Asymptotic Density of Properties in Cellular

Automata

Laurent Boyer

équipe LIMD, LAMA (Université de Savoie - CNRS)
LIPN - 15 mars 2011

Density of Properties in Cellular Automata

Cellular Automata
Introduction
Limit sets
Simulations and universality
Syntactically defined subfamilies
Density of properties
Context
Our framework
Densities among CA
Link with Kolmogorov complexity
Densities among subclasses
Perspectives

Cellular Automata
Introduction
Limit sets
Simulations and universality Syntactically defined subfamilies

Density of properties

Context
Our framework
Densities among CA
Link with Kolmogorov complexity
Densities among subclasses
Perspectives

Cellular automata (CA)

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),
- each cell has a state chosen from a finite set.

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),
- each cell has a state chosen from a finite set.
- This state evolves over time

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),
- each cell has a state chosen from a finite set.
- This state evolves over time according to a unique local rule ...

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),
- each cell has a state chosen from a finite set.
- This state evolves over time according to a unique local rule ...
- ... applied simultaneously and uniformly.

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),
- each cell has a state chosen from a finite set.
- This state evolves over time according to a unique local rule ...
- ... applied simultaneously and uniformly.

Cellular automata (CA)

- An infinite lattice of cells (in this talk, we consider 1D-CA),
- each cell has a state chosen from a finite set.
- This state evolves over time according to a unique local rule ...
- ... applied simultaneously and uniformly.
- Syntactically, a CA is given by

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)
- a finite set of states, the alphabet:
Q, with $n=|Q|$.

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)
- a finite set of states, the alphabet:
Q, with $n=|Q|$.
- a finite neighbourhood:

$$
V=\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\} \subseteq \mathbb{Z}
$$

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)
- a finite set of states, the alphabet:
Q, with $n=|Q|$.
- a finite neighbourhood:
$V=\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\} \subseteq \mathbb{Z}$
- a local evolution rule
$\delta: Q^{k} \rightarrow Q$

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)
- a finite set of states, the alphabet:
Q, with $n=|Q|$.
- a finite neighbourhood:
$V=\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\} \subseteq \mathbb{Z}$
- a local evolution rule
$\delta: Q^{k} \rightarrow Q$
$\Rightarrow \mathrm{A} 1 \mathrm{D}-\mathrm{CA}$ is given by a triplet (Q, V, δ)

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)
- a finite set of states, the alphabet:
Q, with $n=|Q|$.
- a finite neighbourhood:

$$
V=\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\} \subseteq \mathbb{Z}
$$

- a local evolution rule
$\delta: Q^{k} \rightarrow Q$
$\Rightarrow \mathrm{A} 1 \mathrm{D}-\mathrm{CA}$ is given by a triplet (Q, V, δ)
- It defines a global behaviour
- for configurations $x \in Q^{\mathbb{Z}}$

- the global rule: $F: Q^{\mathbb{Z}} \rightarrow Q^{\mathbb{Z}}$ is defined locally:

$$
F(x)_{z}=\delta\left(x_{z+\nu_{1}}, x_{z+\nu_{2}}, \ldots, x_{z+\nu_{k}}\right)
$$

- Syntactically, a CA is given by
- a regular lattice of cells (\mathbb{Z} in this talk)
- a finite set of states, the alphabet:
Q, with $n=|Q|$.
- a finite neighbourhood:

$$
V=\left\{\begin{array}{lll}
1 / 1 \\
1 / n & 1,
\end{array}\right\} \subset \pi .
$$

Simple (finite) description

Complex global behaviour

- ior conngurations $x \in \boldsymbol{u}^{-}$
- the global rule: $F: Q^{\mathbb{Z}} \rightarrow Q^{\mathbb{Z}}$ is defined locally:

$$
F(x)_{z}=\delta\left(x_{z+\nu_{1}}, x_{z+\nu_{2}}, \ldots, x_{z+\nu_{k}}\right)
$$

Some examples $(1 / 2)$

- MAX is $\left(\{0,1\},\{-1,0,1\}, \delta_{\text {max }}: x, y, z \mapsto \max (x, y, z)\right)$:

Some examples $(1 / 2)$

$-\operatorname{MAX}$ is $\left(\{0,1\},\{-1,0,1\}, \delta_{\text {MAX }}: x, y, z \mapsto \max (x, y, z)\right)$:

- JustGliders is $\left(\{L, \emptyset, R\},\{-1,0,1\}, \delta_{J G}\right)$ with $\delta_{J G}$ s.t. L moves left, R moves right, and they disappear if they collide :

Some examples (2/2)

- 184 is $\left(\{0,1\},\{-1,0,1\}, \delta_{184}\right)$ with $\delta_{184}:\left\{\begin{array}{l}10 ? \mapsto 1 \\ ? 10 \mapsto 0 \\ ? 11 \mapsto 1 \\ 00 ? \mapsto 0\end{array}\right.$

Exploring the set of CA : a historical review

Here we don't focus on particular CA :

- What are CA in general ?

Exploring the set of CA : a historical review

Here we don't focus on particular CA:

- What are CA in general ?

The usual answer :

- Study properties of CA:
- global maps properties : surjectivity, injectivity, ...
- topological properties (equicontinuity, sensitivity, expansivity...)
- specific tools such as limit sets

Exploring the set of CA : a historical review

Here we don't focus on particular CA :

- What are CA in general ?

The usual answer :

- Study properties of CA:
- global maps properties : surjectivity, injectivity, ...
- topological properties (equicontinuity, sensitivity, expansivity...)
- specific tools such as limit sets
- Classify:
- In a finite number of classes
- empirical classifications due to Wolfram (from experiences)
- topological classification (Kurka...)
- ...
- More finely
- using the preorder induced by the intrinsic simulation relation

Exploring the set of CA : a historical review

Here we don't focus on particular CA :

- What are CA in general ?

