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COMBINATORIAL OBJECTS

Permutations: A reordering of the integers . 
 is a permutation of length 

12⋯n
25314 5

Words: Given an alphabet, say , we consider 
all finite strings, such as 

{a, b, c}
bbacbaac

Standard Young Tableaux: Increasing rows, increasing columns

1 1 2 1

2

1 2

3

1 3

2

1 2 3 1

2

3

1 3 7 12

2 6 9

4 10 11

5 13

A combinatorial set is a set of objects with an associated size function 
such that there are finitely many objects of each size



ENUMERATIVE COMBINATORICS

FindStat: www.findstat.org 
Database for information on and connections 
between combinatorial objects

Counting how many objects are of a given size

Generate larger objects from smaller instances

Sample objects uniformly at random

Find bijections to other objects

To answer these we 
need to understand the 
structure of the objects

http://www.findstat.org


WALKING IN THE PLANE

We can build a path by 
appending either  or  
to a shorter one

0 1

We start with a simple example: Walks in the plane consisting of NE, and SE steps
y

x

110100010010111
Generating functions: Quick introduction 

A

{ε} 0A

{0} A

1A

{1} A



WALKING IN THE PLANE

If we are interested in a counting sequence  
we can “store” it in the formal power series

(a0, a1, a2, a3, …, an, …)

A(x) = a0 + a1x + a2x2 + a3x3 + ⋯ + anxn + ⋯

This is the generating function of the counting sequence

The constant sequence  has the generating function(1,1,1,1,1,1,…)

The Fibonacci numbers  have the generating function(1,1,2,3,5,8,…)

1 + x + x2 + x3 + x4 + x5 + ⋯ =
1

1 − x

1 + x + 2x2 + 3x3 + 5x4 + 8x5 + ⋯ =
1

1 − x − x2



WALKING IN THE PLANE

We start with a simple example: Walks in the plane consisting of NE, and SE steps
y

x

110100010010111
Generating functions 
A(x) = 1 + xA(x) + xA(x)

Solve to get 

A(x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + 16x4 + ⋯

The structural description also allows us to 
generate objects, sample them, and perhaps 
find bijections 

A

{ε} 0A

{0} A

1A

{1} A

We can build a path by 
appending either  or  
to a shorter one

0 1



WALKING IN THE PLANE, WITH AVOIDANCE

We consider the same walks, but require they avoid consecutive 01

The root node 
splits into three 
cases as before

Here we do not need to 
worry about the initial  
contributing to an 
occurrence of 

1

01

However, at 
node  we need 
to consider the 
next step

B

A

{ε} 0A

{0} 00A

{0} 0A

01A

∅

1A

{1} A

$

%

'

%

&

$

We now move to the symbolic world



WALKING IN THE PLANE, CROSSING TO SYMBOLICS

A = 1 + B + C

B = x + D + 0 C = x ⋅ A

D = x ⋅ B

This is a combinatorial specification: 
Every term used appears exactly once 
as a left hand side (and the operations 
“make sense”)

We can 
easily solve 
for the root, 

, to getA

A(x) =
1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + ⋯

A

{ε} 0A

{0} 00A

{0} 0A

01A

∅

1A

{1} A

$

%

'

%

&

$



GENERATING FUNCTIONS AND ASYMPTOTIC ESTIMATION

Analytic Combinatorics: Treat the generating function as a complex function

1
1 − x − x2

= 1 + x + 2x2 + 3x3 + ⋯

The Fibonacci numbers

Have a pole at  giving us the exponential growth rate x =
5 − 1
2

( 2

5 − 1 )
n

= ( 5 + 1
2 )

n



THE PIPELINE, AND THE GAP

STRUCTURAL DESCRIPTION OF 
YOUR SET OF OBJECTS

SYSTEM OF EQUATIONS WHERE 
TERMS ARE GENERATING 

FUNCTIONS

ASYMPTOTIC ESTIMATES

EXACT ENUMERATION

Symbolic combinatorics

Analytic combinatorics
Algebraic methods: 
Gröbner bases 
Resultants 
Guess-and-check

ORIGINAL 
PROBLEM 

DEFINITION

?



