# Height representation of XOR-Ising loops via bipartite dimers

Cédric Boutillier (UPMC) Béatrice de Tilière (UPMC)

LAGA Université Paris Nord - March 11, 2015

# The Ising model and the XOR-Ising model

# The Ising model

- $\blacktriangleright$  Let G = (V, E) be a finite graph embedded in the plane
- ▶ spin configuration  $\sigma: V \longrightarrow \{-1, +1\}$
- $\sigma$  assigns to every vertex x a spin  $\sigma_x \in \{-, +\}$



+1/-1 are represented by green/blue dots.

# The Ising model

- ▶ Edges of G are assigned positive coupling constants:  $J = (J_e)_{e \in E}$ .
- Ising Boltzmann measure:

$$\forall \sigma \in \{-1, 1\}^{\mathsf{V}}, \quad \mathbb{P}_{\mathrm{Ising}}(\sigma) = \frac{1}{Z_{\mathrm{Ising}}(\mathsf{G}, J)} \exp\left(\sum_{e = xy \in \mathsf{E}} J_{xy} \sigma_x \sigma_y\right),$$

where 
$$Z_{\mathrm{Ising}}(\mathsf{G},J)=\sum_{\sigma\in\{-1,1\}^{\mathsf{V}}}\exp\left(\sum_{e=xy\in\mathsf{E}}J_{xy}\sigma_{x}\sigma_{y}\right)$$
 is the

Ising partition function.

# The XOR-Ising model



# The XOR-Ising model



# Conjecture for the XOR-Ising model

#### Conjecture (Wilson (11), Ikhlef-Picco-Santachiara)

The scaling limit of polygon configurations separating  $\pm 1$  clusters of the critical XOR-Ising model are contour lines of the Gaussian free field, with the heights of the contours spaced  $\sqrt{2}$  times as far apart as they are for [...] the double dimer model on the square lattice.

#### Result

#### Theorem (B-dT)

- ▶ Polygon configurations of the XOR-Ising model have the same law as a family of contours in a bipartite dimer model.
- This family of contours are the level lines of a restriction of the height function of this bipartite dimer model.

#### Remark

Proved when the graph G is embedded in a surface of genus g, or when G is planar, infinite.

- When the XOR-Ising model is critical, so is the bipartite dimer model.
- Using results of [dT] on the convergence of the height function, this gives partial proof of Wilson's conjecture.

# Contour expansion of the Ising partition function [Kramers & Wannier]

### Low temperature expansion

- Polygon configuration: subset of edges s.t. each vertex is incident to an even number of edges.
- $\qquad \text{Write} \qquad e^{J_e\sigma_x\sigma_y} = e^{J_e}(\delta_{\{\sigma_x=\sigma_y\}} + e^{-2J_e}\delta_{\{\sigma_x\neq\sigma_y\}}).$

The partition function is then equal to **(LTE)**:

$$Z_{\mathrm{Ising}}(\mathsf{G},J) = \sum_{\sigma \in \{-1,1\}^\mathsf{V}} \prod_{e = xy \in \mathsf{E}} e^{J_e \sigma_x \sigma_y} = \mathfrak{C} \sum_{\mathsf{P}^* \in \mathcal{P}(\mathsf{G}^*)} \prod_{e^* \in \mathsf{P}^*} e^{-2J_e}.$$

▶ Geometric interp: polygon config. separate clusters of  $\pm 1$  spins.



# High temperature expansion

• Write,  $e^{J_e \sigma_x \sigma_y} = \cosh(J_e)(1 + \sigma_x \sigma_y \tanh(J_e)).$ 

The partition function is then equal to (HTE):

$$Z_{\mathrm{Ising}}(\mathsf{G},J) = \sum_{\sigma \in \{-1,1\}^\mathsf{V}} \prod_{e = xy \in \mathsf{E}} e^{J_e \sigma_x \sigma_y} = \mathfrak{C}' \sum_{\mathsf{P} \in \mathcal{P}(\mathsf{G})} \prod_{e \in \mathsf{P}} \tanh(J_e).$$

▶ No geometric interpretation using spin configurations.