The usual answer :

- Study properties of CA:
- global maps properties : surjectivity, injectivity, ...
- topological properties (equicontinuity, sensitivity, expansivity...)
- specific tools such as limit sets
- Classify:
- In a finite number of classes
- empirical classifications due to Wolfram (from experiences)
- topological classification (Kurka...)
- ...
- More finely
- using the preorder induced by the intrinsic simulation relation
- No quantitative information!

Exploring the set of CA : a historical review

Here we don't focus on particular CA :

- What are CA in general ?

The usual answer :

- Study properties of CA:
- global maps properties : surjectivity, injectivity, ...
- topological properties (equicontinuity, sensitivity, expansivity...)
- specific tools such as limit sets
- Classify:
- In a finite number of classes
- empirical classifications due to Wolfram (from experiences)
- topological classification (Kurka...)
- ...
- More finely
- using the preorder induced by the intrinsic simulation relation
- No quantitative information!

Limit sets of CA

A tool to study long term behaviour of CA.

Limit sets of CA

A tool to study long term behaviour of CA.

- For one given CA \mathcal{A},

Definition (Limit set)

$$
\Omega_{\mathcal{A}} \stackrel{\text { def }}{=} \bigcap_{t \in \mathbb{N}} \mathcal{A}^{t}\left(Q^{\mathbb{Z}}\right)
$$

"Configurations that may appear arbitrarily late in the evolution."

Limit sets of CA

A tool to study long term behaviour of CA.

- For one given CA \mathcal{A},

Definition (Limit set)

$$
\Omega_{\mathcal{A}} \stackrel{\text { def }}{=} \bigcap_{t \in \mathbb{N}} \mathcal{A}^{t}\left(Q^{\mathbb{Z}}\right)
$$

"Configurations that may appear arbitrarily late in the evolution."

Examples:

- $\Omega_{\mathrm{MAX}}=\left\{{ }^{\omega} 1^{\omega}\right\} \cup\left\{{ }^{\omega} 0^{\omega}\right\} \cup\left\{{ }^{\omega} 1 \cdot 0^{\omega}\right\} \cup\left\{{ }^{\omega} 0 \cdot 1^{\omega}\right\} \cup\left\{{ }^{\omega} 1 \cdot 0^{*} \cdot 1^{\omega}\right\}$
- $\Omega_{\text {JustGliders }}={ }^{\omega}\{R, \emptyset\} \cdot\{L, \emptyset\}^{\omega}$

Limit sets of CA

A tool to study long term behaviour of CA.

- For one given CA \mathcal{A},

Definition (Limit set)

$$
\Omega_{\mathcal{A}} \stackrel{\text { def }}{=} \bigcap_{t \in \mathbb{N}} \mathcal{A}^{t}\left(Q^{\mathbb{Z}}\right)
$$

"Configurations that may appear arbitrarily late in the evolution."

Examples:

- $\Omega_{\text {MAX }}=\left\{{ }^{\omega} 1^{\omega}\right\} \cup\left\{{ }^{\omega} 0^{\omega}\right\} \cup\left\{{ }^{\omega} 1 \cdot 0^{\omega}\right\} \cup\left\{{ }^{\omega} 0 \cdot 1^{\omega}\right\} \cup\left\{{ }^{\omega} 1 \cdot 0^{*} \cdot 1^{\omega}\right\}$
- $\Omega_{\text {JustGliders }}={ }^{\omega}\{R, \emptyset\} \cdot\{L, \emptyset\}^{\omega}$

Definition (Nilpotency)

$$
\mathcal{A} \in \mathrm{Nil} \stackrel{\text { def }}{\Leftrightarrow} \quad \Omega_{\mathcal{A}}=\{c\}
$$

"The CA always converges to this single configuration."

Intrinsic simulation (1/2)

Intrinsic simulation (1/2)

Mazoyer, Delorme, Rapaport, Ollinger, Theyssier (1998-2010)

- A simulation relation

Intrinsic simulation (1/2)

Mazoyer, Delorme, Rapaport, Ollinger, Theyssier (1998-2010)

- A simulation relation

Two ingredients :

Intrinsic simulation (1/2)

Mazoyer, Delorme, Rapaport, Ollinger, Theyssier (1998-2010)

- A simulation relation

Two ingredients:

- the sub-automaton relation \sqsubseteq restriction of the local rule to a stable subset of Q Example : in JustGliders: $\{L, \emptyset\}$ defines a sub-automaton, $\{L, R\}$ doesn't.

Intrinsic simulation (1/2)

Mazoyer, Delorme, Rapaport, Ollinger, Theyssier (1998-2010)

- A simulation relation

Two ingredients:

- the sub-automaton relation \sqsubseteq restriction of the local rule to a stable subset of Q Example : in JustGliders: $\{L, \emptyset\}$ defines a sub-automaton, $\{L, R\}$ doesn't.
- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Intrinsic simulation (1/2)

- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Intrinsic simulation (1/2)

- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Intrinsic simulation (1/2)

口

- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Intrinsic simulation (1/2)

 HRE日R

- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Intrinsic simulation (1/2)

- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Intrinsic simulation (1/2)

Mazoyer, Delorme, Rapaport, Ollinger, Theyssier (1998-2010)

- A simulation relation

Two ingredients:

- the sub-automaton relation \sqsubseteq restriction of the local rule to a stable subset of Q
Example : in JustGliders: $\{L, \emptyset\}$ defines a sub-automaton, $\{L, R\}$ doesn't.
- rescalings (spatio-temporal transforms)
- packing
- time cutting
- shifting

Definition (Simulation)
$\preccurlyeq \sqsubseteq \quad \stackrel{\text { def }}{\Leftrightarrow} \sqsubseteq u p$ to spatio-temporal transform
"The simulator can emulate uniformly the behaviour of the simulated CA."

