Cells in the box and a hyperplane

I. B and P. Frankl

Fact: a line intersects at most $2n - 1$ cells (squares) of the $n \times n$ chessboard. (ger (pr3))
Question: How many cells of the $n \times \ldots \times n$ chessboard can a hyperplane intersect?

$d = 3 \quad M_n = \text{max number of cells in } \mathbb{R}^2$

Thus 1. $M_n = \frac{9}{4} n^2 + O(n)$

(higher dim later)
More precisely

\[M_n \leq \frac{9}{4} n^2 + 2n + 1 \]

\[M_n \geq \frac{9}{4} n^2 + n - \left\{ \begin{array}{l}
5 \quad \text{if } n \text{ is odd} \\
4 \quad \text{if } n \text{ is even}
\end{array} \right. \]

\[M_2 = 7, \quad M_3 = 19, \quad M_4 = 35 \]

\[230 \leq M_{10} \leq 246 \]
$K_n = [0,n]^3$, $C(z) = \begin{array}{c} z \\ z \in \mathbb{Z}^3 \end{array}$ unit cube (cell)

P a plane with equation $ax + by + z = d$

$0 < a < b < 1$

Lower bound

$m = \frac{3n}{2}$ (n even) = $\frac{3n-1}{2}$ (n odd)

$P = \sum \begin{array}{c} x+y+z=m+\varepsilon \end{array} (\varepsilon > 0 \, \text{small})$

interests $\frac{9n^2-8}{4}$ (n even) $\frac{9n^2-5}{4}$ (odd) cells
Proof. \(\# \{ (x, y, z) \in \mathbb{Z}^3 \mid 0 \leq x, y, z \leq a - 1 \} \) then \(x + y + z = m, m-1, m-2 \).

because \(x + y + z < m + \varepsilon \) and \(x + 1 + y + 1 + z + 1 > m + \varepsilon \).
Upper bound \(ax + by + cz = d \) is the maximizer plane \(P \).

wlog \(0 < a < b < c = 1 \)

Claim 1. \(a + b > 1 \).

Otherwise \(a + b \leq 1 \) and

\(P \) intersects at most 2 cells in a stack.
\[F_i = \{(x,y,i) \in \mathbb{K}_n, i \in \mathbb{Z} \} \quad \text{"floor"} \]

\[L_i = P \cap F_i \]

\[\overline{L}_i: \text{its projection to } F_0 = \mathbb{Q}_n \]

\[L_i = \emptyset \quad \text{possible but} \]

Claim 1 implies that either

\[L_i \neq \emptyset \quad \text{or} \quad L_p \neq \emptyset \quad \text{or} \quad \text{both}. \]
Assume \(L_n \neq \emptyset \). Then

\[L_0, \ldots, L_n \neq \emptyset \quad \text{and} \quad L_0 = \ldots = L_{p-1} = \emptyset \]

\(l_i \) is the length of \((L_i \) and of \(\overline{L_i} \))

\[m_i = \# \text{ cells of } \overline{Q_h} \text{ hit by } \overline{L_i} \]

\[m = \# \text{ cells of } \overline{Q_h} \text{ intersect } \overline{P} \]
Lemma \[\# \text{cells hit by } P = m + m_{p+1} + \ldots + m_{n-1} \]

Proof: count \(P \cap C(z) \) on the bottom face of \(C(z) \) if \(P \) hits the bottom face.

If it does not, then \(P \cap C(z) \) is counted in \(m \)
Upper bound on M_n

$$m \leq \text{Area } \overline{B} + m_p + m_n$$

$$\text{Area } \overline{B} = \sum_{i=p}^{n-1} h \frac{l_{i+1} + l_i}{2} + \ell_i$$

$$m_i \leq \frac{a+b}{\sqrt{a^2+b^2}} \ell_i + 1 = \frac{(a+b) h l_i + 1}{h + 1}$$

$$h = \frac{1}{\sqrt{a^2+b^2}}$$

... leads to...
Lemma. If $0 \leq a \leq b \leq 1$ then

$$(a + b + 1) \left(1 - \frac{(a + b - 1)^2}{4ab} \right) \leq \frac{9}{4},$$

equality iff $a = b = 1$.

stability
\[d \geq 3 \]

\[M^d_n = \text{max # of cells in } K^n_h = [C/n]^d \]

that a (gen. pos.) hyperplane intersects

\[M^2_n = 2n - 1 \]

\[M^3_n = \frac{9}{4} n^2 + O(n) \]

\[d \geq 3 \]
Let $v \in \mathbb{R}^d$ be a unit vector with $\|v\|_2 = 1$. P_v is the hyperplane orthogonal to v and containing the center of $[0,1]^d$.

