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Tutte’s graph polynomial

• Tutte polynomial is a “Universal Invariant” for polynomials defined on simple graphs
G(V, E)

TG(x , y) =
∑
A⊂G

(x − 1)r(G)−r(A)(y − 1)n(A) , r(A) = V − k(A) , n(A) = E(A)− r(A) (1)

satisfying a contraction/deletion rule for a regular edge e

TG = TG−e + TG/e . (2)

∼ Special edges (bridges and self-loops) play the role of boundary conditions of this
rec-rel.

For a bridge: TG = xTG−e (3)

For a loop: TG = yTG−e . (4)

• Tutte polynomial is “universal” in the sense that any other invariant satisfying the
same rec-rel must be an evaluation of this polynomial [Brylawski, ’70];
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Ribbon graphs . . .

Definition (Ribbon graphs, Bollobàs-Riordan, Math. Ann. ’02)

• Neighborhood of graph (cellularly) embedded in a surface.
• A ribbon graph G is a (not necessarily orientable) surface with boundary represented as
the union of two sets of closed topological discs called vertices V and edges E . These sets
satisfy the following:
∼ Vertices and edges intersect by disjoint line segment,
∼ each such line segment lies on the boundary of precisely one vertex and one edge,
∼ every edge contains exactly two such line segments.

• Face: a component of a boundary of G considered as a geometric ribbon graph, and
hence as surface with boundary. As an embedded graph, a face of G is simply a face of
the embedding.
• Edges/Loops: can be twisted or not.
• Operations G − e and G/e.
• Contraction of a trivial untwisted loop e: G/e = (G − e) t {v0}.
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. . . and the Bollobàs-Riordan polynomial

• The BR polynomial:

Let G be a ribbon graph. We define the ribbon graph polynomial of G to be an element
of Z[x , y , z ,w ] quotiented by the ideal generated by w 2 − w as:

RG(x , y , z ,w) =
∑
AbG

(x − 1)r (G)−r (A)(y − 1)n(A)zk(A)−F (A)+n(A)w o(A), (5)

where F (A) is the number of faces of A, o(A) = 0 if A is orientable and o(A) = 1 if not.

• Why the exponent of z ?

k(A)− F (A) + n(A) = 2k(A)− (|V| − |EA| − F (A)) = κ(A) (6)

is nothing but the genus or twice the genus (for oriented surfaces) of the subgraph A.
• Recurence rule

For a regular edge : RG = RG/e + RG−e , (7)

For a bridge : RG = x RG/e , (8)

For a trivial untwisted loop : RG = y RG−e (9)

For a trivial twisted loop : RG = (1 + (y − 1)zw)RG−e . (10)
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What about higher dimensional space?
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Krushkal & Renardy polynomial [2010]

• Krushkal-Renardy (KR) ’10: A 2-variable polynomial T n
G for G a higher dimensional

simplicial or CW-complex generalizing Tutte using homology group
XHn−1(L)−Hn−1(G)Y Hn(L) for LbG subcomplex of dimension n.
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Tensor graphs

• Feynman graph for Tensor Models for Quantum Gravity
• A rank d tensor Tp1,...,pd + A Geometricial/Physical input.
• Basic building blocks (d − 1)-simplexes & Interaction forms a D-simplex;
For e.g. in 3D:

a
b

c

T
abc

T T T

T

T

T

• Simplicial complex with boundaries.
• There is another vertex prescription in 3D [Tanasa, ’10] the multi-orientable complex
model.
• There exists for this prescription a polynomial invariant under “contraction/deletion”
rules.

Ta G =
∑
AbG

X r (G)−r (A)Y n(A)Z k(A)−bc(A)+n(A)T 2
∑

b gb (11)
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Colored Tensor Models

• ’10 Gurau’s 1/N expansion for colored TM [Gurau, AHP, ’11]
3D:

a
b

c

T
abc

T T

Color

Color

• They admit a cellular homology and even a boundary cellular homology.
• There exists a polynomial for these colored graphs encoding even the boundary data.
BUT the notion of contraction is dramatically modified (passive/active lines). ∼ Colored
theory is not “stable” contraction:

2

1

3

1

3

• Gurau polynomial need a new contraction rule involving the so-called passive line.
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Several questions, some answers

• Combinatorical vs Geom./Topological approaches. Combinatorics has a little advantage: you

don’t need to learn Hatcher’s book! ©

• ∃ Richer structures that are not seen or taking into account in the above formulation of
the Krushkal and Renardy.

