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Finite automata : models of decision algorithms that require a
finite memory.
Examples :

To test whether a binary number is a multiple of 3 or not.
But to test whether a word can be decomposed as 1n0n requires to
remember the numbers of 0’s and 1’s already red.

In practice
Pattern matching
Lexical analysis of a text
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Finite automata

A finite automatonA is

a directed finite graph

whose edges are labelled on a finite alphabet

with a setI of initial states (or vertices)

and a setF of final states

Thelanguage recognizedby a finite automaton is the set of the
labels of the paths from any initial state to any final state.

Regular languagesare the languages recognized by a finite
automaton (the sets of words that label the successfull paths in a
finite automaton).
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Example
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An automaton for the binary expansions of the multiples of 6.

The state 0 is the initial and final state.

Expansions are red most signicant digit first.
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Regular languages and minimal automata

To each regular language, one can associate in a unique way its
minimal automaton.
An automaton isdeterministicandcomplete

if it has only one initial state

and if for any stateq and for any letterℓ, there exists exactly one
an edge labelledℓ starting fromq.

Theminimal automaton of a regular language is the complete and
deterministic automaton with the minimal number of states that
recognizes this language.
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The minimal automaton of the multiples of 6
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Minimal automaton of the binary expansions of the multiplesof 6.

The state 0 is the initial and final state.

Expansions are red most significant digit first.
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Problem

Enumeration and random generation of regular languages counted by
the size of their minimal automaton.

Goal

To analyze the average space complexity of algorithms handling
regular languages, the space complexity of a regular language being
the number of states of its minimal automaton.

For example, estimate the average size of the intersection of two
regular languages.
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Accessible complete and deterministic automata

Problem

Uniform random generation of accessible complete and deterministic
automata withn states (on a finite alphabet).

An automaton isaccessible (or initially connected)if any state
can be reached from an initial state.

Experimentally,
85% of accessible automata on a 2-letter alphabet are minimal,
this proportion grows fast with the size of the alphabet.

Conjecture : Asymptotically a constant proportion of accessible
complete and deterministic automata are minimal.
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From automata to transition structures

An accessible complete and deterministic automaton is transformed
into a transition structure by

not taking into account the final states

labelling the states using a depth first algorithm with respect to
the lexicographical order.
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A complete and deterministic transition structure corresponds to 2n

(choice of final states) non-isomorphic automata withn states.
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k-Dyck boxed diagrams

A diagramof width m and heightn is a sequence(x1, . . . , xm) of
weakly increasing nonnegative integers such thatxm = n.

A k-Dyck diagramof sizen is a diagram of width(k − 1)n + 1
and heightn such thatxi ≥ ⌈i/(k − 1)⌉ for eachi ≤ (k − 1)n.

(1,1,2,4,4)

Diagram of width 5 and height 4

(1,3,3,4,4)

2-Dyck diagram of size 4
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k-Dyck boxed diagrams

A boxed diagramis a pair of sequences
((x1, . . . , xm), (y1, . . . , ym)) where(x1, . . . , xm) is a diagram and
for eachi ∈ [[ 1..m ]], theyith box of the columni of the diagram
is marked.

A diagram gives rise to
∏m

i=1 xi boxed diagrams.

(1,1,2,4,4)
(1,1,2,1,3)

A boxed diagram

(1,1,2,2,4)
(1,3,3,4,4)

A 2-Dyck boxed diagram

Frédérique Bassino Random generation of deterministic automata



Introduction
Random generation

Experimental results and Open problems

1st bijection
2nd bijection
Random generation

Transition structures andk-Dyck boxed diagrams

Theorem

The set of accessible, complete and deterministic transition structures
of size n on a k-letter alphabet is in bijection with the set Dn of
k-Dyck boxed diagrams of size n.
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From transition structures tok-Dyck boxed diagrams

Build from the initial state a spanning tree using a depth first
algorithm with respect to the lexicographical order,
Encode each transition which is not in the tree as a column

whose height is equal to the number of states of the automaton
that are already in the tree
whose marked box corresponds to the state in which arrives this
transition.
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Fromk-Dyck boxed diagrams to transition structure

