Combinatorial state sum invariant from categories

Aristide Baratin
LPT Orsay - CPHT Ecole Polytechnique - IPhT Saclay

Paris-Nord, April 2011

Introduction

State sum models

State sum model is a discrete functional integral on a triangulated manifold:

Introduction

State sum model is a discrete functional integral on a triangulated manifold:

- Simplicial set S of algebraic data, or states labeling each simplex. $\partial_{i}: S\left(\sigma_{n}\right) \rightarrow S\left(\sigma_{n-1}\right)$

Introduction

State sum model is a discrete functional integral on a triangulated manifold:

- Simplicial set S of algebraic data, or states labeling each simplex. $\partial_{i}: S\left(\sigma_{n}\right) \rightarrow S\left(\sigma_{n-1}\right)$
- Weights $w: S\left(\sigma_{n}\right) \rightarrow \mathbb{C}$ give an amplitude to a state

Introduction

State sum model is a discrete functional integral on a triangulated manifold:

- Simplicial set S of algebraic data, or states labeling each simplex. $\partial_{i}: S\left(\sigma_{n}\right) \rightarrow S\left(\sigma_{n-1}\right)$
- Weights $w: S\left(\sigma_{n}\right) \rightarrow \mathbb{C}$ give an amplitude to a state
- Partition function: $Z=\sum_{s \in S} \prod_{\sigma} w(s(\sigma))$

Introduction

State sum model is a discrete functional integral on a triangulated manifold:

- Simplicial set S of algebraic data, or states labeling each simplex. $\partial_{i}: S\left(\sigma_{n}\right) \rightarrow S\left(\sigma_{n-1}\right)$
- Weights $w: S\left(\sigma_{n}\right) \rightarrow \mathbb{C}$ give an amplitude to a state
- Partition function: $Z=\sum_{s \in S} \prod_{\sigma} w(s(\sigma))$
- 3D: Ponzano-Regge $\operatorname{Rep}(S U(2))$, Turaev-Viro $\operatorname{Rep}\left(U_{q}(\mathfrak{s u}(2))\right.$
- 4D: Dijkgraaf-Witten (finite groups), Ooguri $\operatorname{Rep}(S U(2))$, Crane-Yetter $\operatorname{Rep}\left(U_{q}(\mathfrak{s u}(2))\right.$
- Models of 4d quantum gravity: Barrett-Crane, EPRL-FK

Introduction

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

Introduction

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

Why state sum invariants?

Introduction

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

Why state sum invariants?

- Combinatorial construction of manifold invariants, TQFT's

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

Why state sum invariants?

- Combinatorial construction of manifold invariants, TQFT's
- Models of quantum geometry:
- Triangulation independent models of quantum geometry ? Issue tied to diffeomorphism symmetry
- 'Metric' models: explicit data on the edges of the triangulation ?

Introduction

State sum invariants: why categories?

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

1. Solution in 2D: use semi-simple associative algebra

Fukuma, Hosono, Kawai '92
2. Going up dimensions: algebra elements \rightarrow objects in a monoidal category Barrett, Westbury '93

Introduction

State sum invariants: why categories?

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

1. Solution in 2D: use semi-simple associative algebra

Fukuma, Hosono, Kawai '92
2. Going up dimensions: algebra elements \rightarrow objects in a monoidal category Barrett, Westbury '93

- Categorical miracle: Coherence laws \longleftrightarrow Pachner moves

> 'Categorification' boosts dimensions

Introduction

State sum invariants: why categories?

Constructing manifold invariants:

- Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to convert a topological problem into an algebraic one.

1. Solution in 2D: use semi-simple associative algebra

Fukuma, Hosono, Kawai '92
2. Going up dimensions: algebra elements \rightarrow objects in a monoidal category Barrett, Westbury '93

- Categorical miracle: Coherence laws \longleftrightarrow Pachner moves

> 'Categorification' boosts dimensions

- Going up to 4 dimensions: monoidal 2-categories Mackaay '99

> Need examples...

Introduction

Which 2-category?

Introduction

Which 2-category?

