A complete characterization of $\left(f_{0}, f_{1}\right)$-pairs of 6-polytopes

Humboldt-Universität zu Berlin,
Rudower Chaussee 25, 12489 Berlin, Germany
Arxiv : 2012.14380[math.CO]
In Collaboration with Karim Adiprasito

Rémi Cocou Avohou

April 6, 2021

Outline

(1) Introduction
(2) Background
(3) The $\left(f_{0}, f_{1}\right)$-pairs for 6 -polytopes
(4) The $\left(f_{0}, f_{1}\right)$-pairs for 7 -polytopes
(5) Conclusion

Motivations

- The f-vector of a d-polytope P is the vector $\left(f_{0}, f_{1}, \cdots, f_{d-1}\right)$ where faces of P of dimension $0,1,2, d-2$ and $d-1$ are called vertices, edges, subfacets (or ridges), and facets of P, respectively.
- For example the f-vector of a tetrahedron T (a 3-simplex) is $f(T)=(4,6,4)$ and the f-vector of the octahedron is $(6,12,8)$.
- For a simplicial complex Δ of dimension d, its f-vector is $\left(f_{0}(\Delta), \cdots, f_{d}(\Delta)\right)$; $f_{d}(\Delta)=1$. The h-vector is $\left(h_{0}(\Delta), \cdots, h_{d}(\Delta)\right)$ where

$$
h_{k}=\sum_{i=0}^{k}(-1)^{k-i}\binom{d+1-i}{d+1-k} f_{i-1} ;
$$

$\forall k=0, \cdots, d+1$.

Motivations

- We set $f_{-1}=1$. The f-vector and the h-vector uniquely determine each other through the linear relation

$$
\sum_{i=0}^{d} f_{i-1}(t-1)^{d-i}=\sum_{k=0}^{d} h_{k} t^{d-k}
$$

- The g-theorem says that the h -vector increases until the middle $\left(g_{i}=h_{i}-h_{i-1} \geq 0\right)$ and $h_{i}=h_{d-i}$. The h-vector of the tetrahedron is $(1,1,1,1)$ and for the octahedron is $(1,3,3,1)$ and is palindromic. $f_{0}-1, f_{1}-\left(f_{0}-1\right)$, $f_{2}-f_{1}+f_{0}-1=1$. Euler formula $\sum_{i=0}^{d}(-1)^{i} f_{i}=1-(-1)^{d}$.

Motivations

- In 1980 Billera \& Lee and Stanley have proved the characterization of the f-vectors of simplicial and of simple polytopes conjectured by McMullen in 1971 through the famous " g-theorem".
- Grünbaum, Barnette and Barnette-Reay have characterized for any $0 \leq i<j \leq 3$ the following sets:

$$
\left\{\left(f_{i}, f_{j}\right): P \text { is a 4-polytope }\right\} .
$$

- Steinitz found the characterization for $d=3, \mathcal{E}^{3}=\left\{\left(f_{0}, f_{1}\right): \frac{3}{2} f_{0} \leq f_{1} \leq 3 f_{0}-6\right\}$.

Motivations

- For $d=4,5$ the results is given by the set $S=\left\{\left(f_{0}, f_{1}\right): \frac{d}{2} f_{0} \leq f_{1} \leq\binom{ f_{0}}{2}\right\}$ from which some exceptions have been removed.
- Grünbaum proved the case $d=4$ by removing four exceptions: $(6,12),(7,14)$, $(8,17)$ and $(10,20)$.
- The case $d=5$ becomes more complicated and has been proved in two different ways by G. Pineda-Villavicencio, J. Ugon and D. Yost, and more recently by T. Kusunoki and S. Murai. For this case, exceptions are infinitely many:

$$
\begin{align*}
\mathcal{E}^{5}= & \left\{\left(f_{0}, f_{1}\right): \frac{5}{2} f_{0} \leq f_{1} \leq\binom{ f_{0}}{2}\right\} \backslash \\
& \left(\left\{\left(f_{0},\left\lfloor\frac{5}{2} f_{0}+1\right\rfloor\right): f_{0} \geq 7\right\} \cup\{(8,20),(9,25),(13,35)\}\right), \tag{1}
\end{align*}
$$

where $\lfloor r\rfloor$ denotes the integer part of a rational number r.