Define

$$V_d = \max_{\|v\|_2 = 1} \text{Vol}_{d-1}([0,1]^d \cap P_v)$$

1 \leq \text{Vol}_{d-1}([0,1]^d \cap P_v) \leq \sqrt{2} \quad \text{(K. Ball)}$$

which implies

$$\sqrt{d} \leq V_d \leq \sqrt{2d}$$

but
Thus (I. Aliëv, 2020) the maximum is attained on \(v = \frac{1}{\sqrt{d}} (1, \ldots, 1). \)

\[
V_2 = 2, \quad V_3 = \frac{9}{4}, \quad V_4 = \frac{8}{3}, \quad \ldots \quad \text{increasing}
\]

\[
V_d \rightarrow \sqrt{\frac{6d}{11}}
\]
Theorem 2.

\[M_n^d = V_d n^{d-1} (1 + o(1)) \]

\[M_n^d(v) = \max \# \text{ of lattice points in } K_n \text{ between two hyperplanes orthogonal to } v \text{ and at distance } \|v\|, \]

\[S(v) \text{ is the part of } K_n \text{ between these hyperplanes \ldots} \]
Alternative definition:

\[M^d_n = \max \{ M^d_n(v) : \|v\|_2 = 1 \} \]

Here, \(M^d_n(v) \) should be

\[M^d_n(v) = \|v n_{\text{vol}} \cap \left([0, \frac{d}{2}] \cap P_n \right) n^{d-1} \| + o(1) \]

\[\approx \text{vol} \ S(v) \]
because of a metamathemem:

for every $K \neq 2^n \backslash K \approx n_{0K}$

valid when K is well pointed, that is, when n_{0K} is large and n_{0K}, $ld K$ is small

BUT: this is not the case

$S(v)$ is a very thin slice
$K \subset \mathbb{R}^d$ convex body, $C(z) (z \in \mathbb{Z}^d)$ cell is

- inside if $C(z) \subset K$
- outside if $C(z) \cap K = \emptyset$
- empty otherwise
\[U \cap \alpha < K < U \cap \beta \text{ inside, inside, inside or interior} \]

\[\# \mathcal{C}(\beta) \leq \# \mathcal{K} \leq \# \mathcal{C}(\beta) \]

\[\# \mathcal{C}(\alpha) \leq \# \mathcal{K} \cap \mathbb{Z}^d \leq \# \mathcal{C}(\beta) \text{ inside or interior} \]
Thus $A \mid \nu K - |K \cap \mathbb{Z}^d| \mid \leq \# \text{ldg cells}$

Given a basis $F=\{f_1, \ldots, f_n\}$ of \mathbb{Z}^d, an F-cell is a basic parallelootope in basis F.

Thus $A^* \mid \nu K - |K \cap \mathbb{Z}^d| \mid \leq \# \text{ldg } F\text{-cells}$
surprise:

Thus if \(B \subseteq K \cap L \) convex bodies in \(\mathbb{R}^d \), \(K \subseteq L \)

\[\Rightarrow \# \text{bdry cells of } K \leq \# \text{bdry cells of } L \]

a lattice analogue of

\[\text{vol}_{d-1} \partial K \leq \text{vol}_{d-1} \partial L \]
Proof is easy in 2-dim in \mathbb{R}^d a homotopy argument works.
Next ingredient: Given a basis $F = \{f_1, \ldots, f_n\}$ of \mathbb{Z}^d an F-box is

$$B(\alpha, \beta, F) = \left\{ x = \sum_{i=1}^{d} x_i f_i : \alpha_i \leq x_i \leq \beta_i, \quad \forall i \right\}$$

$$B(K, F) = \min F\text{-box containing } K$$
Thus C (B. Vershik '92) for every convex body $K \subset \mathbb{R}^d$

exists a basis F of \mathbb{Z}^d such that

$vol B(K, F) \ll_d vol K$

Corollary $K \subset \mathbb{R}^d$ convex, F a basis. Then

$\# \text{1-dim } F\text{-cells of } K \leq \# \text{1-dim } F\text{-cells of } B(K, F)$
Advantage: determining the
\# lying F-cells of \(b(K, f) \) is easy:

\[
2 (\beta_1 - \alpha_1) (\beta_2 - \alpha_2) + 2 (\beta_2 - \alpha_3) (\beta_3 - \alpha_1) + 2 (\beta_3 - \alpha_3) (\beta_1 - \alpha_1)
\]
(*) \[k \cap \mathbb{Z} \] contains at least 1 independent point

\[B(k_1 F) = B(\alpha, \beta, F) \quad \alpha_i < \beta_i \quad \gamma_i = \beta_i - \alpha_i \geq 1 \]

\[\text{# Ady F-cells of } B(k_1 F) \approx \left(\prod_{i=1}^{d} \frac{1}{\gamma_i} \right) \left(\frac{1}{\gamma_1} + \ldots + \frac{1}{\gamma_d} \right) \]

