Toul ce que je sais sur

Bahderier

Def: Let σ be an involution on a finite alphabet. Then a word w is a σ if

$$
w=\sigma(\tilde{w}) .
$$

σ Pal (ω) : set of σ-palindrome factors of ω
Note: If $\sigma=$ Id, this corresponds to usual palindromes, in which case we write Pal(ω)

Example: Let σ be the involution defined by

$$
\sigma: B \leftrightarrow L ; E \leftrightarrow E ; R \leftrightarrow T ; S \leftrightarrow S .
$$

Then BERSTEL is a o-palindrome.

Reconstruction problem

Let P be a finite set of o-palindromes in A^{*}, and factorially closed.

Describe the set of words in A^{*} whose σ-palindromes are contained in P.

Examples
$P \subseteq \operatorname{Pal}\left(A^{*}\right):$
(i) $P=\{\varepsilon, a, b\}$
(ii) $P=\{\varepsilon, a, b, c\}$

$$
\begin{gathered}
P \subseteq \operatorname{Pal}\left(A^{*}\right): \\
P=\{\varepsilon, a b\}
\end{gathered}
$$

Reconstruction problem
Let P be a finite set of o-palindromes in A^{*}, and factorially closed.

Let Q be the set of minimal elements of $P a L_{0}\left(A^{*}\right)-P$ (minimilaty taken with respect to the partial factorial order)

The: The maximal language whose σ-palindromes are contained in P is given by

$$
X_{P}=A^{*}-A^{*} Q A^{*}
$$

Computation of $\operatorname{Pal}(\omega)$
LPSu(ω): Longest Palindromic Suffix of ω unioccurrent Computation of LPSu(ω):

more statistics on a word
$D(\omega)$: number of Lacuna of ω
$C_{\omega}(n)$: number of distinct factors of length n of ω
$P_{\omega}(n)$: number of palindromic factors of length n of ω

ω		B	A	N	D	E	R	I	E	R			
$\|L P S U\|$	0	1	1	1	1	1	1	1	$*$	$*$			

Thm: $D(B A N D E R I E R)=2$

A remarkable identity suggested by BANDERIER

$$
2 D(\omega)=\sum_{n=0}^{k} C_{\omega}(n+1)-C_{\omega}(n)+2-P_{\omega}(n)-P_{\omega}(n+1) .
$$

n	0	1	2	3	4	6	6	7	8	9	10
11											
C_{ω}	1	7	7	7	6	5	4	3	2	1	0
0	0										
P_{ω}	1	7	0	0	0	0	0	0	0	0	0
T_{ω}	0	-6	2	1	1	1	1	1	1	1	

$$
2 D(\text { BANDERIER })=2 \times 2=9-6 .
$$

Def: Call geneal a word without Lacunas.

- Christoffel words are genial
- MAIRESSE and DUCHAMP are genial
- CASINO, BODINI, JACQUOT, ROSSIN, SORIA, VALLÉE, and some others are genial as well but
- bander ier is a good friend
- DENISE and FERNIQUE as well.

Infinite words: periodic case

ω		I	S	A	W	I	W	A	S	I	B	0	B	I	S	A	W	I	W
LIS\|	0	1	1	1	1	$*$	3	6	7	9	1	1	3	6	7	9	11	13	$1:$

ω		B	A	N	D	E	R	I	E	R	B	A	N	D	E	R	I	E
LPSul	0	1	1	1	1	1	1	1	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$

Some important results

1. The following conditions are equivalent :
(i) $\left|\operatorname{PaL}\left(\omega^{\omega}\right)\right|=\infty$;
(ii) $\omega=u, v$, where u, v are palindromes;
(iii) w is conjugate either to an even palindrome or to a word of the form app with $a \in A$ and $p \in \operatorname{Pal}(\omega)$;
(iv) the conjugacy class [ω] has an axial symmetry.

Computation of the Lacunas
2. $D(\omega \omega)=D(\omega, x)$ where $|x|=|(|u|-|v|) / 3|$
3. $D\left(\omega^{(\omega)}\right)=D\left(\omega^{\prime}\right)$ for some $\omega^{\prime} \in[\omega]$

The bound given in 2) is attained. Immediate consequences are

$$
\begin{aligned}
D\left(\omega^{\omega}\right)=0 & \Leftrightarrow D(\omega, x)=0 \text { where }|x|=|(|u|-|v|) / 3| \\
& \Leftrightarrow D\left(\omega^{2}\right)=0 \\
& \Leftrightarrow D\left(\omega^{k}\right)=0 \text { where } k \geq 1.333333 \ldots
\end{aligned}
$$

Determining the lacunas of a periodic word is easy.

Def: Words that are product of two palindromes are called

Exercise: give an algorithm bo determine whether a word is symmetric or not.