Definitions and background

- The excess degree or excess $\Sigma(P)$ of a d-polytope P is defined as the sum of the excess degrees of its vertices and given by $\epsilon(P)=2 f_{1}-d f_{0}=\sum_{u}(\operatorname{deg}(u)-d)$.
- (Proposition 1 G. Pineda-Villavicencio, J. Ugon and D. Yost) Let P be a d-polytope. Then the smallest values of $\Sigma(P)$ are 0 and $d-2$.
- We set for all d-dimensional polytopes $\phi(v, d)=\frac{1}{2} d v+\frac{1}{2}(v-d-1)(2 d-v)$.
- (Proposition 2) Let P be a d-polytope. If $f_{0}(P) \leq 2 d$, then $f_{1}(P) \geq \phi\left(f_{0}(P), d\right)$. If $d \geq 4$, then $\left(f_{0}(P), f_{1}(P)\right) \neq(d+4, \phi(d+4, d)+1)$.
- D. W. Barnette proved that for all d-dimensional simplicial polytope the following inequality holds: $f_{d-1} \geq(d-1) f_{0}-(d+1)(d-2)$.

$\left(f_{0}, f_{1}\right)$-vectors pairs for 6-polytopes

- If P is a 6-polytope having a simple vertex v and Q the 6 -polytope obtained from P by truncating the vertex v then

$$
f_{0}(Q)=f_{0}(P)+5 \text { and } f_{1}(Q)=f_{1}(P)+15
$$

We can prove that if for a 6-polytope P we have $f_{1}(P) \leq \frac{7}{2} f_{0}(P)$ then P has at least one simple vertex.

- (Theorem 1) The set of $\left(f_{0}, f_{1}\right)$-vectors pairs for 6 -polytopes is given by

$$
\begin{gathered}
\mathcal{E}^{6}=\left\{\left(f_{0}, f_{1}\right): 3 f_{0} \leq f_{1} \leq\binom{ f_{0}}{2}\right\} \backslash\left(\left\{\left(f_{0}, 3 f_{0}+1\right): f_{0} \geq 7\right\} \cup\right. \\
\{(8,24) ;(9,27) ;(9,29) ;(10,30) ;(10,32) ;(10,34) ;(11,33) ;(12,38) ;(12,39) ;(13,39) \\
(14,42) ;(14,44) ;(15,47) ;(18,54) ;(19,57) ;(17,53) ;(20,62)\})
\end{gathered}
$$

Proof

- If P is a d-polytope with $d>4$, then

$$
\begin{equation*}
f_{1}(P) \neq\left\lfloor\frac{d}{2} f_{0}(P)+1\right\rfloor . \tag{3}
\end{equation*}
$$

- Assume that $f_{1}(P)=\left\lfloor\frac{d}{2} f_{0}(P)+1\right\rfloor$. If $f_{0}(P)$ is even then $2 f_{1}(P)-d f_{0}(P)=2$ and $0<2<d-2$ which is impossible since from Proposition $1, \Sigma(P)$ can not take any value between 0 and $d-2$. If $f_{0}(P)$ is odd then $2 f_{1}(P)-d f_{0}(P)=1$ and $0<1<d-2$ which is also impossible.
- The following relations hold $(8,24) ;(9,27) ;(9,29) ;(10,30) ;(10,32) ;(10,34) ;(11,33) \notin \mathcal{E}^{6}$ and $\left(f_{0}+1,\left\lfloor\frac{7}{2} f_{0}+1\right\rfloor\right) \notin \mathcal{E}^{6}$ for $f_{0}=7,8,9$.

Proof

- The fact that $(10,34) \notin \mathcal{E}^{6}$ is given by Proposition 2 (2) and all the remaining are given by Proposition 2 (1).
- (Lemma 1) The following result is obtained from pyramids over 5-polytopes

$$
\begin{array}{r}
\left\{\left(f_{0}, f_{1}\right): \frac{7}{2} f_{0}-\frac{7}{2} \leq f_{1} \leq\binom{ f_{0}}{2}\right\} \backslash \\
\left(\left\{\left(f_{0}+1,\left\lfloor\frac{7}{2} f_{0}+1\right\rfloor\right): f_{0} \geq 7\right\} \cup\{(9,28),(10,34),(14,48)\}\right) \subset \mathcal{E}^{6} \tag{4}
\end{array}
$$

- There is no 6-polytope with 11 vertices and 36 edges and no 6 -polytope with 12 vertices and 38 edges.