New set of examples: Barrett, Mackaay '04

Representation 2-category of a 2-group

Introduction

New set of examples: Barrett, Mackaay '04

Representation 2-category of a 2-group

- Finite dimensional representations on 2-Vect: Barrett, Mackaay '04
- Infinite dimensional representations on 'measurable categories' Meas: Crane, Yetter '04; Baez, AB, Freidel, Wise '08

Introduction

New set of examples: Barrett, Mackaay '04

Representation 2-category of a 2-group

- Finite dimensional representations on 2-Vect: Barrett, Mackaay '04
- Infinite dimensional representations on 'measurable categories' Meas: Crane, Yetter '04; Baez, AB, Freidel, Wise '08
- Possible relevance for models of quantum geometry: 2-Poincaré group Barrett, Mackaay '04, Crane, Sheppeard '04

Introduction

New set of examples: Barrett, Mackaay '04

Representation 2-category of a 2-group

- Finite dimensional representations on 2-Vect: Barrett, Mackaay '04
- Infinite dimensional representations on 'measurable categories' Meas: Crane, Yetter '04; Baez, AB, Freidel, Wise '08
- Possible relevance for models of quantum geometry: 2-Poincaré group Barrett, Mackaay '04, Crane, Sheppeard '04

Explicit model ? ...

Introduction

Overview

Introduction

...Yes.

1. Further development of the representation theory of measurable 2-groups
\rightarrow we can now (if not) understand, (at least) compute things.
Baez, AB, Freidel, Wise '08

Introduction

...Yes.

1. Further development of the representation theory of measurable 2-groups
\rightarrow we can now (if not) understand, (at least) compute things.
Baez, AB, Freidel, Wise '08
2. Explicit example of a state sum model using the 2-category representation of the 'Euclidean 2-group'
AB, Freidel '11; AB, Wise '09; AB '11

Introduction

...Yes.

1. Further development of the representation theory of measurable 2-groups \rightarrow we can now (if not) understand, (at least) compute things.
Baez, AB, Freidel, Wise '08
2. Explicit example of a state sum model using the 2-category representation of the 'Euclidean 2-group'
AB, Freidel '11; AB, Wise '09; AB '11
3. The model shows up in a combinatorial (state sum) reformulation of the Feynman graph amplitudes in ordinary QFT on flat Euclidean spacetime AB, Freidel ' 06

Outline

Introduction

Representation of 2-groups

The model
'Quantum flat space'

Conclusion

Outline

Introduction

Representation of 2-groups

The model

'Quantum flat space'

Conclusion

2-group representation

From groups to 2-groups

- A group is a category with a single object and all morphisms invertible.

$$
\star \xrightarrow{g_{1}} \star \xrightarrow{g_{2}} \star \quad \star \stackrel{g_{2} g_{1}}{ } \star
$$

2-group representation

From groups to 2-groups

- A group is a category with a single object and all morphisms invertible.

$$
\star \xrightarrow{g_{1}} \star \stackrel{g_{2}}{ } \star \quad=\quad \star \xrightarrow{g_{2} g_{1}} \star
$$

- A 2-group is a 2-category with a unique object such that all morphisms and 2-morphisms are invertible.

2-group representation

From groups to 2-groups

- A group is a category with a single object and all morphisms invertible.

$$
\star \xrightarrow{g_{1}} \star \xrightarrow{g_{2}} \star \quad=\quad \star \xrightarrow{g_{2} g_{1}} \star
$$

- A 2-group is a 2-category with a unique object such that all morphisms and 2-morphisms are invertible.

2-group representation

From groups to 2-groups

- A group is a category with a single object and all morphisms invertible.

$$
\star \xrightarrow{g_{1}} \star \xrightarrow{g_{2}} \star \quad=\quad \star \xrightarrow{g_{2} g_{1}} \star
$$

- A 2-group is a 2-category with a unique object such that all morphisms and 2-morphisms are invertible.

2-group data: 'crossed module' $(G, H, \triangleright, \partial)$

$$
\partial(g \triangleright h)=g \partial(h) g^{-1} \quad \partial(h) \triangleright h^{\prime}=h h^{\prime} h^{-1}
$$

2-group representation

- 2-groups allows to define 'surface holonomies' on discretized surfaces.
- Algebraic structure underlying 'higher gauge theory' see Baez, Huerta '09

2-group representation

Example: the Poincaré 2-group

- $G=\mathrm{SO}_{0}(3,1)$: the group of Lorentz transformations,
- $H=\mathbb{R}^{4}$: the group of translations of Minkowski space,
- the obvious action of $\mathrm{SO}_{0}(3,1)$ on \mathbb{R}^{4}.
- $\partial=1$ (source $=$ target)

2-group representation

From group to 2 -group representations

Groups are usually represented in the category on vector spaces.

- A representation is a functor $\rho: G \rightarrow$ Vect.

$$
\rho(*)=V, \quad V \xrightarrow{\rho(g)} V
$$

- An intertwiner is a natural transformation:

Group representations and intertwiners between these form a monoidal category.

2-group representations

A 2-group \mathcal{G} may be represented on suitable '2-vector spaces'.

