## Generalized Fourier Series for Solutions of Linear Differential Equations

Alexandre Benoit,<br>Joint work with Bruno Salvy

INRIA (France)

February 15, 2011


## I Introduction

## Generalized Fourier Series

$$
f(x)=\sum a_{n} \psi_{n}(x)
$$

## Some Examples

$$
\begin{aligned}
\sin (x) & =2 \sum_{n=0}^{\infty}(-1)^{n} J_{2 n}(x) \\
\arccos (x) & =\frac{1}{2 \pi} T_{0}(x)-\sum_{n=0}^{\infty} \frac{4}{(2 n+1)^{2} \pi} T_{2 n+1}(x) \\
\operatorname{erf}(x) & =2 \sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} \frac{1}{\sqrt{\pi}(2 n+1) n!} F_{1}\left(\left.\begin{array}{c}
n+\frac{1}{2} \\
2 n+2
\end{array} \right\rvert\,-x\right)
\end{aligned}
$$

More generally $\left(\psi_{n}(x)\right)_{n \in \mathbb{N}}$ can be an orthogonal basis of a Hilbert space.

## Good approximation properties.

Approximation of $\arctan (2 x)$ by Taylor expansion of degree 1


## Good approximation properties.

Bad approximation outside its circle of convergence


## Good approximation properties.

approximation of $\arctan (2 x)$ by Chebyshev expansion of degree 1


## Good approximation properties.



## Good approximation properties.

approximation of $\arctan (2 x)$ by Hermite expansion of degree 1


## Our framework

Families of functions $\psi_{n}(x)$ with two special properties
Mult by $x\left(\mathcal{P}_{x}\right)$

$$
\operatorname{Rec}_{x 2}\left(x \psi_{n}(x)\right)=\operatorname{Rec}_{x 1}\left(\psi_{n}(x)\right)
$$

## Examples

- Monomial polynomials $\left(M_{n}=x^{n}\right)$
- All orthogonal polynomials
- Bessel functions
- Legendre functions
- Parabolic cylinder functions


## Our framework

Families of functions $\psi_{n}(x)$ with two special properties

## Mult by $x\left(\mathcal{P}_{x}\right)$

$$
\operatorname{Rec}_{x 2}\left(x \psi_{n}(x)\right)=\operatorname{Rec}_{x 1}\left(\psi_{n}(x)\right)
$$

## Examples

- Monomial polynomials $\left(M_{n}=x^{n}\right)$

$$
x M_{n}=M_{n+1}
$$

- All orthogonal polynomials
- Bessel functions
- Legendre functions

$$
\begin{array}{r}
2 x T_{n}(x)=T_{n+1}(x)+T_{n-1}(x) \\
\frac{1}{n}\left(x J_{n+1}-x J_{n-1}\right)=2 J_{n}
\end{array}
$$

- Parabolic cylinder functions


## Our framework

Families of functions $\psi_{n}(x)$ with two special properties
Mult by $x\left(\mathcal{P}_{x}\right)$

$$
\operatorname{Rec}_{x 2}\left(x \psi_{n}(x)\right)=\operatorname{Rec}_{x 1}\left(\psi_{n}(x)\right)
$$

## Differentiation $\left(\mathcal{P}_{\partial}\right)$

$$
\operatorname{Rec}_{\partial 2}\left(\psi_{n}^{\prime}(x)\right)=\operatorname{Rec}_{\partial 1}\left(\psi_{n}(x)\right)
$$

## Examples

- Monomial polynomials
- Classical orthogonal polynomials
- Bessel functions
- Legendre functions
- Parabolic cylinder functions


## Our framework

Families of functions $\psi_{n}(x)$ with two special properties

## Mult by $x\left(\mathcal{P}_{x}\right)$

$$
\operatorname{Rec}_{x 2}\left(x \psi_{n}(x)\right)=\operatorname{Rec}_{x 1}\left(\psi_{n}(x)\right)
$$

## Differentiation $\left(\mathcal{P}_{\partial}\right)$

$$
\operatorname{Rec}_{\partial 2}\left(\psi_{n}^{\prime}(x)\right)=\operatorname{Rec}_{\partial 1}\left(\psi_{n}(x)\right)
$$

