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I Introduction
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Generalized Fourier Series

f (x) =
∑

anψn(x)

Some Examples

sin(x) = 2
∞∑
n=0

(−1)nJ2n (x)
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2π
T0 (x)−
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n=0
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(2 n + 1)2
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T2n+1 (x)

erf (x) = 2
∞∑
n=0

(
−1

4

)n
1√

π (2 n + 1) n!
1F1

(
n + 1

2

2n + 2

∣∣∣∣− x

)
More generally (ψn(x))n∈N can be an orthogonal basis of a Hilbert space.
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Applications: Good approximation properties.
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Applications: Good approximation properties.
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Our framework

Families of functions ψn(x) with two special properties

Mult by x (Px)

Recx2 (xψn(x)) = Recx1 (ψn(x))

Examples

Monomial polynomials
(Mn = xn)

All orthogonal polynomials

Bessel functions

Legendre functions

Parabolic cylinder functions

xMn = Mn+1

2xTn(x) = Tn+1(x) + Tn−1(x)

1

n
(xJn+1 − xJn−1) = 2Jn
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Our framework

Families of functions ψn(x) with two special properties

Mult by x (Px)

Recx2 (xψn(x)) = Recx1 (ψn(x))

Differentiation (P∂)

Rec∂2 (ψ′n(x)) = Rec∂1 (ψn(x))

Examples

Monomial polynomials

Classical orthogonal
polynomials

Bessel functions

Legendre functions

Parabolic cylinder functions

M ′n = nMn−1

1

n + 1
T ′n+1(x)−

1

n − 1
T ′n−1(x) = 2Tn(x)

2J′n(x) = Jn−1(x)− Jn+1(x)
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Our framework

Families of functions ψn(x) with two special properties

Mult by x (Px)

Recx2 (xψn(x)) = Recx1 (ψn(x))

Differentiation (P∂)

Rec∂2 (ψ′n(x)) = Rec∂1 (ψn(x))

This is our data-structure for ψn(x)
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Main Idea

Main Idea

If ψn(x) satisfies (Px) and (P∂), for any f (x) =
∑

anψn(x) solution of a
linear differential equation with polynomial coefficients, the coefficients an
are cancelled by a linear recurrence relation with polynomial coefficients.

Applications:

Efficient numerical computation of the coefficients.

Computation of closed-form for the coefficients (when it’s possible).
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Previous work

Clenshaw (1957): numerical scheme to compute the coefficients
when ψn(x) = Tn(x) (Chebyshev series).

Lewanowicz (1976-2004): algorithms to compute a recurrence
relation when ψn is an orthogonal or semi-orthogonal polynomial
family.

Rebillard and Zakraǰsek (2006): General algorithm computing a
recurrence relation when ψn is a family of hypergeometric
polynomials

Benoit and Salvy (2009) : Simple unified presentation and
complexity analysis of the previous algorithms using Fractions of
recurrence relations when ψn = Tn. New and fast algorithm to
compute the Chebyshev recurrence.
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New Results (2011)

Simple unified presentation of the previous algorithms using
Pairs of recurrence relations.

New general algorithm computing the recurrence relation of the
coefficients for a Generalized Fourier Series when ψn(x) satisfies
(Px) and (P∂).

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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II Pairs of Recurrence Relations
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Examples: Chebyshev case (f (x) =
∑

unTn(x))

Basic rules:

xf =
∑

anTn (Px)
−−→

an =
un−1 + un+1

2

f ′ =
∑

bnTn (P∂)
−−→

bn−1 − bn+1 = 2nun.

Combine:

f ′ + 2xf =
∑

cnTn (P∂ + 2Px)
−−−−−−−→

cn−1 − cn+1 = Rec1(un).

Application: Chebyshev series for exp(−x2).

(f ′ + 2xf )′ =
∑

dnTn (P∂)
−−→

dn−1 − dn+1 = 2ncn,

→ Rec2(dn) = Rec3(un),

(f ′ + 2xf )′ − 2f =
∑

enTn → Rec4(en) = Rec5(un).

Application: Chebyshev series for erf(x).

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Rings of Pairs of Recurrence Relations

Theorem (Least Common Left Multiple (Ore 33))

Given Rec1 and Rec2, there exists a recurrence relation Rec and a pair(
R̃ec1, R̃ec2

)
such that for all sequences (un)n∈N :

Rec (un) = R̃ec1 ◦ Rec1 (un) = R̃ec2 ◦ Rec2 (un)

The LCLM is the recurrence relation Rec with minimal order.

Computation : Euclidean algorithm.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Operations of addition and composition

Rec = lclm(Rec1,Rec2) = R̃ec1 ◦ Rec1 = R̃ec2 ◦ Rec2

Operation 1: Addition

Rec1(an) = Rec3(un), Rec2(bn) = Rec4(un)

Rec(an) = R̃ec1 ◦Rec3(un), Rec(bn) = R̃ec2 ◦Rec4(un)

→ Rec(an + bn) =
(

R̃ec1 ◦ Rec3 +R̃ec2 ◦ Rec4

)
(un).