- A representation is a '2- functor' $\rho: \mathcal{G} \rightarrow \mathbf{2 V e c t}$

$$
\rho(*)=V, \quad V=\frac{\rho(g)}{\Downarrow \rho(g, h)} V
$$

- An intertwiner is a 'pseudo-natural transformation'.

2-group representations

- Novelty: there are also 2-intertwiners between interwiners:

Representations of a given 2-group, intertwiners and 2-intertwiners between these, form a monoidal 2-category.

2-group representations

2-vector spaces: a flavor

ordinary linear algebra	higher linear algebra
\mathbb{C}	Vect
+	\oplus
\times	\otimes
0	$\{0\}$
1	\mathbb{C}

Kapranov and Voevodsky '94

2-group representations

2-vector spaces: a flavor

ordinary linear algebra	higher linear algebra
\mathbb{C}	Vect
+	\oplus
\times	\otimes
0	$\{0\}$
1	\mathbb{C}

Kapranov and Voevodsky '94

- Finite dimensional
- 2-vector space Vect ${ }^{N}$

2-group representations

2-vector spaces: a flavor

ordinary linear algebra	higher linear algebra
\mathbb{C}	Vect
+	\oplus
\times	\otimes
0	$\{0\}$
1	\mathbb{C}

Kapranov and Voevodsky '94

- Finite dimensional
- 2-vector space Vect ${ }^{N}$
- 'linear maps': $T:$ Vect $^{M} \rightarrow$ Vect N : matrices of vector spaces $T V_{m}=\bigoplus_{n} T_{m, n} \otimes V_{n}$

2-group representations

2-vector spaces: a flavor

ordinary linear algebra	higher linear algebra
\mathbb{C}	Vect
+	\oplus
\times	\otimes
0	$\{0\}$
1	\mathbb{C}

Kapranov and Voevodsky '94

- Finite dimensional
- 2-vector space Vect ${ }^{N}$
- 'linear maps': $T:$ Vect $^{M} \rightarrow$ Vect N : matrices of vector spaces $T V_{m}=\bigoplus_{n} T_{m, n} \otimes V_{n}$
- '2-map' $\alpha_{n, m}: T_{n, m} \rightarrow T_{n, m}^{\prime}$

2-group representations

2-vector spaces: a flavor

ordinary linear algebra	higher linear algebra
\mathbb{C}	Vect
+	\oplus
\times	\otimes
0	$\{0\}$
1	\mathbb{C}

Kapranov and Voevodsky '94

- Finite dimensional
- 2-vector space Vect ${ }^{N}$
- 'linear maps': $T:$ Vect $^{M} \rightarrow$ Vect N : matrices of vector spaces $T V_{m}=\bigoplus_{n} T_{m, n} \otimes V_{n}$
- '2-map' $\alpha_{n, m}: T_{n, m} \rightarrow T_{n, m}^{\prime}$
- Infinite dimensional Crane, Yetter '03; Baez, AB, Freidel, Wise '08
- 2-Hilbert space \mathcal{H}^{X}
- '1-map' $T: \mathcal{H}^{X} \rightarrow \mathcal{H}^{Y}$: field of Hilbert spaces $T_{y, x}+$ measures μ_{y} on X
- '2-map' $\alpha_{y, x}: T_{y, x} \rightarrow T_{y, x}^{\prime}$

Representations of 2-groups

Euclidean 2-group

Let's focus on the Euclidean 2-group \mathcal{E} :

$$
G=\mathrm{SO}(4), H=\mathbb{R}^{4}, \triangleright, \partial=1
$$

Representations of 2-groups

Euclidean 2-group: representations

A representation

is determined by:

- a space X with an action of $\mathrm{SO}(4): \quad \rho(g) \mathcal{H}_{x}=\mathcal{H}_{g x}$

Representations of 2-groups

Euclidean 2-group: representations

A representation

is determined by:

- a space X with an action of $\mathrm{SO}(4): \quad \rho(g) \mathcal{H}_{x}=\mathcal{H}_{g x}$
- an $\mathrm{SO}(4)$-equivariant map $\chi: X \rightarrow H^{*} \sim \mathbb{R}^{4}$:

$$
\rho(1, h): \mathcal{H}_{x} \rightarrow \mathcal{H}_{x}, \quad \varphi_{x} \mapsto e^{i \chi(x) \cdot h} \varphi_{x}
$$

Representations of 2-groups

Euclidean 2-group: representations

A representation

$$
G=\mathrm{SO}(4), H=\mathbb{R}^{4}
$$

is determined by:

- a space X with an action of $\mathrm{SO}(4): \quad \rho(g) \mathcal{H}_{x}=\mathcal{H}_{g x}$
- an $\mathrm{SO}(4)$-equivariant map $\chi: X \rightarrow H^{*} \sim \mathbb{R}^{4}$:

$$
\rho(1, h): \mathcal{H}_{x} \rightarrow \mathcal{H}_{x}, \quad \varphi_{x} \mapsto e^{i \chi(x) \cdot h} \varphi_{x}
$$