## Examples

- Monomial polynomials
- Classical orthogonal polynomials
- Bessel functions

$$
\begin{array}{r}
\frac{1}{n+1} T_{n+1}^{\prime}(x)-\frac{1}{n-1} T_{n-1}^{\prime}(x)=2 T_{n}(x) \\
2 J_{n}^{\prime}(x)=J_{n-1}(x)-J_{n+1}(x)
\end{array}
$$

- Legendre functions
- Parabolic cylinder functions


## Our framework

Families of functions $\psi_{n}(x)$ with two special properties
Mult by $x\left(\mathcal{P}_{x}\right)$

$$
\operatorname{Rec}_{x 2}\left(x \psi_{n}(x)\right)=\operatorname{Rec}_{x 1}\left(\psi_{n}(x)\right)
$$

## Differentiation $\left(\mathcal{P}_{\partial}\right)$

$$
\operatorname{Rec}_{\partial 2}\left(\psi_{n}^{\prime}(x)\right)=\operatorname{Rec}_{\partial 1}\left(\psi_{n}(x)\right)
$$

This is our data-structure for $\psi_{n}(x)$

## Main Idea

## Main Idea

If $\psi_{n}(x)$ satisfies $\left(\mathcal{P}_{x}\right)$ and $\left(\mathcal{P}_{\partial}\right)$, for any $f(x)=\sum a_{n} \psi_{n}(x)$ solution of a linear differential equation with polynomial coefficients, the coefficients $a_{n}$ are cancelled by a linear recurrence relation with polynomial coefficients.

## Main Idea

## Main Idea

If $\psi_{n}(x)$ satisfies $\left(\mathcal{P}_{x}\right)$ and $\left(\mathcal{P}_{\partial}\right)$, for any $f(x)=\sum a_{n} \psi_{n}(x)$ solution of a linear differential equation with polynomial coefficients, the coefficients $a_{n}$ are cancelled by a linear recurrence relation with polynomial coefficients.

Applications:

- Efficient numerical computation of the coefficients.
- Computation of closed-form for the coefficients (when it's possible).


## Previous work

- Clenshaw (1957): numerical scheme to compute the coefficients when $\psi_{n}(x)=T_{n}(x)$ (Chebyshev series).
- Lewanowicz (1976-2004): algorithms to compute a recurrence relation when $\psi_{n}$ is an orthogonal or semi-orthogonal polynomial family.
- Rebillard and Zakrajšek (2006): General algorithm computing a recurrence relation when $\psi_{n}$ is a family of hypergeometric polynomials
- Benoit and Salvy (2009) : Simple unified presentation and complexity analysis of the previous algorithms using Fractions of recurrence relations when $\psi_{n}=T_{n}$. New and fast algorithm to compute the Chebyshev recurrence.


## New Results (2011)

- Simple unified presentation of the previous algorithms using Pairs of recurrence relations.
- New general algorithm computing the recurrence relation of the coefficients for a Generalized Fourier Series when $\psi_{n}(x)$ satisfies $\left(\mathcal{P}_{x}\right)$ and ( $\mathcal{P}_{\partial}$ ).


## II Pairs of Recurrence Relations

## Examples: Chebyshev case $\left(f(x)=\sum u_{n} T_{n}(x)\right)$

Basic rules:

$$
\begin{array}{rll}
x f & =\sum a_{n} T_{n} & \xrightarrow{\left(\mathcal{P}_{x}\right)} \\
f^{\prime} & =\sum b_{n} T_{n} & \xrightarrow{\left(\mathcal{P}_{\partial}\right)}
\end{array}
$$

$$
\begin{aligned}
a_{n} & =\frac{u_{n-1}+u_{n+1}}{2} \\
b_{n-1}-b_{n+1} & =2 n u_{n} .
\end{aligned}
$$