AN ATTEMPT TO FILL THE GAP: COMBINATORIAL EXPLORATION

Why did we consider the first letter in the walks?

A

{ε} 0A 1A

A

{ε} A 0 A 1

Why not consider both, and build a universe of relations between combinatorial objects?

That’s what we do: Given strategies written by the user, apply them in every possible way 
to all available objects and build a massive universe of relations. So far we have only seen 
one type of strategy: Batch strategies, which break an object into cases, or factors

For the domain of permutation patterns, we’ll see other types of strategies



THE ROOTS OF PATTERN AVOIDING PERMUTATIONS

In an exercise in Chapter 2 of Knuth’s 
The Art of Computer Programming we 
are asked to enumerate 
permutations that avoid .132

In this definition of avoidance we do 
not require entries to be adjacent

x

y
The permutation 41257368

4

1
2

5

3

7
6

8

This permutation does not avoid . It contains 
many copies of . For example in the subsequence .

132
132 273



ANSWERING KNUTH’S QUESTION

Usually, this is done as follows: Consider a non-empty 
permutation  that avoids . The maximum element 
of , call it , is somewhere

π 132
π n

π = L n R Of course  and  must avoid . In addition, 
every entry of  should be greater than 
every entry of R.

L R 132
L

∼= ∼= ∼= ∼=

 empty, or 
non-empty
π

Place 
topmost point

Reduce an 
obstruction

Infer
Row-separate

Factor

Now, without handwaving

A = 1 + xA2



TILINGS

A tiling is a triple , where 
 are the dimensions, 

 are the obstructions, and 
 are the requirements

((n, m), 𝒪, ℛ)
(n, m)
𝒪
ℛ

The tiling represents the set of (gridded) 
permutations that can be drawn on the 
tiling, without containing any obstruction, 
while containing every requirement

4
2

3
1

56

7
Here we get the permutation 

, although, strictly speaking 
we should also write the coordinate of 
each point

6423751



MOVING TO THE COMPUTER

∼= ∼= ∼= ∼=



LET´S DO IT!



Av(1243,1342,2143) =

 empty, or 
non-empty
π

 avoids  
or contains
π 12

The  has 
been placed, in 
a forced way, 
followed by 
row and 
column 
separation

12

Factor

Recursion!

Right cell 
empty, or 
non-empty

A

B

∼=

∼=B

A

∼=

∼=B

Place the 
leftmost point 
in the cell

Factor



WHY PATTERN AVOIDING PERMUTATIONS?

Short answer: My PhD supervisor told me to

Real answer:  They are equivalent to many other objects in discrete mathematics

Smooth Schubert varieties (type ) = A Av(3412,4231)

Stack sortable permutations (Knuth) = Av(132)

Rooted non-separable planar maps = permutations avoiding generalized patterns

There is a sharp jump in difficulty from the problem we considered ( ) to 
avoiding longer patterns, for example no one knows how to count , and 
Zeilberger even claimed that not even God knows how many permutations of 
length  avoid .

Av(132)
Av(1324)

1000 1324

So in recent decades the focus has been on enumerating permutations avoiding 
several patterns of length .4



COMBINATORIAL EXPLORATION: SUCCESSES

The testing ground for new approaches has been the set of permutations 
avoiding two length  patterns. A total of 56 problems4

Wikipedia page: Enumerations of specific permutation classes

https://en.m.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4


COMBINATORIAL EXPLORATION: SUCCESSES

 

3RO\QRPLDO
FODVVHV

)LQLWHO\ ODEHOHG
JHQHUDWLQJ WUHH

7HPSODWHV

6WUXFW�FRYHU
YHULILHG

5HJXODU LQVHUWLRQ
HQFRGLQJ

)LQLWH HQXPHUDWLRQ
VFKHPH �=HLOEHUJHU�

6FDQQLQJ HOHPHQWV
DOJRULWKP

)LQLWHO\ PDQ\
VLPSOH SHUPXWDWLRQV

)LQLWH HQXPHUDWLRQ
VFKHPH �9DWWHU�

)OH[LEOH ILQLWH
HQXPHUDWLRQ VFKHPH7LOHVFRSH

About a month ago we were finally able to complete the last of the 56 problems, by finding 
a tree for , which had 888 nodes and took 4 days on a very powerful computer. 
That class was done in 2018 by humans but has not been published, besides on the arXiv