This is not \[B(k_1 F) \]
Theorem 3. \(K \subseteq \mathbb{R}^d \) convex, \(\exists \) a basis \(F \) s.t.

\[
\left| \text{vol } K - |K \cap \mathbb{Z}^d| \right| \ll_d \text{vol } K \left(\frac{1}{\delta_1} + \cdots + \frac{1}{\delta_d} \right)
\]

where \(\delta_1, \ldots, \delta_d \) come from the minimal box \(B(K,F) \).
K convex in \mathbb{R}^d, Λ a lattice in \mathbb{R}^d, K satisfies (*) with dt prob in $\Lambda \implies$

Theorem 4. Exist F of Λ such that

$$\left| \frac{1}{\det \Lambda} \text{vol } K - |K \cap \Lambda| \right| \ll \frac{1}{\det \Lambda} \text{vol } K \left(\frac{1}{\gamma_1} + \ldots + \frac{1}{\gamma_d} \right)$$

where $\gamma_1, \ldots, \gamma_d$ come from the minimal box $B(K, F)$.
downward on M_d^n via $M_d^n(z)$ with $z \in \mathbb{R}^d$ fixed. $M_d^n(e_1) = n^{d-1} \Rightarrow M_d^n \geq n^{d-1}$.

$M_d^n(z)$ is reached on $\|z\|_2$ concentric lattice hyperplane \perp to z, in the lattice $L < \mathbb{R}^d$ with $\det L = \|z\|_2^d$. Then 4 applies (in \mathbb{R}^{d-1}) with $C = [0,1]^d \cap P(\sigma,t)$ ($P(\sigma,t) = \{ x \in \mathbb{R}^d : z \cdot x = t \}$).
\[
\left| \frac{1}{\|z\|_2} \text{me } K - \left| C \varphi^q \right| \right| \leq \frac{1}{\|z\|_2} \text{vol } C \left(\frac{1}{\varphi_1} + \cdots + \frac{1}{\varphi_{d-1}} \right) \\
= O(n^{a-2})
\]

and \(\text{vol}_{d-1} C = n^{a-1} \text{vol}_{d-1} P(z) \)

\[
\Rightarrow \left| u_h^{d}(z) \right| \geq \frac{\|z\|_1}{\|z\|_2} \text{me}_{d-1} P(z) n^{a-1} \left(1 + O\left(\frac{1}{n} \right) \right)
\]

\[
V_d(z) \rightarrow V_d
\]

\(z = (1, 1, \ldots, 1) \ldots \)
Upper bound

thin slice

target

\[|S(v, t) \cap \mathbb{Z}^d| \leq (V_d + \varepsilon) n^{d-1} \]

maximiser

\(\varepsilon > 0 \text{ fixed} \)

\[S(v, t) = S(v_n, t_n) = S_n \]
Consider the basis $F = \{f_1, \ldots, f_n\}$ from Thm B and the minimal box $B(S_n, F)$ ($F = F_n$).

By Thm 4

$$\left| \text{vol } S_n - |S_n \cap \mathbb{Z}^d| \right| \ll \text{vol } S_n \left(\frac{1}{\delta_1} + \ldots + \frac{1}{\delta_d} \right)$$

where $\delta_1, \ldots, \delta_d \geq 1$ are integers, $\delta_i = \delta_i(n)$.
Simple case \(\gamma_i(n) \to \infty \quad \forall i \in [d] \)

If not, some \(\gamma_i(n) \) is \underline{bounded} along a subsequence, then the corresponding dual basis vector \(g_i(n) \) is \underline{fixed} along another subsequence. \(i=1 \text{ to } d \).

So \(\gamma = \gamma_1(n) = \text{const} \quad \text{and} \quad g = g_1(n) = \text{const}. \)

\[p_n = P := \text{span} \{ e(v(n)), g \} \quad \text{2-dim plane} \]
Project K_n and S_n to P

$$\Pi_n = \Pi : \mathbb{R}^d \rightarrow P$$
\[\phi = \phi_n \text{ tends to zero} \]

\[J_i^* = \frac{J_i}{\sqrt{2a}} \text{ deleted} \]

Lemma A vertical line intersects at most \(|g| + 1\) segments \(J_i\), and at most \(|g|\) segments \(J_i^*\).
\# of Lattice point in $S_n = \sum_{i=1}^{\sigma} \# \text{ Lattice point in } \pi_i^{-1}(J_i) \cap K_n$

$\sim \sum_{i=1}^{\sigma} \text{vol}_{d-1}(\pi_i^{-1}(J_i) \cap K_n)$

a technical proof.
Question:

How many lines are needed to hit all the cells of an $n \times n$ chessboard?

n always suffice
Thanks!