Geometrically: equivariant fiber bundle

Representations of 2-groups

A representation

$$
G=\mathrm{SO}(4), H=\mathbb{R}^{4}
$$

is determined by:

- a space X with an action of $\mathrm{SO}(4): \quad \rho(g) \mathcal{H}_{x}=\mathcal{H}_{g x}$
- an $\mathrm{SO}(4)$-equivariant map $\chi: X \rightarrow H^{*} \sim \mathbb{R}^{4}$:

$$
\rho(1, h): \mathcal{H}_{x} \rightarrow \mathcal{H}_{x}, \quad \varphi_{x} \mapsto e^{i \chi(x) \cdot h} \varphi_{x}
$$

Geometrically: equivariant fiber bundle

Irreducible: X transitive space, χ one-to-one $\rightarrow X$ isomorphic to a $\mathrm{SO}(4)$-single orbit in $\mathbb{R}^{4}: 3$-sphere of radius ℓ.

Representations of 2-groups

A representation

$$
G=\mathrm{SO}(4), H=\mathbb{R}^{4}
$$

is determined by:

- a space X with an action of $\mathrm{SO}(4): \quad \rho(g) \mathcal{H}_{x}=\mathcal{H}_{g x}$
- an SO(4)-equivariant map $\chi: X \rightarrow H^{*} \sim \mathbb{R}^{4}$:

$$
\rho(1, h): \mathcal{H}_{x} \rightarrow \mathcal{H}_{x}, \quad \varphi_{x} \mapsto e^{i \chi(x) \cdot h} \varphi_{x}
$$

Geometrically: equivariant fiber bundle

Irreducible: X transitive space, χ one-to-one $\rightarrow X$ isomorphic to a $\mathrm{SO}(4)$-single orbit in \mathbb{R}^{4} : 3-sphere of radius ℓ.

$$
\text { Irreducible representations labelled by } \ell \in \mathbb{R}_{+}
$$

Representations of 2-groups

Tensor product of two representations gives the bundle:

determined by:

- the direct product $X_{1} \times X_{2}$ with diagonal action: $g\left(x_{1}, x_{2}\right):=\left(g x_{1}, g x_{2}\right)$
- the $\mathrm{SO}(4)$-equivariant map $\left(x_{1}, x_{2}\right) \mapsto \chi_{1}\left(x_{1}\right)+\chi_{2}\left(x_{2}\right)$

Tensor product of Irreps: $x_{i} \in \mathbb{R}^{4},\left|x_{i}\right|=\ell_{i}, \quad\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}$

Representations of 2-groups

Euclidean 2-group: intertwiners
An intertwiner between two reps (X, χ) and (Y, ξ) :

$$
\phi \mathcal{H}_{y}=\int^{\oplus} \mathrm{d} \mu_{y}(x) V_{y, x} \otimes \mathcal{H}_{x}, \quad \Phi_{y, x}^{g}: V_{y, x} \rightarrow V_{g(y, x)}
$$

Representations of 2-groups

Euclidean 2-group: intertwiners

An intertwiner between two reps (X, χ) and (Y, ξ) :

$$
\phi \mathcal{H}_{y}=\int^{\oplus} \mathrm{d} \mu_{y}(x) V_{y, x} \otimes \mathcal{H}_{x}, \quad \Phi_{y, x}^{g}: V_{y, x} \rightarrow V_{g(y, x)}
$$

is determined by

- a SO(4)-Hilbert bundle $\left(V_{z}, \Phi_{z}^{g}\right)$ over the pullback $Z=\{(y, x) \in Y \times X: \chi(x)=\xi(y)\}$

$$
\begin{aligned}
& \Phi_{z}^{g}: V_{z} \rightarrow V_{g z} \\
& \Phi_{z}^{g g^{\prime}}=\Phi_{g z}^{g} \circ \Phi_{z}^{g} \quad \text { (cocycle) }
\end{aligned}
$$

Representations of 2-groups

Euclidean 2-group: intertwiners

An intertwiner between two reps (X, χ) and (Y, ξ) :

$$
\phi \mathcal{H}_{y}=\int^{\oplus} \mathrm{d} \mu_{y}(x) V_{y, x} \otimes \mathcal{H}_{x}, \quad \Phi_{y, x}^{g}: V_{y, x} \rightarrow V_{g(y, x)}
$$

is determined by

- a SO(4)-Hilbert bundle $\left(V_{z}, \Phi_{z}^{g}\right)$ over the pullback $Z=\{(y, x) \in Y \times X: \chi(x)=\xi(y)\}$

$$
\begin{aligned}
& \Phi_{z}^{g}: V_{z} \rightarrow V_{g z} \\
& \Phi_{z}^{g g^{\prime}}=\Phi_{g z}^{g} \circ \Phi_{z}^{g} \quad \text { (cocycle) }
\end{aligned}
$$

- a SO(4)-equivariant family of measures μ_{y} supported on Z.