• Stranded Graphs ? Combinatoric approach is enough.

• The issue of contraction and deletion in a stranded/colored structures.

Today:

• Goal: Define stranded graphs and Introduce a new invariant for 3D colored simplicial
complex with boundaries or colored stranded graphs.
• Method can be extended in any dimension.
• Upon reduction to simple/ribbon graphs, we reduce to Tutte/BR.

This is a compilation of works by Avohou R. Cocou, JBG, Etera Livine, M. Norbert
Hounkonnou, S. Ramgoolam, R. Toriumi, arXiv:1301.1987, 1409.0398, 1310.3708,
1307.6490, 1212.5961.
Ackn: Bonzom, Gurau, Krajewski, Rivasseau, Tanasa.
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Stranded graph

Definition (Stranded vertex and edge)

• A rank D stranded vertex is a chord diagram that is a collection of 2n points on the unit circle (called the
vertex frontier) paired by n chords, satisfying:

(a) the chords are not intersecting;

(b) the chords end points can be partitioned in sets called pre-edges with 0, 1, 2, . . . ,D elements. These
points should lie on a single arc on the frontier with no other end points on this arc;

(c) the pre-edges should form a connected collection that is, by merging all points in each pre-edge and by
removing the vertex frontier, the reduced graph obtained is connected.

The coordination (also called valence or degree) of a rank D > 0 stranded vertex is the number of its
non-empty pre-edges. By convention: (C1) we include a particular vertex made with one disc and assume that
it is a stranded vertex of any rank made with a unique closed chord and (C2) a point is a rank 0 stranded
vertex.
• A rank D stranded edge is a collection of segments called strands such that:

(a’) the strands are not intersecting (but can cross without intersecting, i.e. cannot lie in the same plane);

(b’) the end points of the strands can be partitioned in two disjoint parts called sets of end segments of the
edge such that a strand cannot have its end points in the same set of end segments;

(c’) the number of strands is D.
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Stranded vertex and edge

• Rank D str. vertex and rank D str. edge

Figure: A rank 4 stranded vertex of coordination 6, with connected pre-edges
(highlighted with different colors) with crossing chords; a trivial disc vertex; a
rank 5 edge with non parallel strands.

• Rank D > 0 stranded vertices just enforce that any entering strand in the vertex should
be exiting by another point at the frontier of the vertex.
• Degree or valence.
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Stranded/Tensor graph

Definition (Stranded and tensor graphs)

• A rank D stranded graph G is a graph G(V, E) which admits:

(i) rank D stranded vertices;

(ii) rank at most D stranded edges;

(iii) One vertex and one edge intersect by one set of end segments of the edge which
should coincide with a pre-edge at the vertex frontier. All intersections of vertices
and edges are pairwise distinct.

• A rank D tensor graph G is a rank D stranded graph such that:

(i’) the vertices of G have a fixed coordination D + 1 and their pre-edges have a fixed
cardinal D. From the point of view of the pre-edges, the pattern followed by each
stranded vertex is that of the complete graph KD+1;

(ii’) the edges of G are of rank D.

• The notion of connectedness should be clarified.
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Figure: A rank 3 stranded graph.

Figure: A rank 3 tensor graph with rank 3 vertices as with fixed coordination
4, pre-edges with 3 points linked by chords according to the pattern of K4;
edges are rank 3.
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Lower rank reduction

• Rank 0 and 1 stranded/tensor graph are not very interesting.
• Ribbon graphs are one-to-one with particular rank 2 stranded graphs.

Figure: Ribbon edge and vertex of a ribbon graph as a rank 2 stranded edge
and vertex of a stranded graph (the frontier vertex appears in dash).

s1

s2
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Half-edges and cut

Figure: A rank 3 str half edge with its external points a, b and c.

a

b

c

• Cut of an edge

Figure: Cutting a rank 3 stranded edge.

• New category of graphs: Half-edge stranded graphs.
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Contraction of a stranded edge

A B C

Figure: Graphs A’,B’ and C’ obtained after edge contraction of A, B and C,
respectively.

A’ B’ C’
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Colored tensor graphs.

Definition (Colored tensor graph)

A rank D ≥ 1 colored tensor graph G is a graph such that:
• G is (D + 1) colored and bipartite;
• G is a rank D tensor graph.