Proof

- The following exist $(13,43),(14,48) \in \mathcal{E}^{6}$.
- There is no 6 -polytope with 12 vertices and 39 edges.
- (Lemma 2) For an odd integer $f_{0} \geq 12$ we have $\left(f_{0}+1,\left\lfloor\frac{7}{2} f_{0}+1\right\rfloor\right) \in \mathcal{E}^{6}$. Furthermore if $\left(f_{0}+1,\left\lfloor\frac{7}{2} f_{0}+1\right\rfloor\right) \in \mathcal{E}^{6}$, then $\left(f_{0}+7,\left\lfloor\frac{7}{2}\left(f_{0}+6\right)+1\right\rfloor\right) \in \mathcal{E}^{6}$.
- Suppose that f_{0} is odd. If $f_{0} \geq 12$ then $f_{0}-4 \geq 8$ and from Lemma 1 , $\left(f_{0}-4,\left\lfloor\frac{7}{2}\left(f_{0}-4\right)\right\rfloor\right) \in \mathcal{E}^{6}$. Also $\left\lfloor\frac{7}{2}\left(f_{0}-4\right)\right\rfloor<\frac{7}{2}\left(f_{0}-4\right)$ as $f_{0}-4$ is odd then $\left(f_{0}+1,\left[\frac{T}{2} f_{0}+1\right\rfloor\right) \in \mathcal{E}^{6}$ by truncation of simple vertex.
- Let P be a 6 -polytope with $\left(f_{0}, f_{1}\right)$-pairs equal to $\left(f_{0}(P)+1,\left\lfloor\frac{7}{2} f_{0}(P)+1\right\rfloor\right) \in \mathcal{E}^{6}$ then after the truncation of a simple vertex of P and a pyramid over a simplex facet of the resulting polytope we obtain a 6-polytope Q with $f_{0}(Q)=f_{0}(P)+7$ and $f_{1}(Q)=\left\lfloor\frac{7}{2}\left(f_{0}(P)+6\right)+1\right\rfloor$.
- For any integer f_{0} satisfying $f_{0} \geq 12,\left(f_{0}+1,\left\lfloor\frac{7}{2} f_{0}+1\right\rfloor\right) \in \mathcal{E}^{6}$.
- Assume that $f_{0} \geq 12$. From Lemma 2 it is enough to check the result for $f_{0}=12,13,14,15,16,17$. The cases $f_{0}=12,13,15,17$ come from Lemma 2. We now consider $f_{0}=14,16$ which are $(15,50)$ and $(17,57)$.
- Consider the 6-polytope P with $f_{0}(P)=10$ and $f_{1}(P)=35$ obtained from a pyramid over a 5-polytope Q.
- If we assume that P has no simple vertex then each of its vertices has degree 7 since $\sum_{v \in P} \operatorname{deg}(v)=70$ and this is impossible since taking a pyramid over Q implies that P has a vertex of degree 9 .
- Then P has a simple vertex which truncation gives a polytope P^{\prime} with $f_{0}\left(P^{\prime}\right)=15$ and $f_{1}(P)=50$. Hence $(15,50) \in \mathcal{E}^{6}$.
Let R be a 6 -polytope with $f_{0}(R)=12$ and $f_{1}(P)=42$ obtained from a pyramid over a 5-polytope. The same procedure as above gives $(17,57) \in \mathcal{E}^{6}$.
- The following polytopes pairs do not exist:

$$
(13,39) ;(14,42) ;(14,44) ;(15,47) ;(18,54),(19,57) \notin \mathcal{E}^{6}
$$

- Consider the case $(19,57)$ which is a simple polytope if it exists. Let P be such polytope. The dual P^{\star} of P is a simplicial polytope with f-vector sequence $\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$ where $f_{4}=57$ and $f_{5}=19$.
- For all d-dimensional simplicial polytope the following inequality holds: $f_{d-1} \geq(d-1) f_{0}-(d+1)(d-2)$. Then $f_{5} \geq 5 f_{0}-28$ implies that $f_{0}=8$ or $f_{0}=9$.
- The g-theorem for simplicial polytopes says that the sequence of integers $\left(h_{0}, \cdots, h_{7}\right)$ is the h-vector of P^{\star}. We also have $h_{i}=h_{7-i} \forall i=0, \cdots, 7$ and now compute the numbers $h_{i}^{\prime} s$ and obtain:

