Joint work with Michael Albert (NZ) Arnar Arnarson (ICE) Ragnar Árdal (ICE > Bloomberg) Anders Claesson (ICE) Unnar Erlendsson (ICE > Google) Tomas Magnusson (ICE > Google) Émile Nadeau (ICE) Jay Pantone (US) Henning Ulfarsson (ICE)

CHRISTIAN BEAN, REYKJAVIK UNIVERSITY > UNIVERSITÉ PARIS 13

COMBINATORILL EXPLORATION: GUIDED BY HUMANS, PROVEN BY COMPUTER

LIPN, UNIVERSITÉ PARIS 13, SÉMINAIRÉ DE COMBINATOIRE, DECEMBER 3,2019

Permutations: A reordering of the integers $12 \cdots n$.
25314 is a permutation of length 5

Words: Given an alphabet, say $\{a, b, c\}$, we consider all finite strings, such as bbacbaac

Standard Young Tableaux: Increasing rows, increasing columns

1 \begin{tabular}{|l|l|}
\hline 1 \& 2

\hline

\hline 1

\hline 2

\hline
\end{tabular}

1	2
3	

1	3
2	

1	2	3

1
2
3

1	3	7	12
2	6	9	
4	10	11	
5	13		

A combinatorial set is a set of objects with an associated size function such that there are finitely many objects of each size

ENUMERATIVE COMBINATORICS

FindStat: www.findstat.org
Database for information on and connections between combinatorial objects

Counting how many objects are of a given size

Generate larger objects from smaller instances
Sample objects uniformly at random
Find bijections to other objects

To answer these we need to understand the structure of the objects

Gelfand-Tsetlin patterns

WALKING IN THE PLANE

We start with a simple example: Walks in the plane consisting of NE, and SE steps

We can build a path by appending either 0 or 1 to a shorter one

Generating functions: Quick introduction

WALKING IN THE PLANE

If we are interested in a counting sequence $\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right)$
we can "store" it in the formal power series

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
$$

This is the generating function of the counting sequence

The constant sequence $(1,1,1,1,1,1, \ldots)$ has the generating function

$$
1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots=\frac{1}{1-x}
$$

The Fibonacci numbers $(1,1,2,3,5,8, \ldots)$ have the generating function

$$
1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\cdots=\frac{1}{1-x-x^{2}}
$$

WALKING IN THE PLANE

We start with a simple example: Walks in the plane consisting of NE, and SE steps

We can build a path by appending either 0 or 1 to a shorter one

Generating functions
$A(x)=1+x A(x)+x A(x)$

Solve to get
$A(x)=\frac{1}{1-2 x}=1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+\cdots$

The structural description also allows us to generate objects, sample them, and perhaps find bijections

WALKING IN THE PLANE, WITH AVOIDANCE

We consider the same walks, but require they avoid consecutive 01

GENERATING FUNCTIONS AND ASYMPTOTIC ESTIMATION

Analytic Combinatorics: Treat the generating function as a complex function

The Fibonacci numbers

$$
\frac{1}{1-x-x^{2}}=1+x+2 x^{2}+3 x^{3}+\cdots
$$

Have a pole at $x=\frac{\sqrt{5}-1}{2}$ giving us the exponential growth rate

$$
\left(\frac{2}{\sqrt{5}-1}\right)^{n}=\left(\frac{\sqrt{5}+1}{2}\right)^{n}
$$

THE PIPELINE, AND THE GAP

STRUCTURAL DESCRIPTION OF YOUR SET OF OBJECTS

ORIGINAL PROBLEM DEFINITION

Symbolic combinatorics

STSIEM OF EQUATIONS WHERE TERMS ARE GENERATING FUNCTIONS

EXACT ENUMERATION

AN ATTEMPT TO FILL THE GAP: COMBINATORIAL EXPLORATION

Why did we consider the first letter in the walks?

Why not consider both, and build a universe of relations between combinatorial objects?

That's what we do: Given strategies written by the user, apply them in every possible way to all available objects and build a massive universe of relations. So far we have only seen one type of strategy: Batch strategies, which break an object into cases, or factors

For the domain of permutation patterns, we'll see other types of strategies

THE ROOTS OF PATTERN AVOIDING PERMUTATIONS

In an exercise in Chapter 2 of Knuth's The Art of Computer Programming we are asked to enumerate permutations that avoid 132.

In this definition of avoidance we do not require entries to be adjacent

The permutation 41257368

This permutation does not avoid 132. It contains many copies of 132 . For example in the subsequence 273.

