
Exhaustive search of permutations
with many patterns

Axel Bacher Michael Engen

April 14, 2020

Outline

1 Permutations with many patterns

2 Exhaustive search algorithms

3 GPU implementation

4 Conclusion

Permutations with many patterns

How many patterns of size k can a permutation of size n contain?
What are the optimal permutations like?
Given n and k, can we construct an optimal permutation?

Universal and prolific permutations

[Bevan–Homberger–Tanner 2017, Engen–Vatter 2020]

5-universal

3-prolific

Permutations with k! patterns of size k are called k-universal.
They exist iff n ≥ Lk , with e−2k2 ≤ Lk ≤

⌈ k2+1
2
⌉
.

Permutations with
(n

k
)
patterns of size n − k are called k-prolific.

They exist iff n ≥ dk2/2 + 2k + 1e.
Criterion: |i − j |+ |σi − σj | ≥ k + 2 for all i 6= j .

When Θ(
√

n) < k < n −Θ(
√

n), there are < min
[
k!,
(n

k
)]

patterns.

Universal and prolific permutations

[Bevan–Homberger–Tanner 2017, Engen–Vatter 2020]

5-universal 3-prolific

Permutations with k! patterns of size k are called k-universal.
They exist iff n ≥ Lk , with e−2k2 ≤ Lk ≤

⌈ k2+1
2
⌉
.

Permutations with
(n

k
)
patterns of size n − k are called k-prolific.

They exist iff n ≥ dk2/2 + 2k + 1e.
Criterion: |i − j |+ |σi − σj | ≥ k + 2 for all i 6= j .

When Θ(
√

n) < k < n −Θ(
√

n), there are < min
[
k!,
(n

k
)]

patterns.

Universal and prolific permutations

[Bevan–Homberger–Tanner 2017, Engen–Vatter 2020]

5-universal 3-prolific

Permutations with k! patterns of size k are called k-universal.
They exist iff n ≥ Lk , with e−2k2 ≤ Lk ≤

⌈ k2+1
2
⌉
.

Permutations with
(n

k
)
patterns of size n − k are called k-prolific.

They exist iff n ≥ dk2/2 + 2k + 1e.
Criterion: |i − j |+ |σi − σj | ≥ k + 2 for all i 6= j .

When Θ(
√

n) < k < n −Θ(
√

n), there are < min
[
k!,
(n

k
)]

patterns.

Optimal permutations: experimental results

5

6

7

8

9

10

11

12

13

12
119

+10

408

614

477

220

13
120

+27230

526

1094

1127

699

14

618

1728

2356

1867

988
+1

15

683

2484

4402

4368

2885

1355
+2

16

710

3212

7320

9070

7405

4282

1815

17

720

+4

2380

universal permutations

prolific permutations

Ranking patterns

rk(σ,S) = 3× 120 + 24 + 6 + 2 = 392

We rank patterns based on their inversions:

rk(σ, S) =
∑

i,j∈S, i<j, σi>σj

|S>i |!

Computing the rank of every pattern of every permutation
(up to symmetries) can be done in time n!

8 ×
(n

k
)
×
(k

2
)
.

Ranking patterns

rk(σ,S) = 3× 120 + 24 + 6 + 2 = 392

We rank patterns based on their inversions:

rk(σ, S) =
∑

i,j∈S, i<j, σi>σj

|S>i |!

Computing the rank of every pattern of every permutation
(up to symmetries) can be done in time n!

8 ×
(n

k
)
×
(k

2
)
.

Iterating over subsets: a combinatorial Gray code

Theorem (Chase, 1976)
There exists an enumeration of Pk [n] moving one point at a time,
without crossing other points.

At each step, going from rk(σ, S) to rk(σ, S ′) takes time k.
This improves the complexity to n!

8 ×
(n

k
)
× k.

Iterating over subsets: a combinatorial Gray code

Theorem (Chase, 1976)
There exists an enumeration of Pk [n] moving one point at a time,
without crossing other points.

At each step, going from rk(σ, S) to rk(σ, S ′) takes time k.

This improves the complexity to n!
8 ×

(n
k
)
× k.

Iterating over subsets: a combinatorial Gray code

Theorem (Chase, 1976)
There exists an enumeration of Pk [n] moving one point at a time,
without crossing other points.

At each step, going from rk(σ, S) to rk(σ, S ′) takes time k.
This improves the complexity to n!

8 ×
(n

k
)
× k.

Iterating over permutations: another Gray code

Theorem (Johnson, 1963; Trotter, 1962)
There exists an enumeration of Sn doing only elementary transpositions.

Problem: how to iterate on permutations up to symmetries?

Iterating over permutations: another Gray code

Theorem (Johnson, 1963; Trotter, 1962)
There exists an enumeration of Sn doing only elementary transpositions.

Problem: how to iterate on permutations up to symmetries?

Iterating over permutations, exploiting symmetries

We divide permutations into classes based on their m-border pattern.
We discard symmetrical classes (m = 2: ≈ 85% of permutations).

Classes are divided into batches by fixing entries to the left and right.
Each batch has (n−2m)!

(2m)! permutations and a Gray code.

Iterating over permutations, exploiting symmetries

We divide permutations into classes based on their m-border pattern.
We discard symmetrical classes (m = 2: ≈ 85% of permutations).

Classes are divided into batches by fixing entries to the left and right.
Each batch has (n−2m)!

(2m)! permutations and a Gray code.

Algorithm 1 (small patterns)

Swapping σi and σi+1 only affects patterns containing both.
In Chase order, computing rk(σ, S) and rk(σ′,S) takes k operations.

Algorithm 1
Remember: cr = #{S | rk(σ, S) = r} for 0 ≤ r < k!.