$$
\begin{align*}
& h_{1}=-7+f_{0}, \\
& h_{2}=21-6 f_{0}+f_{1}, \\
& h_{3}=-35+15 f_{0}-5 f_{1}+f_{2}, \\
& h_{4}=35-20 f_{0}+10 f_{1}-4 f_{2}+f_{3}, \\
& h_{5}=-21+15 f_{0}-10 f_{1}+6 f_{2}-3 f_{3}+f_{4}, \\
& h_{6}=7-6 f_{0}+5 f_{1}-4 f_{2}+3 f_{3}-2 f_{4}+f_{5} . \tag{5}
\end{align*}
$$

- From $h_{1}=h_{6}$ and $h_{2}=h_{5}$ we get $f_{2}=\frac{1}{2}\left(28-14 f_{0}+6 f_{1}+f_{4}-f_{5}\right)$ and the system of equations $h_{3}=h_{4} ; h_{2}=h_{5}$ also gives $f_{2}=\frac{1}{9}\left(168-84 f_{0}+34 f_{1}+f_{4}\right)$.
- Equaling these two expressions of f_{2} we get $f_{1}=\frac{1}{14}\left(-84+42 f_{0}+7 f_{4}-9 f_{5}\right)$ which is not an integer for $f_{0}=8,9$. In conclusion $(19,57) \notin \mathcal{E}^{6}$.
- The following pairs are possible:

$$
(15,45) ;(15,49) ;(16,48) ;(17,54) ;(19,59) ;(23,69) ;(24,72) ;(27,83) ;(35,107) \in \mathcal{E}^{6}
$$

- We set

$$
\begin{aligned}
& X^{\prime}=\{(8,24) ;(9,27) ;(9,29) ;(10,30) ;(10,32) ;(10,34) ;(11,33) ;(11,36) ;(12,38) ; \\
&(12,39) ;(13,39) ;(14,42) ;(14,44) ;(15,47) ;(18,54) ;(17,53) ;(19,57) ;(20,62)\}
\end{aligned}
$$

- For $f_{0} \geq 7$; if $\left(f_{0}, f_{1}\right) \notin X^{\prime}$ and $\left.f_{1} \in\left\{3 f_{0}\right\} \cup\right] 3 f_{0}+1, \frac{7}{2} f_{0}-\frac{7}{2}\left[\right.$ then $\left(f_{0}, f_{1}\right) \in \mathcal{E}^{6}$.
- The cases $(17,53) ;(20,62)$ are unfeasible and $(22,68) ;(25,77) ;(30,92) \in \mathcal{E}^{6}$ holds.
- Let $\mathcal{E}^{d}{ }_{3 d-10}$ be the set of d-polytopes whose excess degree is larger than $3 d-10$. For $d=4$, the set $\mathcal{E}_{>2}^{4}$ of 4 -polytopes whose excess degree is larger than 2 is given by:

$$
\mathcal{E}_{>2}^{4}=\left\{\left(f_{0}, f_{1}\right): 1+2 f_{0}<f_{1} \leq\binom{ f_{0}}{2}\right\} .
$$

The case $d=7$

- In the same way for $d=5,6$ we obtain:

$$
\mathcal{E}_{>5}^{5}=\left\{\left(f_{0}, f_{1}\right): \frac{5}{2}+\frac{5}{2} f_{0}<f_{1} \leq\binom{ f_{0}}{2}\right\}
$$

and

$$
\mathcal{E}_{>8}^{6}=\left\{\left(f_{0}, f_{1}\right): 4+3 f_{0}<f_{1} \leq\binom{ f_{0}}{2}\right\}
$$

- (Theorem 2) Let \mathcal{E}^{7} be the set of $\left(f_{0}, f_{1}\right)$-pairs of 7 -polytopes. For $v=(p, q)$ such that $p \geq 8$ and $\frac{7}{2} p \leq q \leq\binom{ p}{2}$, if $v \notin \mathcal{E}^{7}$ then $\epsilon_{7}(v) \leq 4 \times 7-10=11$. In other words the set of (f_{0}, f_{1})-vector pairs for 7 -polytopes with excess strictly larger than 11 is given by

$$
\mathcal{E}_{>11}^{7}=\left\{\left(f_{0}, f_{1}\right): \frac{7}{2} f_{0}+\frac{11}{2}<f_{1} \leq\binom{ f_{0}}{2}\right\}
$$

With $\epsilon_{d}(v)=2 q-d p$.

