# Exhaustive search of permutations with many patterns 

Axel Bacher Michael Engen

April 14, 2020

## Outline

(1) Permutations with many patterns
(2) Exhaustive search algorithms
(3) GPU implementation
(4) Conclusion

## Permutations with many patterns



- How many patterns of size $k$ can a permutation of size $n$ contain?
- What are the optimal permutations like?
- Given $n$ and $k$, can we construct an optimal permutation?


## Universal and prolific permutations

[Bevan-Homberger-Tanner 2017, Engen-Vatter 2020]


- Permutations with $k$ ! patterns of size $k$ are called $k$-universal.
- They exist iff $n \geq L_{k}$, with $e^{-2} k^{2} \leq L_{k} \leq\left\lceil\frac{k^{2}+1}{2}\right\rceil$.


## Universal and prolific permutations

[Bevan-Homberger-Tanner 2017, Engen-Vatter 2020]


- Permutations with $k$ ! patterns of size $k$ are called $k$-universal.
- They exist iff $n \geq L_{k}$, with $e^{-2} k^{2} \leq L_{k} \leq\left\lceil\frac{k^{2}+1}{2}\right\rceil$.
- Permutations with $\binom{n}{k}$ patterns of size $n-k$ are called $k$-prolific.
- They exist iff $n \geq\left\lceil k^{2} / 2+2 k+1\right\rceil$.
- Criterion: $|i-j|+\left|\sigma_{i}-\sigma_{j}\right| \geq k+2$ for all $i \neq j$.


## Universal and prolific permutations

[Bevan-Homberger-Tanner 2017, Engen-Vatter 2020]


- Permutations with $k$ ! patterns of size $k$ are called $k$-universal.
- They exist iff $n \geq L_{k}$, with $e^{-2} k^{2} \leq L_{k} \leq\left\lceil\frac{k^{2}+1}{2}\right\rceil$.
- Permutations with $\binom{n}{k}$ patterns of size $n-k$ are called $k$-prolific.
- They exist iff $n \geq\left\lceil k^{2} / 2+2 k+1\right\rceil$.
- Criterion: $|i-j|+\left|\sigma_{i}-\sigma_{j}\right| \geq k+2$ for all $i \neq j$.
- When $\Theta(\sqrt{n})<k<n-\Theta(\sqrt{n})$, there are $<\min \left[k!,\binom{n}{k}\right]$ patterns.


## Optimal permutations: experimental results



## Ranking patterns



$$
\operatorname{rk}(\sigma, S)=3 \times 120+24+6+2=392
$$

- We rank patterns based on their inversions:

$$
\operatorname{rk}(\sigma, S)=\sum_{i, j \in S, i<j, \sigma_{i}>\sigma_{j}}\left|S_{>i}\right|!
$$

## Ranking patterns



$$
\operatorname{rk}(\sigma, S)=3 \times 120+24+6+2=392
$$

- We rank patterns based on their inversions:

$$
\operatorname{rk}(\sigma, S)=\sum_{i, j \in S,}\left|S_{>i<j, \sigma_{i}>\sigma_{j}}\right|!
$$

- Computing the rank of every pattern of every permutation (up to symmetries) can be done in time $\frac{n!}{8} \times\binom{ n}{k} \times\binom{ k}{2}$.

Iterating over subsets: a combinatorial Gray code

| $\square \square$ | $\square \square \rightarrow \square$ | $\longrightarrow \square \square$ | $\square \square \leftarrow \square$ |
| :---: | :---: | :---: | :---: |
| $\square \square \square$ | $\square \square \rightarrow \square$ | $\square \square \square$ | $\square \square \square \leftarrow$ |
| $\square \square \rightarrow \square$ | $\square \rightarrow \square$ | $\square \rightarrow \square \square$ | $\square \square \square$ |
| $\square \square \longleftarrow$ | $\square \square \leftarrow \square$ | $\rightarrow \square \square \square$ | $\square \square \square$ |
| $\square \rightarrow \square \square$ | $\square \square \square$ | $\square \leftarrow \square \square$ | $\square \square$ |

Theorem (Chase, 1976)
There exists an enumeration of $\mathfrak{P}_{k}[n]$ moving one point at a time, without crossing other points.

Iterating over subsets: a combinatorial Gray code

| $\square \square$ | $\square \square \rightarrow \square$ | $\longrightarrow \square \square$ | $\square \square \leftarrow \square$ |
| :---: | :---: | :---: | :---: |
| $\square \square$ | $\square \square \rightarrow \square$ | $\square \square \rightarrow \square$ | ■ ■ - $\leftarrow$ |
| $\square \square \square$ | $\square \rightarrow \square$ | $\square \rightarrow \square \square$ | $\square \square<\square$ |
| $\square \square \longleftarrow$ | $\square \square<\square$ | $\rightarrow \square \square \square$ | $\square \square \square$ |
| $\square \rightarrow \square \square$ | $\square \square \square$ | $\square \leftarrow \square \square$ | $\square \square \leftarrow$ |

## Theorem (Chase, 1976)

There exists an enumeration of $\mathfrak{P}_{k}[n]$ moving one point at a time, without crossing other points.

