Tout ce que je sais sur

Banderier

Wednesday, April 2, 2014

Def: Let σ be an involution on a finite alphabet. Then a word ω is a σ -palindrome if $\omega = \sigma(\tilde{\omega})$.

oPal(w): set of o-palindrome factors of w

Note: If $\sigma = Id$, this corresponds to usual palindromes, in which case we write Pal(w)

Example: Let σ be the involution defined by $\sigma: B \leftrightarrow L ; E \leftrightarrow E ; R \leftrightarrow T ; S \leftrightarrow S$. Then BERSTEL is a σ -palindrome.

Reconstruction problem

Let P be a finite set of o-palindromes in A*, and factorially closed.

Describe the set of words in A^* whose σ -palindromes are contained in P.

P ⊆ Pal(A*):(i) $P = \{ ε, a, b \}$ (ii) $P = \{ ε, a, b, c \}$

 $P \subseteq Pal_{\sigma}(A^*):$ $P = \{\epsilon, ab\}$

Wednesday, April 2, 2014

Reconstruction problem

Let P be a finite set of o-palindromes in A*, and factorially closed.

Let Q be the set of minimal elements of $Pal_{O}(A^{*})-P$ (minimilaty taken with respect to the partial factorial order)

Thm: The maximal language whose σ -palindromes are contained in P is given by

$$X_P = A^* - A^* \bigcirc A^*$$

Computation of Pal(w)

LPSu(w): Longest Palindromic Suffix of w unioccurrent

Computation of LPSu(w):

()		I	\$	A	W	I	W	A	5	I	B	0	B	
LPSul	0	1	1	1	1	*	3	5	7	9	1	1	3	

A Lacuna

more statistics on a word

D(w): number of Lacunas of w

 $C_{\omega}(n)$: number of distinct factors of length n of ω

 $P_{\omega}(n)$: number of palindromic factors of length n of ω

3	A DESCRIPTION OF TAXABLE PARTY.	and a loss of the loss of the loss of the		And Contractor South and	STREET, STREET	Contraction of the local distance of the loc	NOTIFICATION OF STREET	Contraction of the local division of the loc	A second s	States of the second second	A CONTRACTOR OF THE OWNER	and the second second second	
LPSu	0	1	1	1	1	1	1	1	*	*			

Thm: D(BANDERIER) = 2

A remarkable identity suggested by BANDERIER

 $2D(w) = \sum_{n=0}^{\infty} C_w(n+1) - C_w(n) + 2 - P_w(n) - P_w(n+1).$

N	0	1	2	3	4	5	6	7	8	9	10	11	
Cw	1	7	7	7	6	5	4	3	2	1	0	0	
Pw	1	7	0	0	0	0	0	0	0	0	0	0	
service and the service servic	0	-5	2	1	1	1	1	1	1	1			

 $2D(BANDERIER) = 2 \times 2 = 9 - 5.$

Def: Call genial a word without lacunas.

Christoffel words are genial

@ MAIRESSE and DUCHAMP are genial

BASSINO, BODINI, JACQUOT, ROSSIN, SORIA, VALLÉE, and some others are genial as well

but

@ BANDERIER is a good friend

@ DENISE and FERNIQUE as well.

Infinite words: periodic case

Some important results 1. The following conditions are equivalent: (i) $Pal(\omega^{\omega}) = \infty$; (ii) w = u.v, where u, v are palindromes; (iii) ω is conjugate either to an even palindrome or to a word of the form a.p with a \in A and $p \in Pal(\omega)$; (iv) the conjugacy class [w] has an axial symmetry. B R R

Computation of the Lacunas 2. $D(\omega^{\omega}) = D(\omega, x)$ where |x| = |(|u| - |v|)/3|3. $D(\omega^{\omega}) = D(\omega')$ for some $\omega' \in [\omega]$

The bound given in 2) is attained. Immediate consequences are

 $D(w^{(w)}) = 0 \iff D(w,x) = 0 \text{ where } |x| = |(|u| - |v|)/3|$ <=> $D(w^2) = 0$

<=> $D(w^k) = 0$ where $k \ge 1.3333333...$

Determining the Lacunas of a periodic word is easy.