Intrinsic simulation (1/2)

Definition (Simulation)
$\preccurlyeq \sqsubseteq \quad \stackrel{\text { def }}{\Leftrightarrow} \sqsubseteq u p$ to spatio-temporal transform
"The simulator can emulate uniformly the behaviour of the simulated CA."

Intrinsic simulation (1/2)

Definition (Simulation)
$\preccurlyeq \sqsubseteq \quad \stackrel{\text { def }}{\Leftrightarrow} \sqsubseteq u p$ to spatio-temporal transform
"The simulator can emulate uniformly the behaviour of the simulated CA."

Intrinsic simulation (1/2)

Definition (Simulation)

$\preccurlyeq \sqsubseteq \stackrel{\text { def }}{\Leftrightarrow} \sqsubseteq u p$ to spatio-temporal transform
"The simulator can emulate uniformly the behaviour of the simulated CA."

Intrinsic simulation (2/2)

Definition (Universality)

$\mathcal{U} \in$ Univ $\quad \stackrel{\text { def }}{\Leftrightarrow} \quad \forall \mathcal{A}, \mathcal{A} \preccurlyeq \sqsubseteq \mathcal{U}$
" \mathcal{U} is able to emulate the behaviour of any other CA."

Intrinsic simulation (2/2)

Definition (Universality)

$\mathcal{U} \in$ Univ $\quad \stackrel{\text { def }}{\Leftrightarrow} \quad \forall \mathcal{A}, \mathcal{A} \preccurlyeq \sqsubseteq \mathcal{U}$
" \mathcal{U} is able to emulate the behaviour of any other CA."

Theorem (N. Ollinger - 2003)
There exists a universal CA.

Intrinsic simulation (2/2)

Definition (Universality)

$\mathcal{U} \in$ Univ $\quad \stackrel{\text { def }}{\Leftrightarrow} \quad \forall \mathcal{A}, \mathcal{A} \preccurlyeq \sqsubseteq \mathcal{U}$
" \mathcal{U} is able to emulate the behaviour of any other CA."

Theorem (N. Ollinger - 2003)
There exists a universal CA.

Remarks :

- Central notion in CA litterature,
- Stronger than Turing universality in CA,
- Elements of Univ are maximal elements in the preorder induced by $\preccurlyeq \sqsubseteq$.

Subfamilies of CA (example 1)

Subfamilies of CA (example 1)

- Captive CA

Definition (Captive CA)
$\begin{array}{ll}\mathcal{A} \in \mathcal{K} \stackrel{\text { def }}{\Leftrightarrow} \quad \forall x_{1}, x_{2}, \ldots, x_{k} \in Q, \\ & \delta_{\mathcal{A}}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\end{array}$

- Introduced by G. Theyssier (2004),
- under some conditions most captive CA are universal (2005).

Subfamilies of CA (example 2)

- Multiset CA

Definition (Multiset CA)

$$
\mathcal{A} \in \mathcal{M S} \quad \stackrel{\text { def }}{\Leftrightarrow} \quad \begin{aligned}
& \text { for all permutation } \pi:\{1, \ldots k\} \rightarrow\{1, \ldots k\}, \\
& \delta_{\mathcal{A}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\delta_{\mathcal{A}}\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(k)}\right)
\end{aligned}
$$

- Captures the idea of isotropy.
- Other interesting properties (rescalings...).

Cellular Automata
Introduction
Limit sets
Simulations and universality Syntactically defined subfamilies

Density of properties

Context
Our framework
Densities among CA
Link with Kolmogorov complexity
Densities among subclasses
Perspectives

Motivations and previous related work

- Goal:
- quantify properties of CA,
- precise properties of random CA.

Motivations and previous related work

- Goal:
- quantify properties of CA,
- precise properties of random CA.
- Previous related work:
- Dubacq, Durand, Formenti - 2001
- used Kolmogorov complexity as a classification parameter,
- proved that some properties are rare.
- Theyssier - 2005
- Studied density of universality among captive CA.

Motivations and previous related work

- Goal:
- quantify properties of CA,
- precise properties of random CA.
- Previous related work:
- Dubacq, Durand, Formenti - 2001
- used Kolmogorov complexity as a classification parameter,
- proved that some properties are rare.
- Theyssier - 2005
- Studied density of universality among captive CA.
- Our contribution :
- a unified framework to study density among CA or subfamilies,
- various results.

Objects and properties

- What objects ?

Objects and properties

- What objects ?

We consider the set CA of triplets $\left(Q_{n}, V_{k}, \delta\right)$ for $n, k \in \mathbb{N}$, with

- $Q_{n}=\{0,1, \ldots, n-1\}$
- V_{k} centered and connected neighbourhood of size k
- δ any function $\left(Q_{n}\right)^{k} \rightarrow Q_{n}$

Objects and properties

- What objects ?

We consider the set CA of triplets $\left(Q_{n}, V_{k}, \delta\right)$ for $n, k \in \mathbb{N}$, with

- $Q_{n}=\{0,1, \ldots, n-1\}$
- V_{k} centered and connected neighbourhood of size k
- δ any function $\left(Q_{n}\right)^{k} \rightarrow Q_{n}$

1. some restrictions
\rightsquigarrow but no influence on results.

Objects and properties

- What objects ?

We consider the set CA of triplets $\left(Q_{n}, V_{k}, \delta\right)$ for $n, k \in \mathbb{N}$, with

- $Q_{n}=\{0,1, \ldots, n-1\}$
- V_{k} centered and connected neighbourhood of size k
- δ any function $\left(Q_{n}\right)^{k} \rightarrow Q_{n}$

1. some restrictions
\rightsquigarrow but no influence on results.
2. syntactical descriptions
\rightsquigarrow but redundancy does not biaised results.

Objects and properties

- What objects ?