- At each step, going from $\operatorname{rk}(\sigma, S)$ to $\operatorname{rk}\left(\sigma, S^{\prime}\right)$ takes time $k$.

Iterating over subsets: a combinatorial Gray code

| - | $\square \square \rightarrow \square$ | $\rightarrow \square \square$ | ■ ■ $\quad$ - |
| :---: | :---: | :---: | :---: |
| $\square \square \longrightarrow$ | $\square \square \rightarrow \square$ | $\square \square \rightarrow \square$ | $\square \square \square \leftarrow$ |
| $\square \square \rightarrow \square$ | $\square \rightarrow \square$ | $\square \rightarrow \square \square$ | $\square \square<\square$ |
| $\square \square \leftarrow$ | $\square \square<\square$ | $\rightarrow \square \square$ | $\square \square \square$ |
| $\square \rightarrow \square$ | $\square \square \square$ | $\square \leftarrow \square \square$ | $\square \square^{+}$ |

## Theorem (Chase, 1976)

There exists an enumeration of $\mathfrak{P}_{k}[n]$ moving one point at a time, without crossing other points.

- At each step, going from $\operatorname{rk}(\sigma, S)$ to $\operatorname{rk}\left(\sigma, S^{\prime}\right)$ takes time $k$.
- This improves the complexity to $\frac{n!}{8} \times\binom{ n}{k} \times k$.

Iterating over permutations: another Gray code


Theorem (Johnson, 1963; Trotter, 1962)
There exists an enumeration of $\mathfrak{S}_{n}$ doing only elementary transpositions.

## Iterating over permutations: another Gray code



Theorem (Johnson, 1963; Trotter, 1962)
There exists an enumeration of $\mathfrak{S}_{n}$ doing only elementary transpositions.

- Problem: how to iterate on permutations up to symmetries?


## Iterating over permutations, exploiting symmetries



- We divide permutations into classes based on their m-border pattern.
- We discard symmetrical classes $(m=2$ : $\approx 85 \%$ of permutations).


## Iterating over permutations, exploiting symmetries



- We divide permutations into classes based on their $m$-border pattern.
- We discard symmetrical classes ( $m=2$ : $\approx 85 \%$ of permutations).

- Classes are divided into batches by fixing entries to the left and right.
- Each batch has $\frac{(n-2 m)!}{(2 m)!}$ permutations and a Gray code.


## Algorithm 1 (small patterns)



- Swapping $\sigma_{i}$ and $\sigma_{i+1}$ only affects patterns containing both.
- In Chase order, computing $\mathrm{rk}(\sigma, S)$ and $\mathrm{rk}\left(\sigma^{\prime}, S\right)$ takes $k$ operations.


## Algorithm 1 (small patterns)



- Swapping $\sigma_{i}$ and $\sigma_{i+1}$ only affects patterns containing both.
- In Chase order, computing $\mathrm{rk}(\sigma, S)$ and $\mathrm{rk}\left(\sigma^{\prime}, S\right)$ takes $k$ operations.


## Algorithm 1

Remember: $\quad c_{r}=\#\{S \mid r k(\sigma, S)=r\}$ for $0 \leq r<k!$.
Step $\sigma \xrightarrow{e_{i}} \sigma^{\prime}:$ For all $S \supset\{i, i+1\}$ in Chase order:

- compute $r=\operatorname{rk}(\sigma, S)$ and $r^{\prime}=\operatorname{rk}\left(\sigma^{\prime}, S\right)$;
- decrement $c_{r}$ and increment $c_{r^{\prime}}$.

Complexity: $\quad \frac{n!}{8} \times\binom{ n-2}{k-2} \times k$ with $k!$ space.

## Algorithm 2 (large patterns)



- Swapping $\sigma_{i}$ and $\sigma_{i+1}$ changes $\operatorname{rk}\left(\sigma^{-1}, S\right)$ only if $\left\{\sigma_{i}, \sigma_{i+1}\right\} \subset S$ and only by the contribution of the inversion ( $\sigma_{i}, \sigma_{i+1}$ ).


## Algorithm 2 (large patterns)



- Swapping $\sigma_{i}$ and $\sigma_{i+1}$ changes $\operatorname{rk}\left(\sigma^{-1}, S\right)$ only if $\left\{\sigma_{i}, \sigma_{i+1}\right\} \subset S$ and only by the contribution of the inversion $\left(\sigma_{i}, \sigma_{i+1}\right)$.


## Algorithm 2

Remember: $\quad r_{S}=\operatorname{rk}\left(\sigma^{-1}, S\right)$ for $S \in \mathfrak{P}_{k}[n]$.
Step $\sigma \xrightarrow{e_{i}} \sigma^{\prime}:$ Initialize a hash table, then for all $S \in \mathfrak{P}_{k}[n]$, do:

- if $\left\{\sigma_{i}, \sigma_{i+1}\right\} \subset S, \quad r_{S} \leftarrow \begin{cases}r_{S}+\left|S_{>\sigma_{i}}\right|! & \text { if } \sigma_{i}<\sigma_{i+1}, \\ r_{S}-\left|S_{>\sigma_{i+1}}\right|! & \text { if } \sigma_{i}>\sigma_{i+1} ;\end{cases}$
- add $r_{S}$ to the table.