# Mixed contour expansion for the double Ising model

### The double Ising model

- ► Take 2 independent copies (red/blue) of an Ising model on G, with coupling constants J.
- ▶ Using the LTE, consider the probability measure  $\mathbb{P}_{2\text{-Ising}}$ : if  $\mathsf{P}^*$ ,  $\mathsf{P}^*$  are two polygon configurations.

$$\mathbb{P}_{2\text{-Ising}}(\mathsf{P}^*,\mathsf{P}^*) = \frac{\mathbb{C}^2 \big(\prod\limits_{\boldsymbol{e}^* \in \mathsf{P}^*} e^{-2J_{\boldsymbol{e}}}\big) \big(\prod\limits_{\boldsymbol{e}^* \in \mathsf{P}^*} e^{-2J_{\boldsymbol{e}}}\big)}{Z_{2\text{-Ising}}(\mathsf{G},J)},$$

where 
$$Z_{2\text{-Ising}}(\mathsf{G},J) = Z_{\mathrm{Ising}}(\mathsf{G},J)^2$$
.

# The double Ising model

- ▶ Let P\*, P\* be two polygon configurations.
- Consider the superimposition P\* ∪ P\*.



- ▶ Define two new edge configurations:
  - ▶ Mono(P\*, P\*): monochromatic edges.
  - ▶ Bi(P\*, P\*): bichromatic edges.



# Monochromatic edges



Monochromatic edge configuration of  $P^* \cup P^*$ 

#### Lemma

 $\operatorname{Mono}(\mathsf{P}^*,\mathsf{P}^*)$  is the polygon configuration separating  $\pm 1$  clusters of the corresponding XOR-Ising spin configuration.

**Goal:** understand the law of monochromatic edge configurations.



# **Bichromatic edge configurations**

- Let  $(P^*, P^*)$  be two polygon configurations.
- ▶  $Mono(P^*, P^*)$  splits the surface into connected comp.  $(\Sigma_i)_i$ .



#### Lemma

For every i, the restriction of  $Bi(P^*, P^*)$  to  $\Sigma_i$  is the LTE of an Ising configuration on  $G_{\Sigma_i}$ , with coupling constants  $(2J_e)$ .



# **Probability of monochromatic configurations**

#### Lemma

Let  $\mathsf{P}^*$  be a polygon configuration, separating the surface into n connected components. For every i, let  $\mathsf{P}^*_i$  be a polygon configuration of  $\mathsf{G}^*_{\Sigma_i}$ .

Then, there are  $2^n$  pairs of polygon configurations ( $P^*$ ,  $P^*$ ) having  $P^*$  as monochromatic edges, and  $P_1^*, \dots, P_n^*$  as bichromatic edges.

Denote by  $W(\mathsf{P}^*)$  the contribution to  $Z_{2\text{-Ising}}(\mathsf{G},J)$  of the pairs of polygon configurations  $(\mathsf{P}^*,\mathsf{P}^*)$  such that  $\mathrm{Mono}(\mathsf{P}^*,\mathsf{P}^*)=\mathsf{P}^*$ .

#### **Corollary**

$$\blacktriangleright W(\mathsf{P}^*) = \mathcal{C}\left(\prod_{e^* \in \mathsf{P}^*} e^{-2J_e}\right) \prod_{i=1}^n \left(2Z_{\mathrm{LT}}(\mathsf{G}^*_{\Sigma_i}, 2J)\right)$$

$$ightharpoonup Z_{2 ext{-Ising}}(\mathsf{G},J) = \sum_{\mathsf{P}^* \in \mathcal{P}(\mathsf{G}^*)} W(\mathsf{P}^*)$$

$$\mathbb{P}_{2\text{-Ising}}(\text{Mono} = \mathsf{P}^*) = \frac{W(\mathsf{P}^*)}{Z_{2\text{-Ising}}(\mathsf{G},J)}.$$



# Mixed contour expansion

$$W(\mathsf{P}^*) = \mathcal{C}\left(\prod_{e^* \in \mathsf{P}^*} e^{-2J_e}\right) \prod_{i=1}^n \left(2Z_{\mathrm{LT}}(\mathsf{G}_{\Sigma_i}^*, 2J)\right).$$