## Examples: Chebyshev case $\left(f(x)=\sum u_{n} T_{n}(x)\right)$

Basic rules:

$$
\begin{array}{rll}
x f & =\sum a_{n} T_{n} & \xrightarrow{\left(\mathcal{P}_{x}\right)}  \tag{x}\\
f^{\prime} & =\sum b_{n} T_{n} & \xrightarrow{\left(\mathcal{P}_{\partial}\right)}
\end{array}
$$

$$
b_{n-1}-b_{n+1}=2 n u_{n} .
$$

Combine:

$$
f^{\prime}+2 x f=\sum c_{n} T_{n} \quad \underline{\left(\mathcal{P}_{\partial}+2 \mathcal{P}_{x}\right)} \quad c_{n-1}-c_{n+1}=\operatorname{Rec}_{1}\left(u_{n}\right) .
$$

Application: Chebyshev series for $\exp \left(-x^{2}\right)$.

## Examples: Chebyshev case $\left(f(x)=\sum u_{n} T_{n}(x)\right)$

Basic rules:

$$
\begin{align*}
& x f=\sum a_{n} T_{n}  \tag{x}\\
& f^{\prime}=\sum b_{n} T_{n} \\
& \underline{\left(\mathcal{P}_{x}\right)} \\
&\left(\mathcal{P}_{\partial}\right)
\end{align*}
$$

$$
b_{n-1}-b_{n+1}=2 n u_{n}
$$

Combine:

$$
f^{\prime}+2 x f=\sum c_{n} T_{n} \quad \underline{ } \quad\left(\mathcal{P}_{\partial}+2 \mathcal{P}_{x}\right) \quad c_{n-1}-c_{n+1}=\operatorname{Rec}_{1}\left(u_{n}\right)
$$

Application: Chebyshev series for $\exp \left(-x^{2}\right)$.

$$
\begin{aligned}
\left(f^{\prime}+2 x f\right)^{\prime}=\sum d_{n} T_{n} & \underline{(\mathcal{P} \partial)} & d_{n-1}-d_{n+1} & =2 n c_{n}, \\
\left(f^{\prime}+2 x f\right)^{\prime}-2 f=\sum e_{n} T_{n} & \rightarrow & \operatorname{Rec}_{2}\left(d_{n}\right) & =\operatorname{Rec}_{3}\left(u_{n}\right), \\
& \rightarrow & \operatorname{Rec}_{4}\left(e_{n}\right) & =\operatorname{Rec}_{5}\left(u_{n}\right)
\end{aligned}
$$

Application: Chebyshev series for $\operatorname{erf}(x)$.

## Rings of Pairs of Recurrence Relations

## Theorem (Least Common Left Multiple (Ore 33))

Given $\operatorname{Rec}_{1}$ and $\mathrm{Rec}_{2}$, there exists a recurrence relation Rec and a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ such that for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ :

$$
\operatorname{Rec}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{1}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}} \circ \operatorname{Rec}_{2}\left(u_{n}\right)
$$

## Rings of Pairs of Recurrence Relations

## Theorem (Least Common Left Multiple (Ore 33))

Given $\operatorname{Rec}_{1}$ and $\mathrm{Rec}_{2}$, there exists a recurrence relation Rec and a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ such that for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ :

$$
\operatorname{Rec}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{1}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}} \circ \operatorname{Rec}_{2}\left(u_{n}\right)
$$

- The LCLM is the recurrence relation Rec with minimal order.


## Rings of Pairs of Recurrence Relations

## Theorem (Least Common Left Multiple (Ore 33))

Given $\operatorname{Rec}_{1}$ and $\mathrm{Rec}_{2}$, there exists a recurrence relation Rec and a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ such that for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ :

$$
\operatorname{Rec}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{1}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}} \circ \operatorname{Rec}_{2}\left(u_{n}\right)
$$

- The LCLM is the recurrence relation Rec with minimal order.
- Computation: Euclidean algorithm.


