Exhaustive search of permutations with many patterns

Axel Bacher Michael Engen

April 14, 2020
Outline

1. Permutations with many patterns
2. Exhaustive search algorithms
3. GPU implementation
4. Conclusion
Permutations with many patterns

- How many patterns of size k can a permutation of size n contain?
- What are the optimal permutations like?
- Given n and k, can we construct an optimal permutation?
Universal and prolific permutations

- Permutations with $k!$ patterns of size k are called k-universal.
- They exist iff $n \geq L_k$, with $e^{-2k^2} \leq L_k \leq \left\lceil \frac{k^2+1}{2} \right\rceil$.

5-universal

$\Theta(\sqrt{n}) < k < n - \Theta(\sqrt{n})$, there are $\min[k!, \lceil n/k \rceil]$ patterns.
Universal and prolific permutations

- Permutations with $k!$ patterns of size k are called k-universal.
- They exist iff $n \geq L_k$, with $e^{-2}k^2 \leq L_k \leq \left\lceil \frac{k^2+1}{2} \right\rceil$.

- Permutations with $\binom{n}{k}$ patterns of size $n - k$ are called k-prolific.
- They exist iff $n \geq \left\lceil \frac{k^2}{2} + 2k + 1 \right\rceil$.
- Criterion: $|i - j| + |\sigma_i - \sigma_j| \geq k + 2$ for all $i \neq j$.

5-universal 3-prolific
Universal and prolific permutations

- Permutations with $k!$ patterns of size k are called k-universal.
- They exist iff $n \geq L_k$, with $e^{-2}k^2 \leq L_k \leq \left\lceil \frac{k^2+1}{2} \right\rceil$.

- Permutations with $\binom{n}{k}$ patterns of size $n-k$ are called k-prolific.
- They exist iff $n \geq \left\lceil \frac{k^2}{2} + 2k + 1 \right\rceil$.
- Criterion: $|i - j| + |\sigma_i - \sigma_j| \geq k + 2$ for all $i \neq j$.

- When $\Theta(\sqrt{n}) < k < n - \Theta(\sqrt{n})$, there are $\min[k!, \binom{n}{k}]$ patterns.
Optimal permutations: experimental results

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>119</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>408</td>
<td>526</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>614</td>
<td>1094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>477</td>
<td>1127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>699</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Universal permutations

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1094</td>
<td>3212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>526</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1127</td>
<td>2356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>618</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1867</td>
<td>4368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prolific permutations

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The numbers in the chart represent experimental results for optimal permutations.
Ranking patterns

\[\text{rk}(\sigma, S) = 3 \times 120 + 24 + 6 + 2 = 392 \]

- We rank patterns based on their inversions:

\[\text{rk}(\sigma, S) = \sum_{i,j \in S, i < j, \sigma_i > \sigma_j} |S_{>i}|! \]
Ranking patterns

\[\text{rk}(\sigma, S) = 3 \times 120 + 24 + 6 + 2 = 392 \]

- We rank patterns based on their inversions:
 \[\text{rk}(\sigma, S) = \sum_{i,j \in S, i < j, \sigma_i > \sigma_j} |S_{>i}|! \]

- Computing the rank of every pattern of every permutation (up to symmetries) can be done in time \(\frac{n!}{8} \times \binom{n}{k} \times \binom{k}{2} \).
Iterating over subsets: a combinatorial Gray code

Theorem (Chase, 1976)

There exists an enumeration of $\mathcal{P}_k[n]$ moving one point at a time, without crossing other points.
Iterating over subsets: a combinatorial Gray code

Theorem (Chase, 1976)

There exists an enumeration of \(\mathcal{P}_k[n] \) moving one point at a time, without crossing other points.

- At each step, going from \(\text{rk}(\sigma, S) \) to \(\text{rk}(\sigma, S') \) takes time \(k \).
Iterating over subsets: a combinatorial Gray code

Theorem (Chase, 1976)

There exists an enumeration of $\mathcal{P}_k[n]$ moving one point at a time, without crossing other points.