**Idea** [Nienhuis]: high temperature expansion in each connected component  $\Sigma_i$ .

$$Z_{\mathrm{LT}}(\mathsf{G}_{\Sigma_i}^*,2J) = \mathfrak{C}(\Sigma_i)Z_{\mathrm{HT}}(\mathsf{G}_{\Sigma_i},2J).$$





Low temp. expansion on  $\mathsf{G}^*_{\Sigma_i}$  High temp. expansion on  $\mathsf{G}_{\Sigma_i}.$ 

# Mixed contour expansion

#### **Proposition**

For every polygon configuration P\*,

$$W(\mathsf{P}^*) = \mathfrak{C} \prod_{e^* \in \mathsf{P}^*} \left( \frac{2e^{-2J_e}}{1 + e^{-4J_e}} \right) \sum_{\{\mathsf{P} \in \mathcal{P}(\mathsf{G}): \, \mathsf{P}^* \cap \mathsf{P} = \emptyset\}} \prod_{e \in \mathsf{P}} \left( \frac{1 - e^{-4J_e}}{1 + e^{-4J_e}} \right)$$



$$\mathbb{P}_{2\text{-Ising}}(\mathrm{Mono} = \mathsf{P}^*) = \frac{\prod\limits_{e^* \in \mathsf{P}^*} \left(\frac{2e^{-2J_e}}{1+e^{-4J_e}}\right) \sum\limits_{\{\mathsf{P} \in \mathcal{P}(\mathsf{G}): \, \mathsf{P}^* \cap \mathsf{P} = \emptyset\}} \prod\limits_{e \in \mathsf{P}} \left(\frac{1-e^{-4J_e}}{1+e^{-4J_e}}\right)}{\sum\limits_{\mathsf{P}^* \in \mathcal{P}(\mathsf{G}^*)}}$$

# Higher genus

If the graph is embedded in a surface  $\Sigma$  of genus  $g \ge 0$ .

- Consider  $H_1(\Sigma, \mathbb{Z}/2\mathbb{Z}) \simeq \{0, 1\}^{2g}$ .
- ▶ Family of Ising models, indexed by  $\varepsilon \in \{0,1\}^{2g}$ .
- ▶ The double Ising model partition function is defined as:

$$Z_{\text{2-Ising}}(\mathsf{G},J) = \sum_{\varepsilon \in \{0,1\}^{2g}} Z_{\text{Ising}}^{\varepsilon}(\mathsf{G},J)^2.$$

# From mixed polygon configurations to dimers

# The graph $G^{Q} = (V^{Q}, E^{Q})$



#### The dimer model on GQ

 $\begin{array}{ll} \textbf{dimer configuration} \ \text{of} \ G^{\mathrm{Q}} \colon \ \text{a subset of edges} \ M \ \text{such that each} \\ \text{vertex is incident to exactly on edge of} \ M \end{array}$ 



#### The dimer model on GQ

dimer configuration of  $G^{\mathbb{Q}}$ : a subset of edges M such that each vertex is incident to exactly on edge of M



#### The dimer model on GQ

dimer configuration of  $G^{\mathbb{Q}}$ : a subset of edges M such that each vertex is incident to exactly on edge of M



weight function  $\nu$  on the edges

Dimer Boltzmann measure:  $\mathbb{P}_{\mathrm{dimer}}(\mathsf{M}) \propto \prod_{e \in \mathsf{E}^{\mathrm{Q}}} \nu_e$ 

# First step: from polygons to 6-vertex [Nienhuis]

Weights: 
$$\omega_{12} = \frac{2e^{-2J_e}}{1+e^{-4J_e}}$$
,  $\omega_{34} = \frac{1-e^{-4J_e}}{1+e^{-4J_e}}$ ,  $\omega_{56} = 1$ .

# First step: from polygons to 6-vertex [Nienhuis]

Weights: 
$$\omega_{12} = \frac{2e^{-2J_e}}{1+e^{-4J_e}}$$
,  $\omega_{34} = \frac{1-e^{-4J_e}}{1+e^{-4J_e}}$ ,  $\omega_{56} = 1$ .