## Operations of addition and composition

$$
\operatorname{Rec}=\operatorname{lclm}\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)=\operatorname{Rec}_{1} \circ \operatorname{Rec}_{1}=\operatorname{Rec}_{2} \circ \operatorname{Rec}_{2}
$$

## Operation 1: Addition

$\operatorname{Rec}_{1}\left(a_{n}\right)=\operatorname{Rec}_{3}\left(u_{n}\right), \operatorname{Rec}_{2}\left(b_{n}\right)=\operatorname{Rec}_{4}\left(u_{n}\right)$
$\operatorname{Rec}\left(a_{n}\right)=\operatorname{Rec}_{1} \circ \operatorname{Rec}_{3}\left(u_{n}\right), \operatorname{Rec}\left(b_{n}\right)=\operatorname{Rec}_{2} \circ \operatorname{Rec}_{4}\left(u_{n}\right)$
$\rightarrow \operatorname{Rec}\left(a_{n}+b_{n}\right)=\left(\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{3}+\widetilde{\operatorname{Rec}_{2}} \circ \operatorname{Rec}_{4}\right)\left(u_{n}\right)$.

## Operations of addition and composition

$$
\operatorname{Rec}=\operatorname{lclm}\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)=\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{1}=\widetilde{\operatorname{Rec}_{2}} \circ \operatorname{Rec}_{2}
$$

## Operation 1: Addition

$\operatorname{Rec}_{1}\left(a_{n}\right)=\operatorname{Rec}_{3}\left(u_{n}\right), \operatorname{Rec}_{2}\left(b_{n}\right)=\operatorname{Rec}_{4}\left(u_{n}\right)$
$\operatorname{Rec}\left(a_{n}\right)=\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{3}\left(u_{n}\right), \operatorname{Rec}\left(b_{n}\right)=\operatorname{Rec}_{2} \circ \operatorname{Rec}_{4}\left(u_{n}\right)$
$\rightarrow \operatorname{Rec}\left(a_{n}+b_{n}\right)=\left(\widetilde{\operatorname{Rec}_{1}} \circ \operatorname{Rec}_{3}+\widetilde{\operatorname{Rec}_{2}} \circ \operatorname{Rec}_{4}\right)\left(u_{n}\right)$.

## Operation 2: Composition

$\operatorname{Rec}_{1}\left(u_{n}\right)=\operatorname{Rec}_{3}\left(a_{n}\right), \operatorname{Rec}_{2}\left(u_{n}\right)=\operatorname{Rec}_{4}\left(b_{n}\right)$
$\operatorname{Rec}\left(u_{n}\right)=\operatorname{Rec}_{1} \circ \operatorname{Rec}_{1}\left(u_{n}\right)=\operatorname{Rec}_{2} \circ \operatorname{Rec}_{2}\left(u_{n}\right)$
$\rightarrow \operatorname{Rec}_{1} \circ \operatorname{Rec}_{3}\left(a_{n}\right)=\operatorname{Rec}_{2} \circ \operatorname{Rec}_{4}\left(b_{n}\right)$.

## Main Result

## Main Result : Morphism

There exists a morphism $\varphi$ such that if $f=\sum u_{n} \psi_{n}(x)$ and $g=\sum v_{n} \psi_{n}(x)$ are related by $L(f)=g$ ( $L$ a linear differential operator), then:

$$
\varphi(L)=\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right) \quad \text { with } \quad \operatorname{Rec}_{1}\left(u_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right)
$$

In particular if $L(f)=0$, then $\operatorname{Rec}_{1}\left(u_{n}\right)=0$.

## Definition of the Morphism $\varphi$



## Definition of the Morphism $\varphi$



Example for Chebyshev series:

$$
\begin{gathered}
2 x T_{n}(x)=T_{n+1}(x)+T_{n-1}(x) \\
\frac{T_{n+1}^{\prime}(x)}{n+1}-\frac{T_{n-1}^{\prime}(x)}{n-1}=2 T_{n}(x)
\end{gathered} \xrightarrow{n}\left(\begin{array}{l}
u_{n+1}+u_{n-1}=2 v_{n} \\
2 u_{n}=\frac{1}{n}\left(v_{n-1}-v_{n+1}\right)
\end{array}\right.
$$

Example for Bessel series

$$
\begin{aligned}
& \frac{1}{n}\left(x \mathrm{~J}_{n+1}-x \mathrm{~J}_{n-1}\right)=2 \mathrm{~J}_{n} \\
& 2 \mathrm{~J}_{n}^{\prime}(x)=\mathrm{J}_{n-1}(x)-\mathrm{J}_{n+1}(x)
\end{aligned} \quad \xrightarrow{2 u_{n}=\frac{v_{n+1}}{n+1}+\frac{v_{n-1}}{n-1}} \begin{aligned}
& u_{n+1}-u_{n-1}=2 v_{n}
\end{aligned}
$$