We consider the set CA of triplets $\left(Q_{n}, V_{k}, \delta\right)$ for $n, k \in \mathbb{N}$, with

- $Q_{n}=\{0,1, \ldots, n-1\}$
- V_{k} centered and connected neighbourhood of size k
- δ any function $\left(Q_{n}\right)^{k} \rightarrow Q_{n}$

1. some restrictions
\rightsquigarrow but no influence on results.
2. syntactical descriptions
\rightsquigarrow but redundancy does not biaised results.
We consider densities among CA or among subfamilies $\mathcal{C} \subseteq \mathbf{C A}$.

Objects and properties

- What objects ?

We consider the set CA of triplets $\left(Q_{n}, V_{k}, \delta\right)$ for $n, k \in \mathbb{N}$, with

- $Q_{n}=\{0,1, \ldots, n-1\}$
- V_{k} centered and connected neighbourhood of size k
- δ any function $\left(Q_{n}\right)^{k} \rightarrow Q_{n}$

1. some restrictions
\rightsquigarrow but no influence on results.
2. syntactical descriptions
\rightsquigarrow but redundancy does not biaised results.
We consider densities among CA or among subfamilies $\mathcal{C} \subseteq \mathbf{C A}$.

- Which properties ?

Any subset $\mathcal{P} \subseteq \mathbf{C A}$.

Enumeration

CA is infinite \Longrightarrow asymptotic densities,

Enumeration

CA is infinite \Longrightarrow asymptotic densities,

- Which enumerations of CA ?

Every possible enumeration \rightsquigarrow meaningless results.

Enumeration

CA is infinite \Longrightarrow asymptotic densities,

- Which enumerations of CA ?

Every possible enumeration \rightsquigarrow meaningless results.
But a natural possibility:

Enumeration

CA is infinite \Longrightarrow asymptotic densities,

- Which enumerations of CA ?

Every possible enumeration \rightsquigarrow meaningless results.
But a natural possibility:

- pack CA by size (n, k),

$$
\mathbf{C A}_{n, k} \stackrel{\text { def }}{=}\left\{\left(Q_{n}, V_{k}, \delta\right)\right\} \text { and } \mathcal{C}_{n, k} \stackrel{\text { def }}{=} \mathcal{C} \cap \mathbf{C A}_{n, k}
$$

Enumeration

CA is infinite \Longrightarrow asymptotic densities,

- Which enumerations of CA ?

Every possible enumeration \rightsquigarrow meaningless results.
But a natural possibility:

- pack CA by size (n, k),

$$
\mathbf{C A}_{n, k} \stackrel{\text { def }}{=}\left\{\left(Q_{n}, V_{k}, \delta\right)\right\} \text { and } \mathcal{C}_{n, k} \stackrel{\text { def }}{=} \mathcal{C} \cap \mathbf{C A}_{n, k}
$$

- and consider the proportions

$$
D_{n, k}(\mathcal{C}, \mathcal{P}) \stackrel{\text { def }}{=} \frac{\#\left(\mathcal{C}_{n, k} \cap \mathcal{P}\right)}{\#\left(\mathcal{C}_{n, k}\right)}
$$

$\mathcal{C}_{n, k}$ elements of size (n, k) of the family \mathcal{C},
\mathcal{P} a property.

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)

ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)
ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)
ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)

ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)
ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

- $\rho\left(n_{0}, k_{0}\right)$-path $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N}) \subseteq \mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$

$$
\mathbb{N}_{x} \stackrel{\text { def }}{=} \mathbb{N} \backslash\{0, \ldots, x-1\}
$$

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)
ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

- $\rho\left(n_{0}, k_{0}\right)$-path $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N}) \subseteq \mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$
- $\rho\left(n_{0}, k_{0}\right)$-surjective $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N})=\mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$

$$
\mathbb{N}_{x} \stackrel{\text { def }}{=} \mathbb{N} \backslash\{0, \ldots, x-1\}
$$

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)

ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

- $\rho\left(n_{0}, k_{0}\right)$-path $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N}) \subseteq \mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$
- $\rho\left(n_{0}, k_{0}\right)$-surjective $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N})=\mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$

- We may consider

$$
\mathbb{N}_{x} \stackrel{\text { def }}{=} \mathbb{N} \backslash\{0, \ldots, x-1\}
$$

- every possible size (with surjective path)

Paths among sizes

$D_{n, k}(\mathcal{C}, \mathcal{P})$ has no canonical limit,

- How to consider successive sizes (n, k) ?

Definition (Paths)
ρ path $\stackrel{\text { def }}{\Leftrightarrow} \rho: \mathbb{N} \rightarrow \mathbb{N}^{2}$ injective

- $\rho\left(n_{0}, k_{0}\right)$-path $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N}) \subseteq \mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$
- $\rho\left(n_{0}, k_{0}\right)$-surjective $\stackrel{\text { def }}{\Leftrightarrow} \rho(\mathbb{N})=\mathbb{N}_{n_{0}} \times \mathbb{N}_{k_{0}}$

- We may consider

$$
\mathbb{N}_{x} \stackrel{\text { def }}{=} \mathbb{N} \backslash\{0, \ldots, x-1\}
$$

- every possible size (with surjective path)
- or particular paths e.g. if $\rho_{n}=\pi_{1} \circ \rho$ or $\rho_{k}=\pi_{2} \circ \rho$ is upperbounded)

Density of properties

Definition (Density of \mathcal{P} among \mathcal{C} following $\rho:$)

$$
d_{\rho}(\mathcal{C}, \mathcal{P}) \stackrel{\text { def }}{=} \quad \lim _{i \rightarrow \infty} \frac{\#\left(\mathcal{C}_{\rho(i)} \cap \mathcal{P}\right)}{\#\left(\mathcal{C}_{\rho(i)}\right)} \quad \text { if the limit exists. }
$$

"The limit of the proportion along the path."