Operation 2: Composition

Rec1(un) = Rec3(an), Rec2(un) = Rec4(bn)

Rec(un) = R̃ec1 ◦ Rec1(un) = R̃ec2 ◦ Rec2(un)

→ R̃ec1 ◦ Rec3(an) = R̃ec2 ◦ Rec4(bn).
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Main Result

Main Result : Morphism

There exists a morphism ϕ such that if f =
∑

unψn(x) and g =
∑

vnψn(x)
are related by L (f ) = g (L a linear differential operator), then:

ϕ (L) = (Rec1,Rec2) with Rec1 (un) = Rec2 (vn)

In particular if L (f ) = 0, then Rec1 (un) = 0.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Definition of the Morphism ϕ

f =
∑

unψn(x) g =
∑

vnψn(x)

Recx2 (xψn(x)) = Recx1 (ψn(x))
if xf = g , then
Recx2 (un) = Recx1 (vn)

ϕ(x)

Rec∂2 (ψ′n(x)) = Rec∂1 (ψn(x))
if f ′ = g , then
Rec∂1 (un) = Rec∂2 (vn)

ϕ(∂)

Example for Chebyshev series:

2xTn(x) = Tn+1(x) + Tn−1(x)

T ′n+1(x)

n + 1
−

T ′n−1(x)

n − 1
= 2Tn(x)

un+1 + un−1 = 2vn

2un =
1

n
(vn−1 − vn+1)

ϕ

Example for Bessel series

1

n
(xJn+1 − xJn−1) = 2Jn

2J′n(x) = Jn−1(x)− Jn+1(x)

2un =
vn+1

n + 1
+

vn−1

n − 1

un+1 − un−1 = 2vn

ϕ

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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General Algorithm

Recall

Definition of ϕ (x) and ϕ (∂)

Algorithms to compute addition and composition between two pairs

General Algorithm

We deduce from this morphism a general Horner-like algorithm to
compute the recurrence relation satisfied by the coefficients of a
generalized Fourier series solution of a linear differential equation.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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III Recurrences of Smaller Order
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Greatest Common Left Divisor and Reduction of Order

GCLD

Given a pair (Rec1,Rec2), the Euclidean algorithm computes the greatest recur-

rence relation Rec (GCLD) such that there exists a pair
(
R̃ec1, R̃ec2

)
with the

following relations for all sequences (un)n∈N and (vn)n∈N:

Rec ◦R̃ec1 (un) = Rec1 (un)

Rec ◦R̃ec2 (vn) = Rec2 (vn)

The orders of the recurrence relations R̃eci are at most those of Reci .

Remark

In a general case, we don’t have :

Rec1(un) = Rec2(vn)⇒ R̃ec1(un) = R̃ec2(vn),

(−1)n+2 − (−1)n = (−1)2(n+1) − (−1)2n ; (−1)n+1 + (−1)n = (−1)2n

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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GLCD for reduction of order

Theorem

Given L a linear differential operator, f =
∑

unψn(x), g =
∑

vnψn(x)
such that L (f ) = g and a pair (Rec1,Rec2) = ϕ(L). We have

R̃ec1 (un) = R̃ec2 (vn)

Application: Adaptation of the previous algorithm

At the end of the previous algorithm, add a final step:
Remove the GC LD of the two recurrence relations of the pair.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Example of reduction for Chebyshev series

√
1− x2 =

∑
n∈N

4

π(2n + 1)
T2n(x) =

∑
n∈N

cnTn(x)

√
1− x2 is the solution of the differential equation:

xy(x) + (1− x2)y ′(x) = 0

With the general algorithm we obtain the pair of recurrence relations :

Rec1 (un) = (n+3)un+2−2nun+(n−3)un−2 and Rec2 (vn) = 2 (−vn+1 + vn−1) .

We deduce : (n + 3)cn+2 − 2ncn + (n − 3)cn−2 = 0.

R̃ec1 (un) = (n + 2)un+1 − (n − 2)un−1 and R̃ec2 (vn) = 2vn.

We deduce : (n + 2)cn+1 − (n − 2)cn−1 = 0.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Conclusion

Contributions:

Use of Pairs of recurrence relations.

New general algorithm.

Use of the GCLD to reduce order of the recurrence.

Perspectives:

Computation of the recurrence of minimal order.

Numerical computation of the coefficients.

Closed form for the coefficients.

Example

erf (x) =
∞∑
n=0

2
4−n (−1)n 1F1(n + 1/2; 2 n + 2; −1)√

π (2 n + 1) n!
T2 n+1 (x) .

Integration in the Dynamic Dictionary of Mathematical Functions.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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