ANSWERING KNUTH'S QUESTION

Usually, this is done as follows: Consider a non-empty permutation π that avoids 132. The maximum element of π, call it n, is somewhere

$$
\pi=\Omega n R \quad \begin{aligned}
& \text { Of course } L \text { and } R \text { must avoid } 132 \text {. In addition, } \\
& \begin{array}{l}
\text { every entry of } L \text { should be greater than } \\
\text { every entry of } R .
\end{array}
\end{aligned}
$$

Now, without handwaving

A tiling is a triple $((n, m), \mathcal{O}, \mathscr{R})$, where (n, m) are the dimensions, \mathcal{O} are the obstructions, and
\mathscr{R} are the requirements

The tiling represents the set of (gridded) permutations that can be drawn on the tiling, without containing any obstruction, while containing every requirement

Here we get the permutation
6423751, although, strictly speaking we should also write the coordinate of each point

MOVING TO THE COMPUTER

Tiling(

Tiling(

obstructions=(
Obstruction(Perm(0), ((0,1),)), Obstruction(Perm(0), ((1,0),)),
obstructions=(Obstruction(Perm(0), ((2,1),)), Obstruction(Perm(0,1), ((0,0), $(2,0)))$, Obstruction(Perm(0,1), ((1,1), (1,1))), Obstruction(Perm(1,0), ((1,1), (1, 1))), Obstruction(Perm($0,2,1),((0,0),(0,0),(0,0)))$, Obstruction(Perm(0,2,1), ((2,0), $(2,0),(2,0)))$
requirements=()
)
),
requirements=(
(Requirement(Perm(0), ((1,1))))
)
Obstruction(Perm($0,2,1),((0,0),(0,0),(0,0)))$
)
)

Tiling(

obstructions=(

Obstruction(Perm(0,2,1), ((0,0), (0,0), (0,0)))
),
requirements=(
(Requirement(Perm(0), ((0,0))))
)
)

combrunner 132 point_placements

Initialising CombSpecSearcher for the combinatorial class:
+-+
|1|
+-+
1: Av(021)
Crossing obstructions:
Looking for recursive combinatorial specification with the strategies:
Inferral: row_and_column_separation, obstruction_transitivity
Initial: factor, requirement_corroboration
Verification: subset_verified, globally_verified
Set 1: all_cell_insertions
Set 2: requirement_placement

WHY PATTERN AVOIDING PERMUTATIONS?

Short answer: My PhD supervisor told me to

Real answer: They are equivalent to many other objects in discrete mathematics

Smooth Schubert varieties (type $A)=\operatorname{Av}(3412,4231)$

Stack sortable permutations (Knuth) $=\operatorname{Av}(132)$

Rooted non-separable planar maps = permutations avoiding generalized patterns

There is a sharp jump in difficulty from the problem we considered $(\operatorname{Av}(132))$ to avoiding longer patterns, for example no one knows how to count $\operatorname{Av}(1324)$, and Zeilberger even claimed that not even God knows how many permutations of length 1000 avoid 1324.

So in recent decades the focus has been on enumerating permutations avoiding several patterns of length 4.

COMBINATORIAL EXPLORATION: SUCCESSES

The testing ground for new approaches has been the set of permutations avoiding two length 4 patterns. A total of 56 problems