The case $d=7$

- From the previous section we had

$$
\begin{array}{r}
\mathcal{E}^{6}=\left\{\left(f_{0}, f_{1}\right): 3 f_{0} \leq f_{1} \leq\binom{ f_{0}}{2}\right\} \backslash\left(\left\{\left(f_{0}, 3 f_{0}+1\right): f_{0} \geq 7\right\} \cup\right. \\
\{(8,24) ;(9,27) ;(9,29) ;(10,30) ;(10,32) ;(10,34) ;(11,33) ;(12,38) ;(12,39) ; \\
(13,39) ;(14,42) ;(14,44) ;(15,47) ;(18,54) ;(19,57) ;(17,53) ;(20,62)\}) \tag{6}
\end{array}
$$

- A pyramid over the 6-polytopes gives:

$$
\begin{array}{r}
\left\{\left(f_{0}, f_{1}\right): 4 f_{0}-4 \leq f_{1} \leq\binom{ f_{0}}{2}\right\} \backslash\left(\left\{\left(f_{0}+1,4 f_{0}+1\right): f_{0} \geq 7\right\} \cup\right. \\
\{(9,32) ;(10,36) ;(10,38) ;(11,40) ;(11,42) ;(11,44) ;(12,44) ;(13,50) ;(13,51) \\
(14,52) ;(15,56) ;(15,58) ;(16,62) ;(18,70) ;(19,72) ;(20,76) ;(21,82)\}) \subset \mathcal{E}^{7} .
\end{array}
$$

Proof

- A direct computation shows that $\epsilon_{7}\left(\left(f_{0}+1,4 f_{0}+1\right)\right)>11$ if and only if $f_{0}>17$. Assume that $f_{0}>17$ and let us prove that $\left(f_{0}-6,3 f_{0}-14\right) \in \mathcal{E}^{6}$.
- We have $\epsilon_{6}\left(\left(f_{0}-6,3 f_{0}-14\right)\right)=8$ and if $\left(f_{0}-6,3 f_{0}-14\right) \notin \mathcal{E}^{6}$ then $\left(f_{0}-6,3 f_{0}-14\right)=(10,34)$, because $(10,34)$ is the only vector not in \mathcal{E}^{6} with excess equal to 8 .
- Therefore we get $f_{0}=16$ which is a contradiction. In conclusion for $f_{0}>17$ there is a 6-polytope P with (f_{0}, f_{1})-pair ($f_{0}-6,3 f_{0}-14$); and a pyramid over P give a 7-polytope Q having (f_{0}, f_{1})-vector which is equal to ($f_{0}-5,4 f_{0}-20$).
- As $4\left(f_{0}-5\right)<\left(4 f_{0}-20\right)+1$ the polytope Q has a simple vertex whose truncation gives a 7 -polytope having (f_{0}, f_{1})-pair equals $\left(f_{0}+1,4 f_{0}+1\right)$.

Proof

- We can conclude that all the 7 -polytopes with excess greater than 11 and with (f_{0}, f_{1})-pairs in $\left\{\left(f_{0}+1,4 f_{0}+1\right): f_{0} \geq 7\right\}$ exist.
- Let us focus on the set

$$
\begin{aligned}
L=\{ & (9,32) ;(10,36) ;(10,38) ;(11,40) ;(11,42) ;(11,44) ;(12,44) ;(13,50) ;(13,51) ; \\
& (14,52) ;(15,56) ;(15,58) ;(16,62) ;(18,70) ;(19,72) ;(20,76) ;(21,82)\} .
\end{aligned}
$$

- The only vectors $v=(p, q) \in L$ with $\epsilon_{7}(v)>11$ are

$$
v=(p, q)=(16,62) ;(18,70) ;(20,76) ;(21,82) ;(23,90) ;(26,102) ;(31,123) .
$$

Proof

- For $v=(p, q)=(16,62) ;(20,76) ;(21,82) ;(26,102) ;(31,123)$, we compute $v^{\prime}=(p-8, q-p-20)=(8,26) ;(12,36) ;(13,41) ;(18,56) ;(23,72) \in \mathcal{E}^{6}$.
- Then their exist 6-polytopes $P_{v^{\prime}}$ whose $\left(f_{0}, f_{1}\right)$-pairs are equal to v^{\prime}. A pyramid over them give 7-polytopes having (f_{0}, f_{1})-pairs equal to $(p-7, q-28)=(9,34) ;(13,48) ;(14,54) ;(19,74) ;(24,95)$.
- In each case we observe that $q-28<4(p-7)$ which means that each of them has a simple vertex whose truncation give 7-polytopes with $\left(f_{0}, f_{1}\right)$-pairs equal to $(p-1, q-7)$. As truncations of simple vertices generate simplex facets then pyramids on these give the result.