Here is one showing that BANDERIER is not symmetric

..... the infinite case

- Thue-Morse M is not genial.
- The Lacunas of M are not
- (BANDERIER) ${ }^{\omega}$ is not genial but the lacunas are recognizable.
- SERRE is genial and so is (SERRE)w.
- BASSINO is genial but (BASSINO) ${ }^{\omega}$ is not. This is the case for many others, including BRLEK
- Fibonacci word and all sturmian ones are genial.

The remarkable idenkly satisfied by BANDERIER
extends to some infinite words.

Thy: Let w be an infinite word with language closed under reversal, then

$$
2 D(\omega)=\sum_{n=0}^{\infty} C_{\omega}(n+1)-C_{\omega}(n)+2-P_{\omega}(n)-P_{\omega}(n+1) .
$$

Examples: Thue-Morse, Sturmian, all periodic words, oldenburger (closed under reversal?)

Conjecture: Let W be a fixpoint of a primitive morphism. If $D(W)$ is positive and finite, then W is periodic.

- Disproved by the following example
$a \rightarrow a a b c a c b a ; b \rightarrow a a ; c \rightarrow a$

$$
\begin{aligned}
& W=a a b c \text { cba.aabcacba.aa,a.aabcacba. } \\
& D(W)=1
\end{aligned}
$$

- Still holds for two letter alphabets.

Another viewpoint on
BANDERIER

Let σ be the involution defined by

$$
\sigma: B \leftrightarrow D ; E \leftrightarrow R ; I \leftrightarrow I ; A \leftrightarrow N .
$$

Then, BANDERIER is not a o-pollandromacs but is conjugate bo a o-
$N D \cdot E R I E R \cdot B A$

New notation
$\sigma \operatorname{Pal}(\omega)$: set of σ-palindromic factors of ω
LoPS (ω) : Longest σ-palindromic suffix of ω unioccurrent
$D(\omega)$: number of σ-Lacunas of ω
$\sigma P_{\omega}(n)$: number of σ-palindromic factors of length n

Computations with BANDERIER

ω		B	A	N	D	E	R	I	E	R		
$\mid L_{0} P S_{u}$	0	$*$	$*$	2	4	$*$	2	1	3	S		

n	0	1	2	3	4	6	6	7	8	9	10		
C_{ω}	1	7	7	7	6	6	4	3	2	1	0		
σP_{ω}	1	1	2	1	1	1	0	0	0	0	0		
T_{ω}	6	-1	-1	-1	-1	0	1	1	1	1			

Some new important results:
Prop: For any finite ω ord $\omega, \operatorname{loPal}(\omega)|\leq|\omega|+1-t$.

Thm: For any finite word w, the (BR) identity holds

$$
2 D_{0}(\omega)=\sum_{n=0}^{k} C_{\omega}(n+1)-C_{\omega}(n)+2-o P_{\omega}(n)-\sigma P_{\omega}(n+1) .
$$

and for infinite periodic words

ω		B	A	N	D	E	R	I	E	R	B	A	N	D	E	R	I	E
LPSul	0	$*$	$*$	2	4	$*$	2	1	3	5	7	9	11	13	16	17	19	21

1. $\left|\sigma \operatorname{PaL}\left(\omega \omega^{\omega}\right)\right|=\infty \Leftrightarrow \omega=u, v$, with u, v - -palindromes
2. $D_{\sigma}(\omega \omega)=D_{\sigma}\left(\omega^{2}\right)=D_{\sigma}(\omega, x)$ where $|x|=|(|u|-|v|) / 3|$

Def: Words that are product of two o-palindromes are called σ -

ThY: [BANDERIER] is σ-8ymametoric. Proof:

Thu: Let w be an infinite word with language closed under σ-reversal, then

$$
2 D_{\sigma}(\omega)=\sum_{n=0}^{\infty} C_{\omega}(n+1)-C_{\omega}(n)+2-\sigma P_{\omega}(n)-\sigma P_{\omega}(n+1) .
$$

Examples: Thue-Morse, Oldenburger (not known if closed under σ-reversal)

Fact: Sturmian words satisfy the (BR) identity but are not closed under o-reversal.

Def: Let $w \in A^{*}$. If there exists an involution σ such that $D\left(w^{\omega}\right)$ is finite, then w is called

Example: BANDERIER is almost genial.
Proof: Indeed $\left.D_{o}(\text { (BANDERIER })^{\omega}\right)=3$.
(DENISE and FERNIQUE as well!)

Def: Let $w \in A^{*}$. If there is no involution σ such that $D\left(\omega w^{\omega}\right)$ is finite, then w is called inherently not genial.

Example

has recognizable Lacuhas

and hence is
not genial
but from another viewpoint is
very close friend

THE