- At each step, going from $\text{rk}(\sigma, S)$ to $\text{rk}(\sigma, S')$ takes time k.
- This improves the complexity to $\frac{n!}{8} \times \binom{n}{k} \times k$.
Iterating over permutations: another Gray code

Theorem (Johnson, 1963; Trotter, 1962)
There exists an enumeration of \mathfrak{S}_n doing only elementary transpositions.
Iterating over permutations: another Gray code

Theorem (Johnson, 1963; Trotter, 1962)
There exists an enumeration of \mathfrak{S}_n doing only elementary transpositions.

Problem: how to iterate on permutations up to symmetries?
Iterating over permutations, exploiting symmetries

- We divide permutations into classes based on their m-border pattern.
- We discard symmetrical classes ($m = 2$: $\approx 85\%$ of permutations).
Iterating over permutations, exploiting symmetries

We divide permutations into classes based on their m-border pattern.

We discard symmetrical classes ($m = 2$: $\approx 85\%$ of permutations).

Classes are divided into batches by fixing entries to the left and right.

Each batch has $\frac{(n-2m)!}{(2m)!}$ permutations and a Gray code.
Algorithm 1 (small patterns)

- Swapping σ_i and σ_{i+1} only affects patterns containing both.
- In Chase order, computing $rk(\sigma, S)$ and $rk(\sigma', S)$ takes k operations.
Algorithm 1 (small patterns)

- Swapping σ_i and σ_{i+1} only affects patterns containing both.
- In Chase order, computing $r_k(\sigma, S)$ and $r_k(\sigma', S)$ takes k operations.

Algorithm 1

Remember: $c_r = \#\{S \mid r_k(\sigma, S) = r\}$ for $0 \leq r < k!$.

Step $\sigma \xrightarrow{e_i} \sigma'$: For all $S \supset \{i, i+1\}$ in Chase order:
- compute $r = r_k(\sigma, S)$ and $r' = r_k(\sigma', S)$;
- decrement c_r and increment $c_{r'}$.

Complexity: $\frac{n!}{8} \times \binom{n-2}{k-2} \times k$ with $k!$ space.
Algorithm 2 (large patterns)

Swapping σ_i and σ_{i+1} changes $\text{rk}(\sigma^{-1}, S)$ only if $\{\sigma_i, \sigma_{i+1}\} \subset S$ and only by the contribution of the inversion (σ_i, σ_{i+1}).

Complexity: $n! 8^\lceil n/k \rceil$ with $\lceil n/k \rceil$ space.
Swapping σ_i and σ_{i+1} changes $\text{rk}(\sigma^{-1}, S)$ only if $\{\sigma_i, \sigma_{i+1}\} \subset S$ and only by the contribution of the inversion (σ_i, σ_{i+1}).

Algorithm 2

Algorithm 2

Remember: $r_S = \text{rk}(\sigma^{-1}, S)$ for $S \in \mathcal{P}_k[n]$.

Step $\sigma \xrightarrow{e_i} \sigma'$: Initialize a hash table, then for all $S \in \mathcal{P}_k[n]$, do:

- if $\{\sigma_i, \sigma_{i+1}\} \subset S$, $r_S \leftarrow \begin{cases} r_S + |S_{>\sigma_i}|! & \text{if } \sigma_i < \sigma_{i+1}, \\ r_S - |S_{>\sigma_{i+1}}|! & \text{if } \sigma_i > \sigma_{i+1}; \end{cases}$
- add r_S to the table.

Complexity: $\frac{n!}{8} \times \binom{n}{k}$ with $\binom{n}{k}$ space.
Threads and memory on a GPU

- Threads on a GPU are organized in warps (32 threads per warp).
- Warps are (usually) always synchronized and threads can read each other’s registers.

- Warps are organized in blocks (1–32 warps per block).
- Blocks may be synchronized and have access to shared memory.
- Limits: 1024 resident threads, 65536 32-bit registers and 64 kB of shared memory per multiprocessor (46 MPs per GPU).