Def: Words that are product of two palindromes are called symmetric.

Exercise: give an algorithm to determine whether a word is symmetric or not.

Here is one showing that BANDERIER is not symmetric

..... the infinite case

- @ Thue-Morse M is not genial.
- The Lacunas of M are not recognizable.
- (BANDERIER)^w is not genial but the lacunas are recognizable.
- SERRE is genial and so is (SERRE)[∞].
- @ Fibonacci word and all Sturmian ones are genial.

The remarkable identity satisfied by BANDERIER extends to some infinite words.

Thm: Let w be an infinite word with language closed under reversal, then

 $2D(w) = \sum_{n=0}^{\infty} C_w(n+1) - C_w(n) + 2 - P_w(n) - P_w(n+1).$

Examples: Thue-Morse, Sturmian, all periodic words, Oldenburger (closed under reversal?) Conjecture: Let W be a fixpoint of a primitive morphism. If D(W) is positive and finite, then W is periodic.

Disproved by the following example

 a-> aabcacba ; b-> aa ; c -> a
 W = aabcacba.aabcacba.aa.a.aabcacba.
 D(W) = 1

Still holds for two letter alphabets.

Another viewpoint on BANDERIER

Let σ be the involution defined by $\sigma: B \leftrightarrow D; E \leftrightarrow R; I \leftrightarrow I; A \leftrightarrow N$.

Then, BANDERIER is not a σ -palindrome but is conjugate to a σ -palindrome

ND · ERIER · BA

- oPal(w): set of o-palindromic factors of w LoPSu(w): longest o-palindromic suffix of w unioccurrent
 - Do(w): number of o-lacunas of w
 - $\sigma P_{\omega}(n)$: number of σ -palindromic factors of length n

Computations with BANDERIER

3		B	A	N	D	E	R	I	E	R		
$L_{\sigma}PS_{u}$	0	*	*	2	4	*	2	1	3	5		

n	0	1	2	3	4	5	6	7	8	9	10		
C.	1	7	7	7	6	5	4	3	2	1	0		
σPw	1	1	2	1	1	1	0	0	0	0	0		
, san jan jan jan jan jan jan jan jan jan j	6	-1	-1	-1	-1	0	1	1	1	1			
											States	5.6	

some new important results: Prop: For any finite word w, $|\sigma Pal(w)| \leq |w| + 1 - t$. Thm: For any finite word w, the (BR) identity holds $2D_{o}(w) = \sum_{n=0}^{\infty} C_{w}(n+1) - C_{w}(n) + 2 - \sigma P_{w}(n) - \sigma P_{w}(n+1).$

and for infinite periodic words

\$		B	A	N	D	E	R	I	E	R	B	A	N	D	E	R	I	E
LPSu	0	*	*	2	4	*	2	1	3	5	7	9	11	13	15	17	19	21
															Selection of			

1. $|\sigma Pal(w^{\omega})| = \infty \iff w = u.v$, with u, v o-palindromes 2. $D_o(w^{\omega}) = D_o(w^2) = D_o(w.x)$ where |x| = |(|u| - |v|)/3|Def: Words that are product of two o-palindromes are called σ -symmetric.

Thm: [BANDERIER] is o-symmetric.

Proof:

Thm: Let w be an infinite word with language closed under σ -reversal, then

 $2D_{o}(\omega) = \sum_{n=0}^{\infty} C_{\omega}(n+1) - C_{\omega}(n) + 2 - \sigma P_{\omega}(n) - \sigma P_{\omega}(n+1).$

Examples: Thue-Morse, Oldenburger (not known if closed under o-reversal)

Fact: Sturmian words satisfy the (BR) identity but are not closed under o-reversal.

Def: Let $w \in A^*$. If there exists an involution σ such that $D_0(w^{(w)})$ is finite, then w is called almost genial.

Example: BANDERIER is almost genial. Proof: Indeed $D_0((BANDERIER)^{(0)}) = 3$. (DENISE and FERNIQUE as well !)

Def: Let $w \in A^*$. If there is no involution σ such that $D_0(w^{\omega})$ is finite, then w is called inherently not genial.

has recognizable lacunas and hence is not genial but from another viewpoint is very close friend