1

Create the initial state
cpt < x1, create a
state
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Fromk-Dyck boxed diagrams to transition structure

1

Create the initial state
cpt < x1, create a
state

1

2

cpt = x1, create an
edge
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Fromk-Dyck boxed diagrams to transition structure

1

Create the initial state
cpt < x1, create a
state

1

2

cpt = x1, create an
edge

1

2

cpt < x2, create a
state
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Fromk-Dyck boxed diagrams to transition structure

1

Create the initial state
cpt < x1, create a
state

1

2

cpt = x1, create an
edge

1
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cpt < x2, create a
state
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cpt = x2, create an
edge
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cpt = x3, create an
edge
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cpt = x4, create an
edge
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Theorem

The set of boxed diagrams of width m and height n is in bijection with
the set of set partitions of n + m elements into n non-empty subsets.
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Theorem

The set of boxed diagrams of width m and height n is in bijection with
the set of set partitions of n + m elements into n non-empty subsets.

Add n boxed columns(ci)1≤i≤n of heighti at the left most
position that satisfies the weakly increasing condition
Mark their highest box

m m + n

n n

From a boxed diagram to the set partition
{{1, 3, 6}, {2, 5}, {4, 10}, {7, 9, 11}, {8}}
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Random generation

Partitions Boxed
diagrams

k-Dyck
boxed diag.

determin.
automata

minimal
automata

Boltzmann sampler

O(n3/2)

O(n) O(n)O(n)

reject

?

reject

Theorem (Bassino, Nicaud 2007)

The average time complexity of the uniform generation of complete
deterministic and accessible automaton with n states using a
Boltzmann sampler is O(n3/2).
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Theorem (Korshunov 1978)

The number of accessible complete and deterministic automata with n
states on a k-letter alphabet is asymptotically equals to

Ck n 2n {

kn
n

}

where
1
2

< Ck < 1.

Corollary

The probability for a boxed diagram of width (k − 1)n and height n to
satisfy the k-Dyck condition is asymptotically equal to Ck.
The average number of rejects is 1/Ck (less than 2).
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Boltzmann samplers
(Duchon, Flajolet, Louchard and Schaeffer 2004)

A Boltzmann sampler generates objects with a probabilty
distributionPx(γ) = C x|γ|

|γ|! or (Cx|γ|)

The generated objects do not have a fixed size, but two objectsof
the same size have the same probability to be generated.

The parameterx is chosen depending upon the average size
required.

A rejection algorithm can be used to generate objects of fixed
size.

Almost no precalculus, small memory space used.
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Boltzmann samplers

Goal

To uniformly generate at random set partitions of a set withkn
elements inton nonempty subsets.

Partition inton non-empty subsets = set ofn non-empty sets

Exponential generating function counting non-empty sets
according to their cardinality :N(z) = ez − 1.

In the Boltzmann model, the size of each of then subsets follows
a Poisson law of parameterx : Px(|γ| = s) = 1

(ex−1)
xs

s! .

The average size of the generated partition is

Ex(size of partitions) = n x
ex

ex − 1
.

Ex(size of partitions) = kn for x = ζk. (saddle point of
{

kn
n

}

)
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Boltzmann samplers

Generate the size of each of then subsets following a Poisson
law of parameterx = ζk (linear complexity).

The probability for the generated partition to be of size exactly

kn is asymptoticallyO
(

1√
n

)

.

The average number of rejects isO(
√

n).

Draw a random partition of{1, . . . , kn} to label the struture
(linear complexity)

The average time complexity isO(n3/2)
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Proportion of minimal automata

Taille 100 500 1 000 2 000 5 000
minimaux 85.06 % 85.32 % 85.09 % 85.42 % 85.32 %

Tests made with theC++ library REGAL.
Tests made with 20 000 automata of each size and a binary
alphabet.
The proportion of minimal automata grows with the cardinality
of the alphabet.
Random generation algorithm for minimal automata using a
rejection algorithm.

Open problem

Counting minimal automata
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Average time complexity of minimization algorithms

The worst-case complexity of Hopcroft’s algorithm isΘ(n logn) and
the one of Moore’s algoritm isΘ(n2). But what are their average time
complexities?
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