Representations of 2-groups

Euclidean 2-group: intertwiners
An intertwiner between two reps (X, χ) and (Y, ξ)

Representations of 2-groups

Euclidean 2-group: intertwiners

An intertwiner between two reps (X, χ) and (Y, ξ)

Remark: $\left(V_{z}, \Phi_{z}^{g}\right)_{g \in G_{z}}$ representation of stabilizer $G_{z} \subset \mathrm{SO}(4)$ of z.
Mackey's induced representation theory

Representations of 2-groups

Euclidean 2-group: intertwiners

An intertwiner between two reps (X, χ) and (Y, ξ)

Remark: $\left(V_{z}, \Phi_{z}^{g}\right)_{g \in G_{z}}$ representation of stabilizer $G_{z} \subset \mathrm{SO}(4)$ of z. Mackey's induced representation theory

When Z is a transitive space:
Irreducible intertwiners: representation of stabilizer G_{o} irreducible

Representations of 2-groups

Euclidean 2-group: intertwiners

An intertwiner between two reps (X, χ) and (Y, ξ)

Remark: $\left(V_{z}, \Phi_{z}^{g}\right)_{g \in G_{z}}$ representation of stabilizer $G_{z} \subset \mathrm{SO}(4)$ of z.
Mackey's induced representation theory
When Z is a transitive space:
Irreducible intertwiners: representation of stabilizer G_{o} irreducible

Irreducible intertwiners labelled by an irreducible group representation of stabilizer G_{o}

Representations of 2-groups

Two intertwiners $\phi=\left(V_{z}, \Phi_{z}^{g}\right), \psi=\left(W_{z}, \Psi_{z}^{g}\right)$ give two $\mathrm{SO}(4)$-Hilbert bundles over $Z=\{(y, x) \in Y \times X: \chi(x)=\xi(y)\}$.
A 2-intertwiner:

is determined by a map of $\mathbf{S O}(4)$-Hilbert bundle:

$$
m_{z}: V_{z} \rightarrow W_{z}, \quad \Psi_{z}^{g} \circ m_{z}=m_{g z} \circ \Phi_{z}^{g}
$$

Representations of 2-groups

Two intertwiners $\phi=\left(V_{z}, \Phi_{z}^{g}\right), \psi=\left(W_{z}, \Psi_{z}^{g}\right)$ give two $\mathrm{SO}(4)$-Hilbert bundles over $Z=\{(y, x) \in Y \times X: \chi(x)=\xi(y)\}$.
A 2-intertwiner:

is determined by a map of $\mathbf{S O}(4)$-Hilbert bundle:

$$
m_{z}: V_{z} \rightarrow W_{z}, \quad \Psi_{z}^{g} \circ m_{z}=m_{g z} \circ \Phi_{z}^{g}
$$

- each m_{z} intertwines the representations of the stabilizer G_{z} of z.
- m defines an intertwiner between the two induced representations of $S O(4)$ defined by ϕ, ψ.

Outline

Introduction

Representation of 2-groups

The model

'Quantum flat space'

Conclusion

The model

Building up the categorical state sum

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathbb{U}(1))$

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3 -sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathrm{U}(1))$

1. $\mathrm{SO}(4)$-bundle

- Base space: $\mathcal{I}_{i j k}=\left\{\left(x_{i j}, x_{j k}, x_{i k}\right) \in\left(\mathbb{R}^{4}\right)^{3}:\left|x_{i j}\right|=l_{i j}, x_{i j}+x_{j k}=x_{k l}\right\}$
- Stabilizer $G_{\Delta^{\circ}}=\mathrm{U}(1)$

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3 -sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathbb{U}(1))$

1. $\mathrm{SO}(4)$-bundle

- Base space: $\mathcal{I}_{i j k}=\left\{\left(x_{i j}, x_{j k}, x_{i k}\right) \in\left(\mathbb{R}^{4}\right)^{3}:\left|x_{i j}\right|=l_{i j}, x_{i j}+x_{j k}=x_{k l}\right\}$
- Stabilizer $G_{\Delta^{\circ}}=\mathrm{U}(1)$
- Line bundle: $V_{\Delta}=\mathbb{C}$,

$$
\begin{aligned}
& \Phi_{\Delta^{\circ}}^{h_{\theta}}=e^{i s \theta} \quad h_{\theta} \in \mathrm{U}(1) \\
& \Phi_{\Delta}^{g g^{\prime}}=\Phi_{g^{\prime} \Delta}^{g} \Phi_{\Delta}^{g^{\prime}}
\end{aligned}
$$

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathbb{U}(1))$

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathrm{U}(1)$)

1. Family of measures

- unique up to equivalence \rightarrow this is a normalization choice.