## General Algorithm

## Recall

- Definition of $\varphi(x)$ and $\varphi(\partial)$
- Algorithms to compute addition and composition between two pairs


## General Algorithm

## Recall

- Definition of $\varphi(x)$ and $\varphi(\partial)$
- Algorithms to compute addition and composition between two pairs


## General Algorithm

We deduce from this morphism a general Horner-like algorithm to compute the recurrence relation satisfied by the coefficients of a generalized Fourier series solution of a linear differential equation.

## III Recurrences of Smaller Order

## Greatest Common Left Divisor and Reduction of Order

## GC D

Given a pair $\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)$, the Euclidean algorithm computes the greatest recurrence relation $\operatorname{Rec}(G C L D)$ such that there exists a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ with the following relations for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ :

$$
\begin{aligned}
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}}_{1}\left(u_{n}\right)=\operatorname{Rec}_{1}\left(u_{n}\right) \\
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right)
\end{aligned}
$$

## Greatest Common Left Divisor and Reduction of Order

## GC D

Given a pair $\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)$, the Euclidean algorithm computes the greatest recurrence relation $\operatorname{Rec}(G C L D)$ such that there exists a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ with the following relations for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ :

$$
\begin{aligned}
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}}_{1}\left(u_{n}\right)=\operatorname{Rec}_{1}\left(u_{n}\right) \\
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right)
\end{aligned}
$$

The orders of the recurrence relations $\mathrm{Rec}_{i}$ are at most those of $\mathrm{Rec}_{i}$.

## Greatest Common Left Divisor and Reduction of Order

## GC D

Given a pair $\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)$, the Euclidean algorithm computes the greatest recurrence relation $\operatorname{Rec}(G C L D)$ such that there exists a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ with the following relations for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ :

$$
\begin{aligned}
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}}_{1}\left(u_{n}\right)=\operatorname{Rec}_{1}\left(u_{n}\right) \\
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right)
\end{aligned}
$$

The orders of the recurrence relations $\operatorname{Rec}_{i}$ are at most those of $\mathrm{Rec}_{i}$.

## Remark

In a general case, we don't have :

$$
\operatorname{Rec}_{1}\left(u_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right) \Rightarrow \widetilde{\operatorname{Rec}_{1}}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)
$$

## Greatest Common Left Divisor and Reduction of Order

## GC D

Given a pair $\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)$, the Euclidean algorithm computes the greatest recurrence relation $\operatorname{Rec}(G C L D)$ such that there exists a pair $\left(\widetilde{\operatorname{Rec}_{1}}, \widetilde{\operatorname{Rec}_{2}}\right)$ with the following relations for all sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ :

$$
\begin{aligned}
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}}_{1}\left(u_{n}\right)=\operatorname{Rec}_{1}\left(u_{n}\right) \\
& \operatorname{Rec} \circ \widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right)
\end{aligned}
$$

The orders of the recurrence relations $\mathrm{Rec}_{i}$ are at most those of $\mathrm{Rec}_{i}$.

## Remark

In a general case, we don't have :

$$
\operatorname{Rec}_{1}\left(u_{n}\right)=\operatorname{Rec}_{2}\left(v_{n}\right) \Rightarrow \widetilde{\operatorname{Rec}_{1}}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)
$$

$$
(-1)^{n+2}-(-1)^{n}=(-1)^{2(n+1)}-(-1)^{2 n} \nRightarrow(-1)^{n+1}+(-1)^{n}=(-1)^{2 n}
$$

## G CD for reduction of order

## Theorem

Given $L$ a linear differential operator, $f=\sum u_{n} \psi_{n}(x), g=\sum v_{n} \psi_{n}(x)$ such that $L(f)=g$ and a pair $\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)=\varphi(L)$. We have

$$
\widetilde{\operatorname{Rec}_{1}}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)
$$

## G CD for reduction of order

## Theorem

Given $L$ a linear differential operator, $f=\sum u_{n} \psi_{n}(x), g=\sum v_{n} \psi_{n}(x)$ such that $L(f)=g$ and a pair $\left(\operatorname{Rec}_{1}, \operatorname{Rec}_{2}\right)=\varphi(L)$. We have

$$
\widetilde{\operatorname{Rec}_{1}}\left(u_{n}\right)=\widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)
$$

## Application: Adaptation of the previous algorithm

At the end of the previous algorithm, add a final step:
Remove the GCLD of the two recurrence relations of the pair.