Density of properties

Definition (Density of \mathcal{P} among \mathcal{C} following $\rho:$)

$$
d_{\rho}(\mathcal{C}, \mathcal{P}) \stackrel{\text { def }}{=} \quad \lim _{i \rightarrow \infty} \frac{\#\left(\mathcal{C}_{\rho(i)} \cap \mathcal{P}\right)}{\#\left(\mathcal{C}_{\rho(i)}\right)} \quad \text { if the limit exists. }
$$

"The limit of the proportion along the path."
Remarks :

1. not always defined

Density of properties

Definition (Density of \mathcal{P} among \mathcal{C} following $\rho:$)

$$
d_{\rho}(\mathcal{C}, \mathcal{P}) \stackrel{\text { def }}{=} \quad \lim _{i \rightarrow \infty} \frac{\#\left(\mathcal{C}_{\rho(i)} \cap \mathcal{P}\right)}{\#\left(\mathcal{C}_{\rho(i)}\right)} \quad \text { if the limit exists. }
$$

"The limit of the proportion along the path."
Remarks :

1. not always defined
2. non-cumulative density.

Density of properties

Definition (Density of \mathcal{P} among \mathcal{C} following $\rho:$)

$$
d_{\rho}(\mathcal{C}, \mathcal{P}) \stackrel{\text { def }}{=} \quad \lim _{i \rightarrow \infty} \frac{\#\left(\mathcal{C}_{\rho(i)} \cap \mathcal{P}\right)}{\#\left(\mathcal{C}_{\rho(i)}\right)} \quad \text { if the limit exists. }
$$

"The limit of the proportion along the path."
Remarks :

1. not always defined
2. non-cumulative density.
3. \mathcal{P} negligible along $\rho \stackrel{\text { def }}{\Leftrightarrow} d_{\rho}(\mathbf{C A}, \mathcal{P})=0$

Density of properties

Definition (Density of \mathcal{P} among \mathcal{C} following $\rho:$)

$$
d_{\rho}(\mathcal{C}, \mathcal{P}) \stackrel{\text { def }}{=} \quad \lim _{i \rightarrow \infty} \frac{\#\left(\mathcal{C}_{\rho(i)} \cap \mathcal{P}\right)}{\#\left(\mathcal{C}_{\rho(i)}\right)} \quad \text { if the limit exists. }
$$

"The limit of the proportion along the path."
Remarks :

1. not always defined
2. non-cumulative density.
3. \mathcal{P} negligible along $\rho \stackrel{\text { def }}{\Leftrightarrow} d_{\rho}(\mathbf{C A}, \mathcal{P})=0$

Proposition

Density is path-independent in the surjective case.

One example

One example

- Quiescent CA
$\mathcal{A} \in$ Quies $\stackrel{\text { def }}{\Leftrightarrow} \exists x \in Q_{\mathcal{A}}, \delta_{\mathcal{A}}(x, x, \ldots, x)=x$

One example

- Quiescent CA
$\mathcal{A} \in$ Quies $\stackrel{\text { def }}{\Leftrightarrow} \exists x \in Q_{\mathcal{A}}, \delta_{\mathcal{A}}(x, x, \ldots, x)=x$

$$
D_{n, k}(\mathbf{C A}, \text { Quies })=1-\left(1-\frac{1}{n}\right)^{n}
$$

One example

- Quiescent CA
$\mathcal{A} \in$ Quies $\stackrel{\text { def }}{\Leftrightarrow} \exists x \in Q_{\mathcal{A}}, \delta_{\mathcal{A}}(x, x, \ldots, x)=x$

$$
D_{n, k}(\mathbf{C A}, \text { Quies })=1-\left(1-\frac{1}{n}\right)^{n}
$$

Which yields to the following densities

- $d_{\rho}(\mathbf{C A}$, Quies $)=1-\frac{1}{e}$ if $\lim _{i \rightarrow \infty} \rho_{n}(i)=+\infty$

One example

- Quiescent CA
$\mathcal{A} \in$ Quies $\stackrel{\text { def }}{\Leftrightarrow} \exists x \in Q_{\mathcal{A}}, \delta_{\mathcal{A}}(x, x, \ldots, x)=x$

$$
D_{n, k}(\mathbf{C A}, \text { Quies })=1-\left(1-\frac{1}{n}\right)^{n}
$$

Which yields to the following densities

- $d_{\rho}($ CA, Quies $)=1-\frac{1}{e}$ if $\lim _{i \rightarrow \infty} \rho_{n}(i)=+\infty$
- $d_{\rho}($ CA, Quies $)=1-\left(1-\frac{1}{n_{0}}\right)^{n_{0}}$ if $\lim _{i \rightarrow \infty} \rho_{n}(i)=n_{0}$

One example

- Quiescent CA
$\mathcal{A} \in$ Quies $\stackrel{\text { def }}{\Leftrightarrow} \exists x \in Q_{\mathcal{A}}, \delta_{\mathcal{A}}(x, x, \ldots, x)=x$

$$
D_{n, k}(\mathbf{C A}, \text { Quies })=1-\left(1-\frac{1}{n}\right)^{n}
$$

Which yields to the following densities

- $d_{\rho}($ CA, Quies $)=1-\frac{1}{e}$ if $\lim _{i \rightarrow \infty} \rho_{n}(i)=+\infty$
- $d_{\rho}($ CA, Quies $)=1-\left(1-\frac{1}{n_{0}}\right)^{n_{0}}$ if $\lim _{i \rightarrow \infty} \rho_{n}(i)=n_{0}$
- $d_{\rho}($ CA, Quies $)$ is not defined if $\lim _{i \rightarrow \infty} \rho_{n}(i)$ does not exists.

Density of nilpotency

Density of nilpotency

Theorem
 Nil is negligible among CA following any (2,1)-path.

Density of nilpotency

Theorem

Nil is negligible among CA following any (2, 1)-path.
Lemma (gluing)

Density of nilpotency

Theorem

Nil is negligible among CA following any (2, 1)-path.
Lemma (gluing)

+ specific combinatorial arguments for each case.