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathrm{U}(1)$)

1. Family of measures

- unique up to equivalence \rightarrow this is a normalization choice.
- Let $\mathrm{d}_{l} x:=\mathrm{d}^{4} x \delta(|x|-l)$, choose:

$$
\mathrm{d} \mu_{x_{i k}}\left(x_{i j}, x_{j k}\right)=\mathrm{d}_{l_{i j}} x_{i j} \mathrm{~d}_{l_{j k}} x_{j k} \delta^{4}\left(x_{i j}+x_{j k}-x_{i k}\right)
$$

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathrm{U}(1)$)

1. Family of measures

- unique up to equivalence \rightarrow this is a normalization choice.
- Let $\mathrm{d}_{l} x:=\mathrm{d}^{4} x \delta(|x|-l)$, choose:

$$
\mathrm{d} \mu_{x_{i k}}\left(x_{i j}, x_{j k}\right)=\mathrm{d}_{l_{i j}} x_{i j} \mathrm{~d}_{l_{j k}} x_{j k} \delta^{4}\left(x_{i j}+x_{j k}-x_{i k}\right)
$$

- $\mathrm{d} \mu(\Delta):=\mathrm{d}_{l} x_{i k} \otimes \mathrm{~d} \mu_{x_{i k}}$ invariant measure in $\mathcal{T}_{i j k}$

The model

Building up the categorical state sum

- for each edge: a positive number $l_{i j} \in \mathbb{R}_{+}$(3-sphere radius)
- for each triangle: a spin $s \in \mathbb{Z}$ (representation of $\mathrm{U}(1)$)

1. Family of measures

- unique up to equivalence \rightarrow this is a normalization choice.
- Let $\mathrm{d}_{l} x:=\mathrm{d}^{4} x \delta(|x|-l)$, choose:

$$
\mathrm{d} \mu_{x_{i k}}\left(x_{i j}, x_{j k}\right)=\mathrm{d}_{l_{i j}} x_{i j} \mathrm{~d}_{l_{j k}} x_{j k} \delta^{4}\left(x_{i j}+x_{j k}-x_{i k}\right)
$$

- $\mathrm{d} \mu(\Delta):=\mathrm{d}_{l} x_{i k} \otimes \mathrm{~d} \mu_{x_{i k}}$ invariant measure in $\mathcal{T}_{i j k}$

Representation of $\mathrm{SO}(4)$ on $\int^{\oplus} \mathrm{d} \mu(\Delta) V_{\Delta}$ induced by the $\mathrm{U}(1)$ representation s.

The model

Building up the categorical state sum

- Gluing Triangles :

defines a (reducible) intertwiner:

The model

Building up the categorical state sum

- Gluing Triangles :

defines a (reducible) intertwiner:

1. $\mathrm{SO}(4)$-bundle

- Base space: $\mathcal{Q}_{i j k l}^{i k}=\{$ quadrangles with fixed length $(i k)\}$

The model

Building up the categorical state sum

- Gluing Triangles :

defines a (reducible) intertwiner:

1. $\mathrm{SO}(4)$-bundle

- Base space: $\mathcal{Q}_{i j k l}^{i k}=\{$ quadrangles with fixed length $(i k)\}$
- Line bundle: $W_{\square}:=V_{\nabla} \otimes V_{\Delta} \simeq \mathbb{C} ; \quad$ cocyle $\Psi_{\square}^{g}:=\Phi_{\nabla}^{g} \otimes \Phi_{\Delta}^{g}=\Phi_{\nabla}^{g} \Phi_{\Delta}^{g}$

The model

Building up the categorical state sum

- Gluing Triangles :

defines a (reducible) intertwiner:

1. $\mathrm{SO}(4)$-bundle

- Base space: $\mathcal{Q}_{i j k l}^{i k}=\{$ quadrangles with fixed length $(i k)\}$
- Line bundle: $W_{\square}:=V_{\nabla} \otimes V_{\Delta} \simeq \mathbb{C} ; \quad$ cocyle $\Psi_{\square}^{g}:=\Phi_{\nabla}^{g} \otimes \Phi_{\Delta}^{g}=\Phi_{\nabla}^{g} \Phi_{\Delta}^{g}$