## Example of reduction for Chebyshev series

$$
\sqrt{1-x^{2}}=\sum_{n \in \mathbb{N}} \frac{4}{\pi(2 n+1)} T_{2 n}(x)=\sum_{n \in \mathbb{N}} c_{n} T_{n}(x)
$$

$\sqrt{1-x^{2}}$ is the solution of the differential equation:

$$
x y(x)+\left(1-x^{2}\right) y^{\prime}(x)=0
$$

## Example of reduction for Chebyshev series

$$
\sqrt{1-x^{2}}=\sum_{n \in \mathbb{N}} \frac{4}{\pi(2 n+1)} T_{2 n}(x)=\sum_{n \in \mathbb{N}} c_{n} T_{n}(x)
$$

$\sqrt{1-x^{2}}$ is the solution of the differential equation:

$$
x y(x)+\left(1-x^{2}\right) y^{\prime}(x)=0
$$

With the general algorithm we obtain the pair of recurrence relations :
$\operatorname{Rec}_{1}\left(u_{n}\right)=(n+3) u_{n+2}-2 n u_{n}+(n-3) u_{n-2}$ and $\operatorname{Rec}_{2}\left(v_{n}\right)=2\left(-v_{n+1}+v_{n-1}\right)$.

We deduce: $(n+3) c_{n+2}-2 n c_{n}+(n-3) c_{n-2}=0$.

## Example of reduction for Chebyshev series

$$
\sqrt{1-x^{2}}=\sum_{n \in \mathbb{N}} \frac{4}{\pi(2 n+1)} T_{2 n}(x)=\sum_{n \in \mathbb{N}} c_{n} T_{n}(x)
$$

$\sqrt{1-x^{2}}$ is the solution of the differential equation:

$$
x y(x)+\left(1-x^{2}\right) y^{\prime}(x)=0
$$

With the general algorithm we obtain the pair of recurrence relations :
$\operatorname{Rec}_{1}\left(u_{n}\right)=(n+3) u_{n+2}-2 n u_{n}+(n-3) u_{n-2}$ and $\operatorname{Rec}_{2}\left(v_{n}\right)=2\left(-v_{n+1}+v_{n-1}\right)$.
We deduce : $(n+3) c_{n+2}-2 n c_{n}+(n-3) c_{n-2}=0$.

$$
\widetilde{\operatorname{Rec}_{1}}\left(u_{n}\right)=(n+2) u_{n+1}-(n-2) u_{n-1} \text { and } \widetilde{\operatorname{Rec}_{2}}\left(v_{n}\right)=2 v_{n} .
$$

We deduce: $(n+2) c_{n+1}-(n-2) c_{n-1}=0$.

## IV Conclusion

## Conclusion

Contributions:

- Use of Pairs of recurrence relations.
- New general algorithm.
- Use of the GCLD to reduce order of the recurrence.


## Conclusion

Contributions:

- Use of Pairs of recurrence relations.
- New general algorithm.
- Use of the GCLD to reduce order of the recurrence.

Perspectives:

- Computation of the recurrence of minimal order.
- Numerical computation of the coefficients.
- Closed form for the coefficients.


## Example

$$
\operatorname{erf}(x)=\sum_{n=0}^{\infty} 2 \frac{4^{-n}(-1)^{n}{ }_{1} F_{1}(n+1 / 2 ; 2 n+2 ;-1)}{\sqrt{\pi}(2 n+1) n!} T_{2 n+1}(x) .
$$

- Integration in the Dynamic Dictionary of Mathematical Functions.