Intuitions (1/2): Fixed neighbourhood

"With increasing number of states, Nil is negligible."

Intuitions (1/2): Fixed neighbourhood

"With increasing number of states, Nil is negligible."

- Consider the graph of uniform configurations $\left(Q_{n}, G_{\mathcal{A}}\right)$:
- Q_{n} the alphabet
- $(x, y) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow} \delta_{\mathcal{A}}\left(x^{k_{\mathcal{A}}}\right)=y$

Intuitions (1/2): Fixed neighbourhood

"With increasing number of states, Nil is negligible."

- Consider the graph of uniform configurations $\left(Q_{n}, G_{\mathcal{A}}\right)$:
- Q_{n} the alphabet
- $(x, y) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow} \delta_{\mathcal{A}}\left(x^{k_{\mathcal{A}}}\right)=y$

Intuitions (1/2): Fixed neighbourhood

"With increasing number of states, Nil is negligible."

- Consider the graph of uniform configurations $\left(Q_{n}, G_{\mathcal{A}}\right)$:
- Q_{n} the alphabet
- $(x, y) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow} \delta_{\mathcal{A}}\left(x^{k_{\mathcal{A}}}\right)=y$

- Two properties:
- $\mathcal{A} \in \mathbf{N i l} \Longrightarrow\left(Q_{n}, G_{\mathcal{A}}\right)$ is a tree,

Intuitions (1/2): Fixed neighbourhood

"With increasing number of states, Nil is negligible."

- Consider the graph of uniform configurations $\left(Q_{n}, G_{\mathcal{A}}\right)$:
- Q_{n} the alphabet
- $(x, y) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow} \delta_{\mathcal{A}}\left(x^{k_{\mathcal{A}}}\right)=y$

- Two properties:
- $\mathcal{A} \in \mathbf{N i l} \Longrightarrow\left(Q_{n}, G_{\mathcal{A}}\right)$ is a tree,
- the map $\mathcal{A} \mapsto G_{\mathcal{A}}$ is balanced.

Intuitions (1/2): Fixed neighbourhood

"With increasing number of states, Nil is negligible."

- Consider the graph of uniform configurations $\left(Q_{n}, G_{\mathcal{A}}\right)$:
- Q_{n} the alphabet
- $(x, y) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow} \delta_{\mathcal{A}}\left(x^{k_{\mathcal{A}}}\right)=y$

- Two properties:
- $\mathcal{A} \in \mathbf{N i l} \Longrightarrow\left(Q_{n}, G_{\mathcal{A}}\right)$ is a tree,
- the map $\mathcal{A} \mapsto G_{\mathcal{A}}$ is balanced.
- "trees are asympotically negligible among functionnal graphs"...

Intuitions (2/2): Fixed state set

"With increasing neighbourhood, Nil is negligible."

Intuitions (2/2): Fixed state set

"With increasing neighbourhood, Nil is negligible."
Periodic subshifts: $\forall u \in Q_{n}^{*}, \Sigma_{u} \stackrel{\text { def }}{\Leftrightarrow} \omega_{u}{ }^{\omega}$

Intuitions (2/2): Fixed state set

"With increasing neighbourhood, Nil is negligible."
Periodic subshifts: $\forall u \in Q_{n}^{*}, \Sigma_{u} \stackrel{\text { def }}{\Leftrightarrow} \omega_{u}{ }^{\omega}$

- $\mathcal{A} \in \mathbf{N i l} \Longrightarrow \mathcal{A}\left(\Sigma_{u}\right) \nsubseteq \Sigma_{u}$

- Transitions $u^{*} \mapsto x$ are constrained,
- Combining those constraints makes it possible to conclude..

Link with Kolmogorov Complexity

"K(u) $\stackrel{\text { def }}{\Leftrightarrow} \mid$ shortest algorithmical description of $u \mid$ " $u c$-random $\stackrel{\text { def }}{\Leftrightarrow} K(u) \geq 1-c$.

Link with Kolmogorov Complexity

"K(u) $\stackrel{\text { def }}{\Leftrightarrow} \mid$ shortest algorithmical description of $u \mid$ "
$u c$-random $\stackrel{\text { def }}{\Leftrightarrow} K(u) \geq I-c$.
Lemma (Well-known Kolmogorov complexity result)
The proportion of c-random words in $\{0,1\}^{\prime}$ is less than $1 / 2^{1-c}$.

Link with Kolmogorov Complexity

"K(u) $\stackrel{\text { def }}{\Leftrightarrow} \mid$ shortest algorithmical description of $u \mid$ "
$u c$-random $\stackrel{\text { def }}{\Leftrightarrow} K(u) \geq I-c$.
Lemma (Well-known Kolmogorov complexity result)
The proportion of c-random words in $\{0,1\}^{\prime}$ is less than $1 / 2^{1-c}$.

- Kolmogorov complexity for CA rules :

Lemma

$$
[\mathcal{A} \in \mathcal{P} \Rightarrow K(\mathcal{A}) \ll|\mathcal{A}|] \Rightarrow \mathcal{P} \text { is negligible. }
$$

Link with Kolmogorov Complexity

"K(u) $\stackrel{\text { def }}{\Leftrightarrow} \mid$ shortest algorithmical description of $u \mid$ "
$u c$-random $\stackrel{\text { def }}{\Leftrightarrow} K(u) \geq 1-c$.
Lemma (Well-known Kolmogorov complexity result)
The proportion of c-random words in $\{0,1\}^{\prime}$ is less than $1 / 2^{1-c}$.

- Kolmogorov complexity for CA rules :

Lemma

$$
[\mathcal{A} \in \mathcal{P} \Rightarrow K(\mathcal{A}) \ll|\mathcal{A}|] \Rightarrow \mathcal{P} \text { is negligible. }
$$

- Gives a procedure to prove negligeability:
"Describe shortly CA from \mathcal{P}."

CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible among any (1, 3)-path.

CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible among any (1, 3)-path.

- To describe a CA \mathcal{A} of size (n, k) having a sub-automaton \mathcal{B} of size $(m, k), 1<m<n$, it is sufficient to describe :

CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible among any (1, 3)-path.

- To describe a CA \mathcal{A} of size (n, k) having a sub-automaton \mathcal{B} of size $(m, k), 1<m<n$, it is sufficient to describe :

1. the size m
2. the states of the sub-automaton
3. the transition rule of \mathcal{B}
4. the remaining transitions

CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible among any (1, 3)-path.

- To describe a CA \mathcal{A} of size (n, k) having a sub-automaton \mathcal{B} of size $(m, k), 1<m<n$, it is sufficient to describe :

1. the size $m \log (n)$ bits
2. the states of the sub-automaton $m \cdot \log (n)$ bits
3. the transition rule of $\mathcal{B} m^{k} \cdot \log (m)$ bits
4. the remaining transitions $\left(n^{k}-m^{k}\right) \cdot \log (n)$ bits

CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible among any (1, 3)-path.

- To describe a CA \mathcal{A} of size (n, k) having a sub-automaton \mathcal{B} of size $(m, k), 1<m<n$, it is sufficient to describe :

1. the size $m \log (n)$ bits
2. the states of the sub-automaton $m \cdot \log (n)$ bits
3. the transition rule of $\mathcal{B} m^{k} \cdot \log (m)$ bits
4. the remaining transitions $\left(n^{k}-m^{k}\right) \cdot \log (n)$ bits

- Which takes a total number of

$$
(1+m) \cdot\lceil\log (m)\rceil+\left\lceil m^{k} \cdot \log (m)\right\rceil+\left\lceil\left(n^{k}-m^{k}\right) \cdot \log (n)\right\rceil \text { bits }
$$

CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible among any (1, 3)-path.

- To describe a CA \mathcal{A} of size (n, k) having a sub-automaton \mathcal{B} of size $(m, k), 1<m<n$, it is sufficient to describe :

1. the size $m \log (n)$ bits
2. the states of the sub-automaton $m \cdot \log (n)$ bits
3. the transition rule of $\mathcal{B} m^{k} \cdot \log (m)$ bits
4. the remaining transitions $\left(n^{k}-m^{k}\right) \cdot \log (n)$ bits

- Which takes a total number of

$$
(1+m) \cdot\lceil\log (m)\rceil+\left\lceil m^{k} \cdot \log (m)\right\rceil+\left\lceil\left(n^{k}-m^{k}\right) \cdot \log (n)\right\rceil \text { bits }
$$

- The gain tends to infinity (...).

Propagation of information

"Propagation of a state at maximal speed on a uniform backgound."

Propagation of information

"Propagation of a state at maximal speed on a uniform backgound."

Propagation of information

"Propagation of a state at maximal speed on a uniform backgound."

- Density with increasing number of states ?

Propagation of information

"Propagation of a state at maximal speed on a uniform backgound."

- Density with increasing number of states ?

Theorem

The CA having at least one state propagating on a uniform background is 1 among the set CA

Propagation of information

"Propagation of a state at maximal speed on a uniform backgound."

- Density with increasing number of states ?

Theorem

The CA having at least one state propagating on a uniform background is 1 among the set CA

- Mind the cycle of uniform configurations.

Propagation of information

Let X be a cycle on the graph of uniform configurations.

Propagation of information

Let X be a cycle on the graph of uniform configurations.

- Consider the functional graphs $\left(Q_{n} \times X, G_{\mathcal{A}}\right)$ such that:

$$
\text { - }((x, y),(z, t)) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow}\left[\delta_{\mathcal{A}}\left(x \cdot y^{k_{\mathcal{A}}-1}\right)=z \text { and } \delta_{\mathcal{A}}\left(y^{k_{\mathcal{A}}}\right)=t\right]
$$

Propagation of information

Let X be a cycle on the graph of uniform configurations.

- Consider the functional graphs $\left(Q_{n} \times X, G_{\mathcal{A}}\right)$ such that:
- $((x, y),(z, t)) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow}\left[\delta_{\mathcal{A}}\left(x \cdot y^{k_{\mathcal{A}}-1}\right)=z\right.$ and $\left.\delta_{\mathcal{A}}\left(y^{k_{\mathcal{A}}}\right)=t\right]$

- a state propagate in $\mathcal{A} \Rightarrow G_{\mathcal{A}}$ contains at least 2 cycles,

Propagation of information

Let X be a cycle on the graph of uniform configurations.

- Consider the functional graphs $\left(Q_{n} \times X, G_{\mathcal{A}}\right)$ such that:
- $((x, y),(z, t)) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow}\left[\delta_{\mathcal{A}}\left(x \cdot y^{k_{\mathcal{A}}-1}\right)=z\right.$ and $\left.\delta_{\mathcal{A}}\left(y^{k_{\mathcal{A}}}\right)=t\right]$

- a state propagate in $\mathcal{A} \Rightarrow G_{\mathcal{A}}$ contains at least 2 cycles,
- the $\operatorname{map}(\mathcal{A}, X) \mapsto G_{\mathcal{A}}$ is balanced.

Propagation of information

Let X be a cycle on the graph of uniform configurations.

- Consider the functional graphs $\left(Q_{n} \times X, G_{\mathcal{A}}\right)$ such that:

$$
-((x, y),(z, t)) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow}\left[\delta_{\mathcal{A}}\left(x \cdot y^{k_{\mathcal{A}}-1}\right)=z \text { and } \delta_{\mathcal{A}}\left(y^{k_{\mathcal{A}}}\right)=t\right]
$$

- a state propagate in $\mathcal{A} \Rightarrow G_{\mathcal{A}}$ contains at least 2 cycles,
- the $\operatorname{map}(\mathcal{A}, X) \mapsto G_{\mathcal{A}}$ is balanced.
- The probability to have 2 cycles is at least ϵ with $0<\epsilon<1$.