Proof

- Consider $v=(18,70)$. There is a 6 -polytope R with $\left(f_{0}, f_{1}\right)=(10,35)$. A pyramid over R gives a 7 -polytope R^{\prime} having $\left(f_{0}, f_{1}\right)$-vector equal to $(11,42)$. As $42<4 \times 11$ then R^{\prime} has a simple vertex whose truncation gives a 7 -polytopes $R^{\prime \prime}$ with $\left(f_{0}\left(R^{\prime \prime}\right), f_{1}\left(R^{\prime \prime}\right)\right)=(17,63)$.
- The truncation of a simple vertex in $R^{\prime \prime}$ with generate a simplex facet F and a pyramid other F gives a 7 -polytope with (f_{0}, f_{1})-vector equal to (18,70). The same method works for $(23,90)$.
- We now turn to the pair $v=\left(f_{0}, f_{1}\right)$ with $f_{0} \geq 8$ and $\left.f_{1} \in\right]_{2}^{\frac{7}{2}} f_{0}, 4 f_{0}+1[$. The condition $\epsilon_{7}(v)>11$ implies that $f_{1} \geq \frac{11}{2}+\frac{7}{2} f_{0}$ and then we need to discuss two cases: $\frac{11}{2}+\frac{7}{2} f_{0}>4 f_{0}-4$ and $\frac{11}{2}+\frac{7}{2} f_{0}<4 f_{0}-4$.

Proof

- If $\frac{11}{2}+\frac{7}{2} f_{0}>4 f_{0}-4$ then there is nothing else to prove as we end up in the pyramid case. Suppose that $\frac{11}{2}+\frac{7}{2} f_{0}<4 f_{0}-4$ i.e. $f_{0}>19$ and set for k, $X_{k}^{7}=\left\{\left(k, f_{1}\right) ; \frac{11}{2}+\frac{7}{2} k<f_{1}<4 k-4\right\}$.
- We can prove by truncation that if $X_{k}^{7} \subset \mathcal{E}_{>11}^{7}$, then $X_{k+6}^{7} \subset \mathcal{E}_{>11}^{7}$. To prove that each vector $\left(f_{0}, f_{1}\right)$ satisfying this condition defines a 7 -polytope it is sufficient to show that $X_{k}^{7} \subset \mathcal{E}_{>11}^{7}$ for $k=8, \cdots, 13$. Which have already been solved.
- Finally we conclude that all the pairs (p, q) with $p \geq 8, \epsilon_{7}(v)>11$ and $\frac{7}{2} p \leq q \leq\binom{ p}{2}$, characterize 7 -polytopes. In other words the set of $\left(f_{0}, f_{1}\right)$-vectors pair for 7-polytopes with excess strictly larger than 11 is given by

$$
\mathcal{E}_{>11}^{7}=\left\{\left(f_{0}, f_{1}\right): \frac{7}{2} f_{0}+\frac{11}{2}<f_{1} \leq\binom{ f_{0}}{2}\right\}
$$

Conjecture

Let $d \geq 4$ be an integer and \mathcal{E}^{d} be the set of $\left(f_{0}, f_{1}\right)$-pairs of d-polytopes. For $v=(p, q)$ such that $p \geq d+1$ and $\frac{d}{2} p \leq q \leq\binom{ p}{2}$, if $v \notin \mathcal{E}^{d}$ then $2 q-d p \leq 4 d-10$. In other words the set of (f_{0}, f_{1})-pairs for d-polytopes; $d \geq 4$ with excess strictly larger than $3 d-10$ is given by

$$
\mathcal{E}_{>3 d-10}^{d}=\left\{\left(f_{0}, f_{1}\right): \frac{d}{2} f_{0}+\frac{3 d-10}{2}<f_{1} \leq\binom{ f_{0}}{2}\right\} .
$$