Av(1432,2143)

For every one of these successes we can write down a system of equations, sometimes 
in several variables. We have always been able to solve when there is a single variable, 
but when there are more we can turn the solution into a polynomial time algorithm for 
the counting sequence

A set of strategies for searching 
for the structure of simple 
permutations was implemented 
in Arnar Arnarson’s MSc thesis, 
who graduated June 2019.

https://en.m.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4


 FIRST ENUMERATED BY BEVAN IN 2016Av(4213,3421)



FUSION TREE

Fusion!
(Not all obstructions 
drawn on these tilings)

In the tree the fused 
tiling recurses to a node higher 
in the tree. This ignores the fact 
that to count the fused tiling 
using the unfused one we need to 
know the number of points in 
the decreasing run



TRACKED TREE

We start a new search, that restricts the space to 
“colored tilings” with the same underlying regular tiling. 
This is done to limit an explosion in the search space

At the end of a fusion step we color 
the region that needs to be tracked. 
This is now a different node than the 
uncolored tiling higher in the tree, 
so now there is no recursion, and the 
searcher needs to keep working on 
the colored tiling, eventually working 
out how the added color interacts 
with the rest of the tree



TURNING THE TREE INTO RECURRENCE RELATIONS

This gives a polynomial time algorithm to create terms 
in the counting sequence. We can then use the terms 
to guess a generating function, and verify it against the 
system of equations it is supposed to satisfy. This is 
called guess-and-check.

This was implemented in Unnar Erlendsson’s MSc 
thesis. He graduated June 2019.



COMBINATORIAL EXPLORATION: WRAPPING UP

The algorithm is guaranteed to find a combinatorial specification if 
it exists in the universe. As we’ll see later, sometimes the universe 
contains the answer to your question without having any combinatorial 
specification.

We have implemented a framework, https://pypi.org/project/comb-spec-searcher/ 
in Python, which takes care of all the searching, and book-keeping. To use it for permutation patterns 
we implemented tilings https://pypi.org/project/tilings to encode our objects and strategies. 
These are both open source.

If you want to use the framework you need to implement a representation of your 
favourite combinatorial sets, and strategies to manipulate them. There is a readme at the 
CombSpecSearcher link above that goes through a basic example of how to do 
consecutive pattern avoidance in words.

(This assumes you have implemented sane strategies)

https://pypi.org/project/comb-spec-searcher/
https://pypi.org/project/tilings


PRODUCTIVE STRATEGIES IMPLY PRODUCTIVE PROOF TREES



TRACKING STATISTICS?

A tree tracking inversions in Av(132)

This will be part of current PhD student 
Emile Nadeau’s thesis. Watch this space! 
Hopefully, “mesh” statistics as well.



ARTIFICIAL INTELLIGENCE?

Not in the current open implementation. There is an MSc student, Ragnar Ardal, graduating 
in January 2020, who has implemented proof-number-search for choosing “good tilings” in 
the universe to work on. It has shown great promise for many classes, sometimes reducing 
The search time by a factor of 10. It does also get stuck searching down paths that will never 
lead to a success. In those cases the current naive brute-force breadth first search is faster.

This is the first tool we try to add from AI



OTHER DOMAINS: SET PARTITIONS

We advised an undergraduate project 
which looked at applying our framework 
to pattern avoiding set partitions. 
 
You can see many results on ComboPal.

http://combopal.ru.is


OTHER DOMAINS: POLYOMINOES

All polyominoes: ???



OTHER DOMAINS: ALTERNATING SIGN MATRICES (ASM)
n−1∏

k=0

(3k + 1)!

(n+ k)!

Combinatorial specifications forests …

All ASMs:



OTHER DOMAINS AND THE FUTURE

What are other good domains? Necessary properties

• Many (infinite) problems of a similar type 

• Some way of representing the state in code 

• Strategies that can be coded

Future

• Can find bijections if two inputs have isomorphic proof trees 

• Turning the output into human-readable text 

• Random sampling of objects 

• Proving formally (in Coq, LEAN, …) the underlying framework, and 
that the output of a strategy is correct. This would formally verify 
any proof tree we produce