Figure: A rank 3 colored tensor graph and its compact representation.
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p-bubbles

Definition (p-bubbles, Gurau, ’09)

Let G be a rank D colored tensor graph. A p-bubble is a connected component made
with edges with p colors.

• 2-bubbles = faces of the graph. 3-bubbles = bubbles in D = 3;

Figure: The face f01 and bubbles of the graph of the previous graph.
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Open and boundary graphs

• Introduce colored stranded half edges: Open graphs

Figure: An open rank 3 colored tensor graph and its bubbles; f01 is an open
face; b012 is an open bubble and b023 is closed.

• Boundary graph: ∂G(V∂ , E∂) of a rank D HEcTG G is a graph encoding the boundary
of the simplicial complex.
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Weakly colored graphs

• Equivalence up to trivial discs: G1 ∼ G2 if after removing their trivial discs they are
isomorphic.

Definition (Rank D w-colored graph)

A rank D weakly colored or w-colored graph is the equivalence class (up to trivial discs)
of a rank D half-edged stranded obtained by successive edge contractions of some rank
D half-edged colored tensor graph.

Figure: Contraction of an edge in a rank 3 HEcTG.

1 1

2

3

0

1 1

2

0

• Face are bi-colored, bubble tri-colored objects. This will allows to keep track of their
numbers.
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Hope you’re still ok !
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A new invariant on rank 3 weakly-colored graphs [Avohou et al., ’13]

• Consider G a weakly colored graph. Choose a subset of edges in G, and define A a
spanning cutting subgraph by cutting all the rest of edges in G.

A new invariant

The following function is well defined on rank 3 W-colored graphs:

TG(X ,Y ,Z , S ,W ,Q,T ) =
∑
A⊂G

(X − 1)r(G)−r(A)Y n(A)×

Z 5k(A)−
(

3(V−E(A))+2(Fint (A)−Bint (A)−Bext(A))
)
SC∂ (A)W F∂ (A)QE∂ (A)T f (A) . (12)

k(A) its number of connected components, Fint/ext (A) its number of internal/external or
closed/open faces, Bint/ext (A) its number of closed/open bubbles; C∂(A) the number of
connected component of the boundary of A, F∂(A) the number of face of the boundary
graph, E∂(A) = Fext (A) the number of external faces or number of lines of the boundary
graph, and V∂(A) = f (A) the number of vertices of the boundary graph or number of
half-edge of A.
• 5k(A)−

(
3V + 2Fint (A)) is independent of the representative of a w-colored stranded

graphs.
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Proposition

Let G be a representative of a w-colored graph. Then

ζ(G) = 3(E(G)− V (G)) + 2[Bint (G) + Bext (G)− Fint (G)] ≥ −5D . (13)

• Consider the set of closed and open bubbles Bint and Bext of G, with cardinal Bint and Bext , resp.
• for any bi ∈ Bint

2− κbi
= Vbi

− Ebi
+ Fint ;bi

, (14)

where κbi
refers to the genus of bi or twice its genus if bi is oriented. Summing over all internal bubbles, we get

2Bint −
∑

bi∈Bint
κbi

=
∑

bi∈Bint

[
Vbi
− Ebi

+ Fint ;bi

]
. (15)

Using the colors,∑
bi∈Bint

Ebi
+
∑

bx∈Bext
Ebx = 3E ,

∑
bi∈Bint

Fint ;bi
+
∑

bx∈Bext
Fint ;bx = 2(Fint − D) . (16)

In addition, each vertex of the graph can be decomposed, at least, in three vertices (3 vertices is the minimum given by the
simplest vertex of the form G1) which could belong to an open or closed bubble, we have∑

bi∈Bint
Vbi

+
∑

bx∈Bext
Vbx ≥ 3(V − D) . (17)

Combining (16) and (17), we re-write (15) as

3V − 3E + 2Fint − 2Bint − 5D −
∑

bx∈Bext

[
Vbx − Ebx + Fint ;bx

]
≤ −

∑
bi∈Bint

κbi
. (18)

We complete the last sum involving Bext by adding C∂ (bx ) in order to get∑
bx∈Bext

[
Vbx − Ebx + Fint ;bx + C∂ (bx )

]
=
∑

bx∈Bext
(2− κ

b̃x
) , (19)

which, substituted in (18), leads us to

3V − 3E + 2Fint − 2Bint − 2Bext − 5D ≤ −
∑

bi∈Bint
κbi
−
∑

bx∈Bext

(
C∂ (bx ) + κ

b̃x

)
(20)

from which the lemma results.