Wikipedia page: Enumerations of specific permutation classes

B	sequence enumerating $A v_{n}(B)$	OEIS	type of sequence	exact enumeration reference	insertion encoding is regular
4321, 1234	$\begin{aligned} & 1,2,6,22,86,306 \\ & 882,1764, \ldots \end{aligned}$	A206736	finite	Erdős-Szekeres theorem	\checkmark
4312, 1234	$\begin{aligned} & 1,2,6,22,86,321, \\ & 1085,3266, \ldots \end{aligned}$	A116705	polynomial	Kremer \& Shiu (2003)	\checkmark
4321, 3124	$\begin{aligned} & 1,2,6,22,86,330, \\ & 1198,4087, \ldots \end{aligned}$	A116708	rational g.f.	Kremer \& Shiu (2003)	\checkmark
4312, 2134	$\begin{aligned} & 1,2,6,22,86,330, \\ & 1206,4174, \ldots \end{aligned}$	A116706	rational g.f.	Kremer \& Shiu (2003)	\checkmark
4321, 1324	$\begin{aligned} & 1,2,6,22,86,332, \\ & 1217,4140, \ldots \end{aligned}$	A165524	polynomial	Vatter (2012)	\checkmark
4321, 2143	$\begin{aligned} & 1,2,6,22,86,333, \\ & 1235,4339, \ldots \end{aligned}$	A165525	rational g.f.	Albert, Atkinson \& Brignall (2012)	
4312, 1324	$\begin{aligned} & 1,2,6,22,86,335 \\ & 1266,4598, \ldots \end{aligned}$	A165526	rational g.f.	Albert, Atkinson \& Brignall (2012)	
4231, 2143	$\begin{aligned} & 1,2,6,22,86,335, \\ & 1271,4680, \ldots \end{aligned}$	A165527	rational g.f.	Albert, Atkinson \& Brignall (2011)	
4231, 1324	$\begin{aligned} & 1,2,6,22,86,336 \\ & 1282,4758, \ldots \end{aligned}$	A165528	rational g.f.	Albert, Atkinson \& Vatter (2009)	
4213, 2341	$\begin{aligned} & 1,2,6,22,86,336 \\ & 1290,4870, \ldots \end{aligned}$	A116709	rational g.f.	Kremer \& Shiu (2003)	\checkmark
4312, 2143	$\begin{aligned} & 1,2,6,22,86,337, \\ & 1295,4854, \ldots \end{aligned}$	A165529	rational g.f.	Albert, Atkinson \& Brignall (2012)	
4213, 1243	$1,2,6,22,86,337,$ 1299. 4910	A116710	rational g.f.	Kremer \& Shiu (2003)	\checkmark

COMBINATORIAL EXPLORATION: SUCCESSES

A set of strategies for searching for the structure of simple permutations was implemented in Arnar Arnarson's MSc thesis, who graduated June 2019.

About a month ago we were finally able to complete the last of the 56 problems, by finding a tree for $\operatorname{Av}(1432,2143)$, which had 888 nodes and took 4 days on a very powerful computer. That class was done in 2018 by humans but has not been published, besides on the arXiv

For every one of these successes we can write down a system of equations, sometimes in several variables. We have always been able to solve when there is a single variable, but when there are more we can turn the solution into a polynomial time algorithm for the counting sequence

pypy3 guided_search.py 4213_3421

Initialising CombSpecSearcher for the combinatorial class:
+-+
|1|
+-+
1: Av(2310, 3102)
Crossing obstructions:
Looking for recursive combinatorial specification with the strategies:
Inferral: row_and_column_separation, obstruction_transitivity
Initial: factor, requirement_corroboration, fusion
Verification: verify_points
Using forward equivalence only.
Set 1: row_placements, col_placements

FUSION TREE

(Not all obstructions drawn on these tilings)

In the tree the fused
tiling recurses to a node higher in the tree. This ignores the fact that to count the fused tiling using the unfused one we need to know the number of points in
the decreasing run

TRACKED TREE

We start a new search, that restricts the space to "colored tilings" with the same underlying regular tiling. This is done to limit an explosion in the search space


```
def F_252(n,c0):
    # Fuse columns 1 and 2|1|.~[0: ]~
    if n < c0:
        return 0
    if c0<0:
        return 0
    if n < 0:
        return 0
    if (n,c0) in mem['F_252']:
        return mem['F_252'][(n,c0)]
    ans = 0
    lmin = max((0,))
    rmin = max((0,c0))
    bmin = max((0, ))
    lmax = min((n, ))
    rmax = min((n,c0))
    bmax = min((n, ))
    for l in range(lmin, lmax+1):
        for r in range(rmin, rmax+1):
        if l+r > bmax:
            break
        if bmin <= l+r:
        ans += F_106(n, c0 = l+r)
    mem['F_252'][(n,c0)] = ans
    return ans
```

01
11
22
36
422
588
6367
71571
86861
This gives a polynomial time algorithm to create terms in the counting sequence. We can then use the terms to guess a generating function, and verify it against the system of equations it is supposed to satisfy. This is called guess-and-check.

$$
\begin{array}{ll}
16 & 1401195334 \\
17 & 6678877732 \\
18 & 31984089193 \\
19 & 153809536017 \\
20 & 742462191363
\end{array}
$$

This was implemented in Unnar Erlendsson's MSc thesis. He graduated June 2019.

24415997039428899
252037323575386383
2610000024336253853
2749186129273614768
28242393790200039756
291196687427997471342
305017020133042028076

We have implemented a framework, https://pypi.org/project/comb-spec-searcher/ in Python, which takes care of all the searching, and book-keeping. To use it for permutation patterns we implemented tilings https://pypi.org/project/tilings to encode our objects and strategies. These are both open source.