# Second step: from 6V to dimers [Wu-Lin, Dubédat]



#### **Conclusion**

▶ To every dimer configuration M of G<sup>Q</sup>, assign

$$\mathrm{Poly}(\mathsf{M}) = (\mathrm{Poly}_1(\mathsf{M}), \mathrm{Poly}_2(\mathsf{M})),$$

the pair of polygon configurations given by the mappings.

#### **Theorem**

For every polygon configuration P\* of G\*,

$$\mathbb{P}_{2\text{-Ising}}(\text{Mono} = \mathsf{P}^*) = \mathbb{P}_{\text{dimer}}(\text{Poly}_1 = \mathsf{P}^*)$$









# The critical XOR-Ising model on isoradial graphs

A graph G is **isoradial** if it is planar and can be embedded in the plane in such a way that all faces are inscribed in a circle of radius 1, and that the circumcenters are in the interior of the faces. [Duffin, Mercat, Kenyon]







# **Associated rhombus graph**



# Critical Ising model on isoradial graphs

- lacktriangle To each edge e is naturally associated an angle  $heta_e$
- ► The Ising model defined on an isoradial graph G is **critical** if the coupling constants are given by:

$$J_e = \frac{1}{2} \log \left( \frac{1 + \sin \theta_e}{\cos \theta_e} \right).$$

(Z-invariance + duality [Baxter], proof in period. case [Li, Duminil-Cimasoni])

**Example**: 
$$G = \mathbb{Z}^2$$
:  $\theta_e = \frac{\pi}{4}$ ,  $J_e = \frac{1}{2} \log(1 + \sqrt{2})$ .

► The corresponding bipartite graph G<sup>Q</sup> is also isoradial, and the weights are the **critical** dimer weights:





# Back to Wilson's conjecture

#### Conjecture (Wilson)

The scaling limit of polygon configurations separating  $\pm 1$  clusters of the critical XOR-Ising model are contour lines of the Gaussian free field, with the heights of the contours spaced  $\sqrt{2}$  times as far apart as they are for [...] the double dimer model on the square lattice.

#### Theorem (B-dT)

XOR-polygon configurations of the double Ising model on G have the same law as level lines of a restriction of the height function of the bipartite dimer model on  $\mathsf{G}^{\mathsf{Q}}$ , with an explicit coupling.

#### Theorem (dT)

The height function (as a random distribution) of the critical dimer model defined on a bipartite graph converges weakly in law to  $\frac{1}{\sqrt{\pi}}$  a Gaussian free field of the plane.



# Back to Wilson's conjecture

Suppose we had strong form of convergence, allowing for convergence of level lines. Then:

| level lines of $h^{\varepsilon}$      | $\rightarrow$ | level lines of GFF                                                           |           |
|---------------------------------------|---------------|------------------------------------------------------------------------------|-----------|
| $(k, k \in \mathbb{Z})$               |               | $(\sqrt{\pi}k, k \in \mathbb{Z})$                                            |           |
| $(k + \frac{1}{2}, k \in \mathbb{Z})$ |               | $\left  \left( \frac{\sqrt{\pi}}{2}(2k+1), k \in \mathbb{Z} \right) \right $ | XOR loops |

For the critical double dimer model. The height function is  $h_1^\varepsilon-h_2^\varepsilon$ , where  $h_1$  and  $h_2$  are independent, and each converges weakly in distribution to  $\frac{1}{\sqrt{\pi}}$  a Gaussian free field. Thus,  $h_1-h_2$  converges weakly in distribution to  $\frac{\sqrt{2}}{\sqrt{\pi}}$  a Gaussian free field.

| level lines of $h_1^{arepsilon} - h_2^{arepsilon}$ | $\rightarrow$ | level lines of GFF                                                  |               |
|----------------------------------------------------|---------------|---------------------------------------------------------------------|---------------|
| $(k, k \in \mathbb{Z})$                            |               | $(\frac{\sqrt{\pi}}{\sqrt{2}}k, k \in \mathbb{Z})$                  |               |
| $(k + \frac{1}{2}, k \in \mathbb{Z})$              |               | $\left(\frac{\sqrt{\pi}}{2\sqrt{2}}(2k+1), k \in \mathbb{Z}\right)$ | d-dimer loops |