Step σ ei−→ σ′: For all S ⊃ {i , i + 1} in Chase order:
compute r = rk(σ, S) and r ′ = rk(σ′,S);
decrement cr and increment cr ′ .

Complexity: n!
8 ×

(n−2
k−2
)
× k with k! space.

Algorithm 1 (small patterns)

Swapping σi and σi+1 only affects patterns containing both.
In Chase order, computing rk(σ, S) and rk(σ′,S) takes k operations.

Algorithm 1
Remember: cr = #{S | rk(σ, S) = r} for 0 ≤ r < k!.

Step σ ei−→ σ′: For all S ⊃ {i , i + 1} in Chase order:
compute r = rk(σ, S) and r ′ = rk(σ′,S);
decrement cr and increment cr ′ .

Complexity: n!
8 ×

(n−2
k−2
)
× k with k! space.

Algorithm 2 (large patterns)

Swapping σi and σi+1 changes rk(σ−1,S) only if {σi , σi+1} ⊂ S
and only by the contribution of the inversion (σi , σi+1).

Algorithm 2
Remember: rS = rk(σ−1,S) for S ∈ Pk [n].

Step σ ei−→ σ′: Initialize a hash table, then for all S ∈ Pk [n], do:

if {σi , σi+1} ⊂ S, rS ←
{

rS + |S>σi |! if σi < σi+1,
rS − |S>σi+1 |! if σi > σi+1;

add rS to the table.

Complexity: n!
8 ×

(n
k
)
with

(n
k
)
space.

Algorithm 2 (large patterns)

Swapping σi and σi+1 changes rk(σ−1,S) only if {σi , σi+1} ⊂ S
and only by the contribution of the inversion (σi , σi+1).

Algorithm 2
Remember: rS = rk(σ−1,S) for S ∈ Pk [n].

Step σ ei−→ σ′: Initialize a hash table, then for all S ∈ Pk [n], do:

if {σi , σi+1} ⊂ S, rS ←
{

rS + |S>σi |! if σi < σi+1,
rS − |S>σi+1 |! if σi > σi+1;

add rS to the table.

Complexity: n!
8 ×

(n
k
)
with

(n
k
)
space.

Threads and memory on a GPU

Threads on a GPU are organized in warps (32 threads per warp).
Warps are (usually) always synchronized and threads can
read each other’s registers.

Warps are organized in blocks (1–32 warps per block).
Blocks may be synchronized and have access to shared memory.
Limits: 1024 resident threads, 65536 32-bit registers and
64 kB of shared memory per multiprocessor (46 MPs per GPU).

Threads in different blocks cannot synchronize (except for atomics).
They have access to the global memory of the GPU (8 GB)
through different caches.

CUDA programming

__global__ void search(perm_t *batches) {
perm_t p = batches[blockIdx.x];
/*...*/

}

int main() {
/*...*/
search <<< num_batches, 512 >>> (batches);
/*...*/

}

The above CPU code launches the kernel search() with
num_batches blocks of 512 threads each.
Threads have access to their block number (blockIdx.x)
and thread number within their block (threadIdx.x).
An API exists for memory allocation, copy, config, etc.

Algorithm 1: implementation

Algorithm 1
Remember: cr = #{S | rk(σ, S) = r} for 0 ≤ r < k!.

Step σ ei−→ σ′: For all S ⊃ {i , i + 1} in Chase order:
compute r = rk(σ, S) and r ′ = rk(σ′,S);
decrement cr and increment cr ′ .

Complexity: n!
8 ×

(n−2
k−2
)
× k with k! space.

We need 2k! bytes of shared memory per permutation for (cr).
If k ≤ 6, we fit 32 permutations per MP (1 warp/permutation).
If k = 7, we fit 6 permutations per MP (5 warps/permutation).
We fit 2 permutations per block (64 or 320 threads/block).
The Chase orders are precomputed and stored in global memory.

Algorithm 2: implementation

Algorithm 2
Remember: rS = rk(σ−1,S) for S ∈ Pk [n].

Step σ ei−→ σ′: Initialize a hash table, then for all S ∈ Pk [n], do:

if {σi , σi+1} ⊂ S, rS ←
{

rS + |S>σi |! if σi < σi+1,
rS − |S>σi+1 |! if σi > σi+1;

add rS to the table.

Complexity: n!
8 ×

(n
k
)
with

(n
k
)
space.

When
(n

k
)
is large, we use 1024 threads per block.

We store S and rS in registers (works well for
(n

k
)
. 20000).

The hash table is in shared memory.
Global memory is only needed for writing optimal permutations.

Hash table implementation

__shared__ unsigned int table[TABLE_SIZE];

__device__ void table_zero() {
for(unsigned int i = threadIdx.x; i < TABLE_SIZE; i += blockDim.x)

table[i] = 0;
}

__device__ unsigned int hash(unsigned int key) { /*...*/ }

// returns 1 if key was not in table, 0 otherwise
__device__ int table_add(unsigned int key) {

unsigned int i = hash(key);
while(1) {

unsigned int t = atomicCAS(table + i, 0, key);
if(t == 0 || t == key) return t == 0;
i = (i+1) % TABLE_SIZE;

}
}

t = atomicCAS(p, x, y); ⇔ { t = *p; if(t == x) *p = y; }

Maximum size of the table: 16384 entries (best when . 50% full).

Perspectives

What are the permutations with the most patterns of all sizes?
(currently found for n ≤ 15 by adapting Algorithm 2)
What to do when there are � 8000 different patterns?
Can we find necessary conditions for optimal permutations
and discard batches a priori?

	Permutations with many patterns
	Exhaustive search algorithms
	GPU implementation
	Conclusion