2. Family of measures
$-\mathrm{d} \mu_{x_{i l}}\left(x_{i j}, x_{j k}, x_{k l}\right)=$ $\mathrm{d}_{l_{i j}} x_{i j} \mathrm{~d}_{l j k} x_{j k} \mathrm{~d}_{l_{k l}} x_{j k} \delta^{4}\left(x_{i j}+x_{j k}+x_{k l}-x_{i l}\right) \delta\left(\left|x_{i j}+x_{j k}\right|-l_{i k}\right)$

- use $\mathrm{d} \mu=\mathrm{d}_{l_{i l}} x_{i l} \otimes \mathrm{~d} \mu_{x_{i l}}$ to get a representation of $\mathrm{SO}(4)$ on $\int^{\oplus} \mathrm{d} \mu(\square) V_{\nabla} \otimes V_{\Delta}$

The model

Building up the categorical state sum

- for each tetrahedron: a 2-intertwiner

The model

Building up the categorical state sum

- for each tetrahedron: a 2-intertwiner

- m fully determined by the value $m_{\boxtimes^{o}}$ on a given 'reference tetrahedron' $\boxtimes^{o} \in \mathrm{~T}_{i j k l}$: $\boxtimes^{o}, m^{\square}{ }^{\circ}$ normalization choices

$$
m_{g \boxtimes^{o}}=\Phi_{\nabla}^{g} \Phi_{\Delta}^{g} m_{\boxtimes^{o}}\left(\Phi_{\triangle}^{g} \Phi_{\nabla}^{g}\right)^{-1}
$$

The model

Simplex weight: '20j-symbol'

The model

Simplex weight: '20j-symbol'

$$
\int \prod_{(i j) \mathrm{ext} .} \mathrm{d}^{4} x_{i j} \prod_{(i j)} \delta_{l_{i j}}\left(\left|x_{i j}\right|\right)
$$

The model

Result A.B, Freidel

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

The model

Result A.B, Freidel

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

The model

Result A.B, Freidel

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

The model

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

- $\mathcal{A}_{t}\left(l_{e}\right)$ area triangle t with edge lengths l_{e}

The model

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

- $\mathcal{A}_{t}\left(l_{e}\right)$ area triangle t with edge lengths l_{e}
- $\mathcal{V}_{\sigma}\left(l_{e}\right)$ volume 4 -simplex with edge lengths l_{e}

The model

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

- $\mathcal{A}_{t}\left(l_{e}\right)$ area triangle t with edge lengths l_{e}
- $\mathcal{V}_{\sigma}\left(l_{e}\right)$ volume 4-simplex with edge lengths l_{e}
- $S_{\sigma}\left(l_{e}, s_{t}\right)$ first order Regge action:

$$
S_{\sigma}\left(l_{e}, s_{t}\right):=\sum_{t \subset \sigma} s_{t} \phi_{t}^{\sigma}\left(l_{e}\right), \quad \phi_{t}^{\sigma} \text { dihedral angle } t \subset \sigma
$$

The model

Result

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

$$
\sum_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}} \sum_{s_{045}} \mathcal{A}_{045} \frac{e^{\imath \epsilon_{1} S_{1}}}{\mathcal{V}_{1}} \frac{e^{2 \epsilon_{2} S_{2}}}{\mathcal{V}_{2}} \frac{e^{\imath \epsilon_{3} S_{3}}}{\mathcal{V}_{3}}=\sum_{\epsilon_{0}, \epsilon_{4}, \epsilon_{5}} \sum_{s_{123}} \mathcal{A}_{123} \frac{e^{\imath \epsilon_{0} S_{0}}}{\mathcal{V}_{0}} \frac{e^{\imath \epsilon_{4} S_{4}}}{\mathcal{V}_{4}} \frac{e^{i \epsilon_{5} S_{5}}}{\mathcal{V}_{5}}
$$

The model

Result A.B

The model is written formally as

$$
Z_{\Delta}=\int_{\mathbb{R}_{+}} \prod_{e} l_{e} \mathrm{~d} l_{e} \sum_{s_{t} \in \mathbb{N}} W_{\Delta}\left(l_{e}, s_{t}\right)
$$

where

$$
W_{\Delta}\left(l_{e}, s_{t}\right)=\prod_{t} \mathcal{A}_{t}\left(l_{e}\right) \prod_{\sigma} \frac{\cos S_{\sigma}\left(l_{e}, s_{t}\right)}{\mathcal{V}_{\sigma}\left(l_{e}\right)}
$$

