{\{\cdot \leq U\}}\left(\frac{I_{n}^{(1)}}{n}\right)^{\beta} f\left(\frac{\dot{U}}{U}\right)
$$

Keep in mind

We want contraction in a space of probability measures on $\mathcal{D}[0,1]$.

Convergence in $\mathcal{D}[0,1]$ by contraction arguments II.

Neininger and Sulzbach (2011+)

For a random linear operator A write

$$
\|A\|_{2}:=\mathrm{E}\left[\|A\|_{\mathrm{op}}^{2}\right]^{1 / 2} \quad \text { with } \quad\|A\|_{\mathrm{op}}:=\sup _{\|x\|=1}\|A(x)\|
$$

(A1) Convergence and contraction (SIMplified).

- we have $\left\|A_{n}^{(r)}\right\|_{2},\left\|b_{n}\right\|_{2}<\infty$ for all $r=1, \ldots, K$ and $n \geq 0$
- there exist random operators $A^{(1)}, \ldots, A^{(K)}$ on $\mathcal{D}[0,1]$ and a $\mathcal{D}[0,1]$-valued random variable b such that

$$
\left\|b_{n}-b\right\|_{2}+\sum_{r=1}^{K}\left(\left\|A_{n}^{(r)}-A^{(r)}\right\|_{2}\right) \leq R(n) \quad R(n) \rightarrow 0
$$

- for all $\ell \in \mathbb{N}$,

$$
L^{*}=\limsup _{n \rightarrow \infty} \mathbf{E}\left[\sum_{r=1}^{K}\left\|A_{r}^{(n)}\right\|_{\mathrm{op}}^{2}\right]<1 .
$$

(A2) EXISTENCE AND EQUALITY OF MOMENTS. E $\left[\left\|X_{n}\right\|^{2}\right]<\infty$ for all n and $\mathbf{E}\left[X_{n_{1}}(t)\right]=\mathbf{E}\left[X_{n_{2}}(t)\right]$ for all $n_{1}, n_{2} \in \mathbb{N}_{0}, t \in[0,1]$.

Convergence in $\mathcal{D}[0,1]$ by contraction arguments III.

Neininger and Sulzbach (2011+)
(A3) Existence of a continuous solution. There exists a solution X of the fixed-point equation

$$
X \stackrel{d}{=} \sum_{r=1}^{K} A_{r} \circ X^{(r)}+b
$$

with continuous paths, $\mathbf{E}\left[\|X\|^{2}\right]<\infty$ and $\mathbf{E}[X(t)]=\mathbf{E}\left[X_{1}(t)\right]$ for all $t \in[0,1]$.
(A4) Perturbation condition. $X_{n}=W_{n}+h_{n}$ where $\left\|h_{n}-h\right\| \rightarrow 0$ with $h \in \mathcal{D}[0,1]$ and random variables W_{n} in $\mathcal{D}[0,1]$ such that there exists a sequence $\left(r_{n}\right)$ with, as $n \rightarrow \infty$,

$$
\mathbf{P}\left(W_{n} \notin \mathcal{D}_{r_{n}}[0,1]\right) \rightarrow 0
$$

Here, $\mathcal{D}_{r_{n}}[0,1] \subset \mathcal{D}[0,1]$ denotes the set of functions on the unit interval, for which there is a decomposition of $[0,1]$ into intervals of length as least r_{n} on which they are constant.
(A5) Rate of convergence. $R(n)=o\left(\log ^{-m}\left(1 / r_{n}\right)\right)$.

Existence of a continuous solution

Define

- a complete tree $T=\bigcup_{n \geq 0}\{1,2,3,4\}^{n}$ with $\left(U_{u}, V_{u}\right), u \in \mathcal{T}$, iid uniform on $[0,1]$
- a starting function $h(s)=(s(1-s))^{\beta / 2}$
- an iteration/mixing operator $G:[0,1]^{2} \times \mathcal{C}[0,1]^{4} \rightarrow \mathcal{C}[0,1]$

$$
\begin{aligned}
& G\left(x, y ; f_{1}, f_{2}, f_{3}, f_{4}\right)(s)= \\
& \mathbf{1}_{\{s<x\}}\left[(x y)^{\beta} f_{1}\left(\frac{s}{x}\right)+(x(1-y))^{\beta} f_{2}\left(\frac{s}{x}\right)\right] \\
& +\mathbf{1}_{\{s \geq x\}}\left[((1-x) y)^{\beta} f_{3}\left(\frac{s-x}{1-x}\right)+((1-x)(1-y))^{\beta} f_{4}\left(\frac{s-x}{1-x}\right)\right]
\end{aligned}
$$