If you want to use the framework you need to implement a representation of your favourite combinatorial sets, and strategies to manipulate them. There is a readme at the CombSpecSearcher link above that goes through a basic example of how to do consecutive pattern avoidance in words.

The algorithm is guaranteed to find a combinatorial specification if it exists in the universe. As we'll see later, sometimes the universe contains the answer to your question without having any combinatorial specification.

Definition 3. We call a k-ary strategy S a productive strategy if the following conditions hold for all combinatorial sets \mathcal{A} with corresponding decomposition $d_{S}(\mathcal{A})=\left(\mathcal{B}^{(1)}, \ldots, \mathcal{B}^{(k)}\right)$, and for all $i \in$ $\{1, \ldots, k\}$. Once again, we use the phrase " \mathcal{A}_{n} relies on $\mathcal{B}_{j}^{(i)}$ " or the diagram $\mathcal{A}_{n} \rightarrow \mathcal{B}_{j}^{(i)}$ as a simplified way of stating the formal information contained in the reliance profile function of S, namely that $j \in$ $\left(r_{S}(n)\right)_{i}$.

1. If \mathcal{A}_{n} relies on $\mathcal{B}_{j}^{(i)}$, then $n \geq j$.
2. \mathcal{A} is not equinumerous to $\mathcal{B}^{(i)}$.
3. If \mathcal{A}_{n} relies on $\mathcal{B}_{n}^{(i)}$, then $\left|\mathcal{A}_{n}\right| \geq\left|\mathcal{B}_{n}^{(i)}\right|$.
4. If \mathcal{A}_{n} relies on $\mathcal{B}_{n}^{(i)}$ for some n, then \mathcal{A}_{N} relies on $\mathcal{B}_{N}^{(i)}$ for all $N \in \mathbb{N}$.

Theorem 3. Let P be a proof tree, or the equivalent combinatorial specification, composed entirely of productive strategies. Then P is a productive proof tree, or equivalently a productive combinatorial specification.

$$
\left.\begin{array}{l}
A(n, k)=B(n, k)+C(n, k) . \\
B(n, k)= \begin{cases}1 & \text { if } n=k=0 \\
0 & \text { otherwise }\end{cases} \\
C(n, k)=\sum_{\substack{n_{1}+n_{2}=n-1 \\
\ell_{1} \cdot \ell_{2}+k_{1}+k_{2}=k}} F\left(n_{1}, k_{1}, \ell_{1}\right) \cdot G\left(n_{2}, k_{2}, \ell_{2}\right)
\end{array}\right\} \begin{array}{ll}
F(n, k, \ell)= \begin{cases}A(n, k) & \text { if } n=\ell \\
0 & \text { otherwise }\end{cases} \\
G(n, k, \ell)= \begin{cases}A(n, k-n) & \text { if } n=\ell \\
0 & \text { otherwise }\end{cases}
\end{array}
$$ Emile Nadeau's thesis. Watch this space! Hopefully, "mesh" statistics as well.

ARTIFICIAL INTELLIGENCE?

Not in the current open implementation. There is an MSc student, Ragnar Ardal, graduating in January 2020, who has implemented proof-number-search for choosing "good tilings" in the universe to work on. It has shown great promise for many classes, sometimes reducing The search time by a factor of 10 . It does also get stuck searching down paths that will never lead to a success. In those cases the current naive brute-force breadth first search is faster.

This is the first tool we try to add from Al

Set Partitions avoiding 1223,1231,1233,1234

Proof tree for set partitions avoiding 1223,1231,1233,1234

We advised an undergraduate project which looked at applying our framework to pattern avoiding set partitions.

You can see many results on ComboPal.

$$
\begin{aligned}
F & =1+x+x \cdot G \\
G & =x+x \\
\Rightarrow G & =\frac{x}{1-x} \\
\Rightarrow F & =1+x+\frac{x^{2}}{1-x} \\
& =\frac{1}{1-x}
\end{aligned}
$$

OTHER DOMAINS: ALTERNATING SIGN MATRICES (ASM)

OTHER DOMAINS AND THE FUTURE

What are other good domains? Necessary properties

- Many (infinite) problems of a similar type
- Some way of representing the state in code
- Strategies that can be coded

Future

- Can find bijections if two inputs have isomorphic proof trees
- Turning the output into human-readable text
- Random sampling of objects
- Proving formally (in Coq, LEAN, ...) the underlying framework, and that the output of a strategy is correct. This would formally verify any proof tree we produce