$$
\sum_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}} \sum_{s_{045}} \mathcal{A}_{045} \frac{e^{\imath \epsilon_{1} S_{1}}}{\mathcal{V}_{1}} \frac{e^{\imath \epsilon_{2} S_{2}}}{\mathcal{V}_{2}} \frac{e^{\imath \epsilon_{3} S_{3}}}{\mathcal{V}_{3}}=\sum_{\epsilon_{0}, \epsilon_{4}, \epsilon_{5}} \sum_{s_{123}} \mathcal{A}_{123} \frac{e^{\imath \epsilon_{0} S_{0}}}{\mathcal{V}_{0}} \frac{e^{\imath \epsilon_{4} S_{4}}}{\mathcal{V}_{4}} \frac{e^{\imath \epsilon_{5} S_{5}}}{\mathcal{V}_{5}}
$$

Invariance under Pachner moves

Outline

Introduction

Representation of 2-groups

The model
'Quantum flat space'

Conclusion

'Quantum flat space': A.B, Freidel '06

Feynman amplitudes QFT on 4d Euclidean space-time:

$$
\begin{equation*}
I_{\Gamma}=\int_{\mathbb{R}^{D}} \mathrm{~d}^{D} x_{1} \cdots \mathrm{~d}^{D} x_{n} \prod_{(i j) \in \Gamma} G^{F}\left(\vec{x}_{i}-\vec{x}_{j}\right) \tag{1}
\end{equation*}
$$

formulated as background free as state sums:

$$
\begin{equation*}
I_{\Gamma}=\int_{\text {gauge fixing }} \prod_{e \in \Delta} \ell_{e} d \ell_{e} \sum_{\left\{s_{t}\right\}} W_{\Delta}\left(s_{t}, \ell_{e}\right) \prod_{e \in \Gamma} G\left(\ell_{e}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
I_{\Gamma}=\int_{\mathbb{R}^{D}} \mathrm{~d}^{D} x_{1} \cdots \mathrm{~d}^{D} x_{n} \prod_{(i j) \in \Gamma} G^{F}\left(\vec{x}_{i}-\vec{x}_{j}\right) \tag{3}
\end{equation*}
$$

Limit of quantum gravity amplitudes?

$$
\widetilde{I}_{\Gamma}:=\int \mathcal{D} g I_{\Gamma}(g) e^{i S_{\mathrm{grav}}[g]} \quad \longrightarrow G_{N} \rightarrow 0 \quad I_{\Gamma}
$$

State sum structure of I_{Γ} may tell us something about the structure of the quantum gravity amplitude

Outline

Introduction

Representation of 2-groups

The model
'Quantum flat space'

Conclusion

Conclusion

Summary

Conclusion

Summary

- Explicit example state sum model based on the representation 2-category of the 'Euclidean 2-group'

Conclusion

Summary

- Explicit example state sum model based on the representation 2-category of the 'Euclidean 2-group'
- Clear geometrical content, 'metric' data on the edges of the triangulation

Conclusion

- Explicit example state sum model based on the representation 2-category of the 'Euclidean 2-group'
- Clear geometrical content, 'metric' data on the edges of the triangulation
- Formal invariance under Pachner moves: state sum invariant.

Conclusion

- Explicit example state sum model based on the representation 2-category of the 'Euclidean 2-group'
- Clear geometrical content, 'metric' data on the edges of the triangulation
- Formal invariance under Pachner moves: state sum invariant.
- Models flat space: shows up in state sum formulation of QFT Feynman amplitudes

Conclusion
 Perspectives

Conclusion

- Conjecture: related to higher gauge theory functional integral

$$
\int \mathcal{D} A \mathcal{D} B \delta(F(A)) \delta\left(d_{A} B\right)
$$

Conclusion

- Conjecture: related to higher gauge theory functional integral

$$
\int \mathcal{D} A \mathcal{D} B \delta(F(A)) \delta\left(d_{A} B\right)
$$

- Topological invariance: generic feature of 2-group state sum models? Can one get interesting invariants out of this?

Conclusion

- Conjecture: related to higher gauge theory functional integral

$$
\int \mathcal{D} A \mathcal{D} B \delta(F(A)) \delta\left(d_{A} B\right)
$$

- Topological invariance: generic feature of 2-group state sum models? Can one get interesting invariants out of this?
- Algebraic ways to think of deformations of field theory structure

Conclusion

- Conjecture: related to higher gauge theory functional integral

$$
\int \mathcal{D} A \mathcal{D} B \delta(F(A)) \delta\left(d_{A} B\right)
$$

- Topological invariance: generic feature of 2-group state sum models? Can one get interesting invariants out of this?
- Algebraic ways to think of deformations of field theory structure
- Basis for gravity models?