Complexity: $\quad \frac{n!}{8} \times\binom{ n}{k}$ with $\binom{n}{k}$ space.

## Threads and memory on a GPU

- Threads on a GPU are organized in warps (32 threads per warp).
- Warps are (usually) always synchronized and threads can read each other's registers.
- Warps are organized in blocks (1-32 warps per block).
- Blocks may be synchronized and have access to shared memory.
- Limits: 1024 resident threads, 65536 32-bit registers and 64 kB of shared memory per multiprocessor ( 46 MPs per GPU).
- Threads in different blocks cannot synchronize (except for atomics).
- They have access to the global memory of the GPU (8 GB) through different caches.


## CUDA programming

```
__global__ void search(perm_t *batches) {
    perm_t p = batches[blockIdx.x];
    /*...*/
}
```

```
int main() {
    /*...*/
    search <<< num_batches, 512 >>> (batches);
    /*...*/
}
```

- The above CPU code launches the kernel search() with num_batches blocks of 512 threads each.
- Threads have access to their block number (blockIdx.x) and thread number within their block (threadIdx.x).
- An API exists for memory allocation, copy, config, etc.


## Algorithm 1: implementation

## Algorithm 1

Remember: $\quad c_{r}=\#\{S \mid r k(\sigma, S)=r\}$ for $0 \leq r<k!$.
Step $\sigma \xrightarrow{e_{i}} \sigma^{\prime}:$ For all $S \supset\{i, i+1\}$ in Chase order:

- compute $r=\operatorname{rk}(\sigma, S)$ and $r^{\prime}=\operatorname{rk}\left(\sigma^{\prime}, S\right)$;
- decrement $c_{r}$ and increment $c_{r^{\prime}}$.

Complexity: $\quad \frac{n!}{8} \times\binom{ n-2}{k-2} \times k$ with $k!$ space.

- We need $2 k$ ! bytes of shared memory per permutation for $\left(c_{r}\right)$.
- If $k \leq 6$, we fit 32 permutations per MP (1 warp/permutation).
- If $k=7$, we fit 6 permutations per MP ( 5 warps/permutation).
- We fit 2 permutations per block ( 64 or 320 threads/block).
- The Chase orders are precomputed and stored in global memory.


## Algorithm 2: implementation

## Algorithm 2

Remember: $\quad r_{S}=\operatorname{rk}\left(\sigma^{-1}, S\right)$ for $S \in \mathfrak{P}_{k}[n]$.
Step $\sigma \xrightarrow{e_{i}} \sigma^{\prime}:$ Initialize a hash table, then for all $S \in \mathfrak{P}_{k}[n]$, do:

$$
\text { - if }\left\{\sigma_{i}, \sigma_{i+1}\right\} \subset S, \quad r_{S} \leftarrow \begin{cases}r_{S}+\left|S_{>\sigma_{i}}\right|! & \text { if } \sigma_{i}<\sigma_{i+1}, \\ r_{S}-\left|S_{>\sigma_{i+1}}\right|! & \text { if } \sigma_{i}>\sigma_{i+1} ;\end{cases}
$$

- add $r_{s}$ to the table.

Complexity: $\quad \frac{n!}{8} \times\binom{ n}{k}$ with $\binom{n}{k}$ space.

- When $\binom{n}{k}$ is large, we use 1024 threads per block.
- We store $S$ and $r_{s}$ in registers (works well for $\binom{n}{k} \lesssim 20000$ ).
- The hash table is in shared memory.
- Global memory is only needed for writing optimal permutations.


## Hash table implementation

```
__shared__ unsigned int table[TABLE_SIZE];
__device__ void table_zero() {
    for(unsigned int i = threadIdx.x; i < TABLE_SIZE; i += blockDim.x)
        table[i] = 0;
}
__device__ unsigned int hash(unsigned int key) { /*...*/ }
// returns 1 if key was not in table, 0 otherwise
__device__ int table_add(unsigned int key) {
    unsigned int i = hash(key);
    while(1) {
        unsigned int t = atomicCAS(table + i, 0, key);
        if(t == 0 || t == key) return t == 0;
        i = (i+1) % TABLE_SIZE;
    }
}
```

- $\mathrm{t}=\operatorname{atomicCAS}(\mathrm{p}, \mathrm{x}, \mathrm{y}) ; \Leftrightarrow \quad\{\mathrm{t}=* \mathrm{p}$; if $(\mathrm{t}==\mathrm{x}) * \mathrm{p}=\mathrm{y} ;\}$
- Maximum size of the table: 16384 entries (best when $\lesssim 50 \%$ full).


## Perspectives



- What are the permutations with the most patterns of all sizes? (currently found for $n \leq 15$ by adapting Algorithm 2)
- What to do when there are $\gg 8000$ different patterns?
- Can we find necessary conditions for optimal permutations and discard batches a priori?