Propagation of information

Let X be a cycle on the graph of uniform configurations.

- Consider the functional graphs $\left(Q_{n} \times X, G_{\mathcal{A}}\right)$ such that:
- $((x, y),(z, t)) \in G_{\mathcal{A}} \stackrel{\text { def }}{\Leftrightarrow}\left[\delta_{\mathcal{A}}\left(x \cdot y^{k_{\mathcal{A}}-1}\right)=z\right.$ and $\left.\delta_{\mathcal{A}}\left(y^{k_{\mathcal{A}}}\right)=t\right]$

- a state propagate in $\mathcal{A} \Rightarrow G_{\mathcal{A}}$ contains at least 2 cycles,
- the $\operatorname{map}(\mathcal{A}, X) \mapsto G_{\mathcal{A}}$ is balanced.
- The probability to have 2 cycles is at least ϵ with $0<\epsilon<1$.
- In random functional graphs, the number of cycles is increasing with the number of states.

Summary and main results about density among CA

Summary and main results about density among CA

- A general framework

Summary and main results about density among CA

- A general framework
- Link with Kolmogorov complexity

Summary and main results about density among CA

- A general framework
- Link with Kolmogorov complexity
- Important density results :

1. Nilpotency
2. Information propagation on a uniform background
3. Results about limit sets (size of the smallest word of Eden...)

Summary and main results about density among CA

- A general framework
- Link with Kolmogorov complexity
- Important density results :

1. Nilpotency
2. Information propagation on a uniform background
3. Results about limit sets (size of the smallest word of Eden...)

NB: 2 classes out of 4 from Kurka's classification are negligible.

Density among subclasses

Density among subclasses

Theorem (Theyssier - 2004)
The density of universal CA among captive CA is 1 . (along paths with constant neighbourhood.)

Density among subclasses

Theorem (Theyssier - 2004)
The density of universal CA among captive CA is 1 . (along paths with constant neighbourhood.)

Using our framework,

- we extended this result

1. to other syntactically defined subsets of CA,

Density among subclasses

Theorem (Theyssier - 2004)
The density of universal CA among captive CA is 1 . (along paths with constant neighbourhood.)

Using our framework,

- we extended this result

1. to other syntactically defined subsets of CA,
2. still studying the universality,

Density among subclasses

Theorem (Theyssier - 2004)
The density of universal CA among captive CA is 1 . (along paths with constant neighbourhood.)

Using our framework,

- we extended this result

1. to other syntactically defined subsets of CA,
2. still studying the universality,
3. with various path adapted to each subsets.

Main results

syntactically defined subclasses \rightsquigarrow universality everywhere

Main results

syntactically defined subclasses \rightsquigarrow universality everywhere

Theorem
Among multiset CA the density of univerality along any path with constant state set is 1 .

- Dual of the captive case.

Main results

syntactically defined subclasses \rightsquigarrow universality everywhere

Theorem
Among multiset CA the density of univerality along any path with constant state set is 1 .

- Dual of the captive case.

Theorem

Among multiset captive CA the density of univerality along any path is 1 .

- Most general case.

Main results

syntactically defined subclasses \rightsquigarrow universality everywhere

Theorem
Among multiset CA the density of univerality along any path with constant state set is 1 .

- Dual of the captive case.

Theorem

Among multiset captive CA the density of univerality along any path is 1 .

- Most general case.
- Other similar results (set captive, outer-totalistic, persistent...).

Main results

syntactically defined subclasses \rightsquigarrow universality everywhere

Theorem

Among multiset CA the density of univerality along any path with constant state set is 1 .

- Dual of the captive case.

Theorem

Among multiset captive CA the density of univerality along any path is 1 .

- Most general case.
- Other similar results (set captive, outer-totalistic, persistent...). Two necessary steps for each family :
- Point out a universal CA in \mathcal{C},
- Find possible simulation subshifts,
- in increasing number along the considered paths,
- on which the simulating probability is not too small,
- which are independents.

Density of universality among sublclasses : summary

- Many results of high density of universality among syntactically defined subclasses.

Density of universality among sublclasses : summary

- Many results of high density of universality among syntactically defined subclasses.
- No real understanding of this phenomenon
- Do local restrictions increase the structure?
- Or is universality widespread in the general case of CA ?

Density of universality among sublclasses : summary

- Many results of high density of universality among syntactically defined subclasses.
- No real understanding of this phenomenon
- Do local restrictions increase the structure?
- Or is universality widespread in the general case of CA ?
- Universality is not as algorithmic as we thought before.

Perspectives for density questions

Perspectives for density questions

- Among subclasses :
- Give a global understanding to our results ! a new technique: relate density between different families.

Perspectives for density questions

- Among subclasses :
- Give a global understanding to our results !
a new technique: relate density between different families.
- In the general case :
- Extend the set of quantified properties.
- Propagation of information $\stackrel{?}{\sim}$ sensitivity,
\Longrightarrow would conclude the quantification of Kurka's classification.
- Universality, or height in the simulation pre-order.
- Other notions of universality.
- Average computability (The problem of Nil).

Perspectives for density questions

- Among subclasses :
- Give a global understanding to our results !
a new technique: relate density between different families.
- In the general case :
- Extend the set of quantified properties.
- Propagation of information $\stackrel{?}{\sim}$ sensitivity,
\Longrightarrow would conclude the quantification of Kurka's classification.
- Universality, or height in the simulation pre-order.
- Other notions of universality.
- Average computability (The problem of NiI).
- In both cases, precise the information :
- Convergence speed of limit densities,
- Precise finite proportions.