For every node $u \in \mathcal{T}$, let

$$
\begin{aligned}
Z_{0}^{u} & =h \\
Z_{n+1}^{u} & =G\left(U_{u}, V_{u} ; Z_{n}^{u 1}, Z_{n}^{u 2}, Z_{n}^{u 3}, Z_{n}^{u 4}\right)
\end{aligned}
$$

Lemma

$Z_{n}=Z_{n}^{\varnothing}, n \geq 0$, is a non-negative martingale

Existence of a continuous solution

Define

- a complete tree $T=\bigcup_{n \geq 0}\{1,2,3,4\}^{n}$ with $\left(U_{u}, V_{u}\right), u \in \mathcal{T}$, iid uniform on $[0,1]$
- a starting function $h(s)=(s(1-s))^{\beta / 2}$
- an iteration/mixing operator $G:[0,1]^{2} \times \mathcal{C}[0,1]^{4} \rightarrow \mathcal{C}[0,1]$

$$
\begin{aligned}
& G\left(x, y ; f_{1}, f_{2}, f_{3}, f_{4}\right)(s)= \\
& \mathbf{1}_{\{s<x\}}\left[(x y)^{\beta} f_{1}\left(\frac{s}{x}\right)+(x(1-y))^{\beta} f_{2}\left(\frac{s}{x}\right)\right] \\
& +\mathbf{1}_{\{s \geq x\}}\left[((1-x) y)^{\beta} f_{3}\left(\frac{s-x}{1-x}\right)+((1-x)(1-y))^{\beta} f_{4}\left(\frac{s-x}{1-x}\right)\right]
\end{aligned}
$$

For every node $u \in \mathcal{T}$, let

$$
\begin{aligned}
Z_{0}^{u} & =h \\
Z_{n+1}^{u} & =G\left(U_{u}, V_{u} ; Z_{n}^{u 1}, Z_{n}^{u 2}, Z_{n}^{u 3}, Z_{n}^{u 4}\right)
\end{aligned}
$$

Lemma

$Z_{n}=Z_{n}^{\varnothing}, n \geq 0$, is a non-negative martingale

Existence of a continuous solution

Define

- a complete tree $T=\bigcup_{n \geq 0}\{1,2,3,4\}^{n}$ with $\left(U_{u}, V_{u}\right), u \in \mathcal{T}$, iid uniform on $[0,1]$
- a starting function $h(s)=(s(1-s))^{\beta / 2}$
- an iteration/mixing operator $G:[0,1]^{2} \times \mathcal{C}[0,1]^{4} \rightarrow \mathcal{C}[0,1]$

$$
\begin{aligned}
& G\left(x, y ; f_{1}, f_{2}, f_{3}, f_{4}\right)(s)= \\
& \mathbf{1}_{\{s<x\}}\left[(x y)^{\beta} f_{1}\left(\frac{s}{x}\right)+(x(1-y))^{\beta} f_{2}\left(\frac{s}{x}\right)\right] \\
& +\mathbf{1}_{\{s \geq x\}}\left[((1-x) y)^{\beta} f_{3}\left(\frac{s-x}{1-x}\right)+((1-x)(1-y))^{\beta} f_{4}\left(\frac{s-x}{1-x}\right)\right]
\end{aligned}
$$

For every node $u \in \mathcal{T}$, let

$$
\begin{aligned}
Z_{0}^{u} & =h \\
Z_{n+1}^{u} & =G\left(U_{u}, V_{u} ; Z_{n}^{u 1}, Z_{n}^{u 2}, Z_{n}^{u 3}, Z_{n}^{u 4}\right)
\end{aligned}
$$

Lemma

$Z_{n}=Z_{n}^{\varnothing}, n \geq 0$, is a non-negative martingale

Uniform convergence of the mean

Proposition

There exists $\varepsilon>0$ such that

$$
\sup _{s \in[0,1]}\left|t^{-\beta} \mathbf{E}\left[P_{t}(s)\right]-\mu_{1}(s)\right|=O\left(t^{-\varepsilon}\right) .
$$

$$
\sup _{s \in[0,1]}\left|t^{-\beta} \mathbf{E}\left[P_{t}(s)\right]-\mu_{1}(s)\right| \leq \sup _{s \leq \delta}\left|t^{-\beta} \mathbf{E}\left[P_{t}(s)\right]-\mu_{1}(s)\right|+\sup _{s \in(\delta, 1 / 2]}\left|t^{-\beta} \mathbf{E}\left[P_{t}(s)\right]-\mu_{1}(s)\right|
$$

Proposition (Almost monotonicity)
For any $s<1 / 2$ and $\varepsilon \in[0,1-2 s)$, we have

$$
\mathbf{E}\left[P_{t}(s)\right] \leq \mathbf{E}\left[P_{t(1+\varepsilon)}\left(\frac{s+\varepsilon}{1+\varepsilon}\right)\right]
$$

Thank you!