- Threads in different blocks cannot synchronize (except for atomics).
- They have access to the global memory of the GPU (8 GB) through different caches.
CUDA programming

```c
__global__ void search(perm_t *batches) {
    perm_t p = batches[blockIdx.x];
    /*...*/
}

int main() {
    /*...*/
    search <<< num_batches, 512 >>> (batches);
    /*...*/
}
```

- The above CPU code launches the kernel `search()` with `num_batches` blocks of 512 threads each.
- Threads have access to their block number (`blockIdx.x`) and thread number within their block (`threadIdx.x`).
- An API exists for memory allocation, copy, config, etc.
Algorithm 1: implementation

Remember: \(c_r = \#\{S \mid rk(\sigma, S) = r\} \) for \(0 \leq r < k! \).

Step \(\sigma \xrightarrow{e_i} \sigma' \): For all \(S \supset \{i, i + 1\} \) in Chase order:

- compute \(r = rk(\sigma, S) \) and \(r' = rk(\sigma', S) \);
- decrement \(c_r \) and increment \(c_r' \).

Complexity: \(\frac{n!}{8} \times \left(\frac{n-2}{k-2}\right) \times k \) with \(k! \) space.

- We need \(2k! \) bytes of shared memory per permutation for \((c_r) \).
- If \(k \leq 6 \), we fit 32 permutations per MP (1 warp/permutation).
- If \(k = 7 \), we fit 6 permutations per MP (5 warps/permutation).
- We fit 2 permutations per block (64 or 320 threads/block).
- The Chase orders are precomputed and stored in global memory.
Algorithm 2: implementation

<table>
<thead>
<tr>
<th>Algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember: (r_S = \text{rk}(\sigma^{-1}, S)) for (S \in \mathfrak{S}_k[n]).</td>
</tr>
</tbody>
</table>

| Step \(\sigma \xrightarrow{e_i} \sigma' \): Initialize a hash table, then for all \(S \in \mathfrak{S}_k[n] \), do: |
| - if \(\{\sigma_i, \sigma_{i+1}\} \subset S \), \(r_S \leftarrow \begin{cases} r_s + |S_{>\sigma_i}|! & \text{if } \sigma_i < \sigma_{i+1}, \\ r_s - |S_{>\sigma_{i+1}}|! & \text{if } \sigma_i > \sigma_{i+1}; \end{cases} \) |
| - add \(r_S \) to the table. |

| Complexity: \(\frac{n!}{8} \times \binom{n}{k} \) with \(\binom{n}{k} \) space. |

- When \(\binom{n}{k} \) is large, we use 1024 threads per block.
- We store \(S \) and \(r_S \) in registers (works well for \(\binom{n}{k} \lesssim 20000 \)).
- The hash table is in shared memory.
- Global memory is only needed for writing optimal permutations.
Hash table implementation

__shared__ unsigned int table[TABLE_SIZE];

__device__ void table_zero() {
 for(unsigned int i = threadIdx.x; i < TABLE_SIZE; i += blockDim.x)
 table[i] = 0;
}

__device__ unsigned int hash(unsigned int key) { /*...*/ }

// returns 1 if key was not in table, 0 otherwise
__device__ int table_add(unsigned int key) {
 unsigned int i = hash(key);
 while(1) {
 unsigned int t = atomicCAS(table + i, 0, key);
 if(t == 0 || t == key) return t == 0;
 i = (i+1) % TABLE_SIZE;
 }
}

\[t = \text{atomicCAS}(p, x, y); \iff \{ t = *p; \text{if}(t == x) *p = y; \} \]

- Maximum size of the table: 16384 entries (best when \(\lesssim 50\% \) full).
Perspectives

- What are the permutations with the most patterns of all sizes? (currently found for $n \leq 15$ by adapting Algorithm 2)
- What to do when there are $\gg 8000$ different patterns?
- Can we find necessary conditions for optimal permutations and discard batches a priori?