• Ccl: 5k(A) + ζ(A) ≥ 5k(A)− 5D ≥ 0 ⇒ TG(X ,Y ,Z , S ,W ,Q,T ) is a polynomial.
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Contraction/Cut rule

Theorem (Contraction/cut rule for w-colored graphs)

Let G be a rank 3 w-colored graph. Then, for a regular edge e of any of G, we have

TG = TG∨e + TG/e , (21)

for a bridge e, we have TG∨e = z8s(wq)3t2TG/e and

TG = [(x − 1)z8s(wq)3t2 + 1]TG/e ; (22)

for a trivial p-inner loop e, p = 0, 1, 2, we have

TG = TG∨e + (y − 1)z4p−7 TG/e . (23)

• Again like the proof of the contraction/deletion of Tutte, one must prove that the
subset of G divides into those which do not contains e (these will involve TG∨e) and
those which do (involving TG/e).
• Reduced to TG but not “naively” to BR;
• Several reductions.

TG(x , y , z , z−2s2, s−1, s, s−1) = T′′G(x , y , z , s) Euler characterics for the boundary
TG(x , y , z , z2z−2, z−1, z , z−1) = T′′′G (x , y , z) Combine both in a single exponent .
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Open questions

Tensor graphs have a rich combinatorics.

The coloring allows to keep track of most of the topological ingredients, like
p-bubbles or p-cells.

We have identify a rank 3 invariant on colored simplicial complex. Is it universal ?

A Rank 2 invariant extending Bollobàs-Riordan to half-edged ribbon graphs:

RG(x , y , z , s,w , t) =
∑
AbG

(x−1)r (G)−r (A)(y −1)n(A)zk(A)−Fint (A)+n(A) sC∂ (A)w o(A) t f (A),

(24)
where C∂(A) is the number of connected component of the boundary of A.

• RG(x , y , z , z−1,w , t = 1) = RG(x , y , z ,w)
• Higher D ?
• What do those objects count ? (Tutte and BR counting specific tree in the
graphs).
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Thank You for Your Attention!
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The meaning of ∂G for half-edge ribbon graphs (HERG)

• Cellular embedding: A HERG is half-edge graph G “cellularly embedded” in a surface Σ with
punctures in the following sense:
- Remove all half-edges from G we get G′ which is then cellularly embedded in Σ such that each
connected component of Σ \ G′ is homeomorphic either to a disc or to discs with holes;
- Each of the half-edges of G is embedded in Σ and ends on a different puncture (but can be on
the same boundary circle).

Figure: A half-edged graph, some possible cellular embeddings in punctured
surfaces (a sphere top, a torus bottom) and corresponding HERGs (in bold).

- A closed face f corresponds to a component homeomorphic to a disc or to a disc with holes in
Σ \ G such that ∂Σ ∩ f = ∅. If ∂Σ ∩ f 6= ∅, then it is an external face.
- An additional closed face introduced by the pinching corresponds to a component
homeomorphic to a disc or to a disc with holes only after capping off some punctures in Σ. Thus
pinching a HERG corresponds exactly to capping some puncture in Σ.
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Multivariate form

The multivariate form associated with T is defined by:

T̃G(x , {βe}, {zi}i=1,2,3, s,w , q, t) (25)

=
∑
AbG

xr (A)(
∏
e∈A

βe)z
Fint (A)
1 z

Bint (A)
2 z

Bext (A)
3 sC∂ (A) wF∂ (A)qE∂ (A)t f (A) ,

for {βe}e∈E labeling the edges of the graph G.
• Relation with Gurau polynomial but only on rank 3 stranded colored graph:

T̃G(x , {βe}, z1, z2, z3 = 1, s,w , q, t) = GG(x , {βe}, z1, z2, s, q,w , t) , (26)

Joseph Ben Geloun (AEI, MPI) Polynomial Invariants on Stranded Graphs 33 / 33


	Introduction: From ``Tutte to Tensor'' polynomials
	Stranded graph structures
	Polynomial invariants on rank 3 weakly colored stranded graph
	Conclusion: Open questions

