A complete characterization of (f_0, f_1) -pairs of 6-polytopes

Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin, Germany Arxiv : 2012.14380[math.CO] In Collaboration with Karim Adiprasito

Rémi Cocou Avohou

April 6, 2021

Outline

Plan

Motivations

- The *f*-vector of a *d*-polytope *P* is the vector (*f*₀, *f*₁, · · · , *f*_{*d*-1}) where faces of *P* of dimension 0, 1, 2, *d* − 2 and *d* − 1 are called vertices, edges, subfacets (or ridges), and facets of *P*, respectively.
- For example the *f*-vector of a tetrahedron *T* (a 3-simplex) is *f*(*T*) = (4, 6, 4) and the *f*-vector of the octahedron is (6, 12, 8).
- For a simplicial complex Δ of dimension d, its f-vector is $(f_0(\Delta), \dots, f_d(\Delta))$; $f_d(\Delta) = 1$. The *h*-vector is $(h_0(\Delta), \dots, h_d(\Delta))$ where

$$h_k = \sum_{i=0}^k (-1)^{k-i} {d+1-i \choose d+1-k} f_{i-1};$$

 $\forall k = 0, \cdots, d+1.$

 $\begin{array}{c} {\rm Introduction}\\ {\rm Background}\\ {\rm The}\;(f_0\,,\,f_1)\text{-pairs for 6-polytopes}\\ {\rm The}\;(f_0\,,\,f_1)\text{-pairs for 7-polytopes}\\ {\rm Conclusion}\end{array}$

Motivations

• We set $f_{-1} = 1$. The *f*-vector and the *h*-vector uniquely determine each other through the linear relation

$$\sum_{i=0}^d f_{i-1}(t-1)^{d-i} = \sum_{k=0}^d h_k t^{d-k}$$

• The g-theorem says that the h-vector increases until the middle $(g_i = h_i - h_{i-1} \ge 0)$ and $h_i = h_{d-i}$. The h-vector of the tetrahedron is (1, 1, 1, 1) and for the octahedron is (1, 3, 3, 1) and is palindromic. $f_0 - 1$, $f_1 - (f_0 - 1)$, $f_2 - f_1 + f_0 - 1 = 1$. Euler formula $\sum_{i=0}^{d} (-1)^i f_i = 1 - (-1)^d$.

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Background}\\ \mbox{The} (f_0, f_1)\mbox{-pairs for 6-polytopes}\\ \mbox{The} (f_0, f_1)\mbox{-pairs for 7-polytopes}\\ \mbox{Conclusion} \end{array}$

Motivations

- In 1980 Billera & Lee and Stanley have proved the characterization of the *f*-vectors of simplicial and of simple polytopes conjectured by McMullen in 1971 through the famous "*g*-theorem".
- Grünbaum, Barnette and Barnette-Reay have characterized for any $0 \le i < j \le 3$ the following sets:

$$\Big\{ \big(f_i, f_j\big) : P \text{ is a 4-polytope } \Big\}.$$

• Steinitz found the characterization for d = 3, $\mathcal{E}^3 = \{(f_0, f_1) : \frac{3}{2}f_0 \le f_1 \le 3f_0 - 6\}$.

Motivations

- For d = 4,5 the results is given by the set S = {(f₀, f₁) : ^d/₂ f₀ ≤ f₁ ≤ (^{f₀}/₂)} from which some exceptions have been removed.
- Grünbaum proved the case d = 4 by removing four exceptions: (6, 12), (7, 14), (8, 17) and (10, 20).
- The case *d* = 5 becomes more complicated and has been proved in two different ways by G. Pineda-Villavicencio, J. Ugon and D. Yost, and more recently by T. Kusunoki and S. Murai. For this case, exceptions are infinitely many:

$$\begin{aligned} \mathcal{E}^5 &= \left\{ (f_0, f_1) : \frac{5}{2} f_0 \leq f_1 \leq \begin{pmatrix} f_0 \\ 2 \end{pmatrix} \right\} \setminus \\ & \left(\left\{ \left(f_0, \left\lfloor \frac{5}{2} f_0 + 1 \right\rfloor \right) : f_0 \geq 7 \right\} \cup \left\{ (8, 20), (9, 25), (13, 35) \right\} \right), \end{aligned}$$

where $\lfloor r \rfloor$ denotes the integer part of a rational number *r*.

 $\begin{array}{c} \text{Introduction}\\ \textbf{Background}\\ \text{The }(f_0,f_1)\text{-pairs for 6-polytopes}\\ \text{The }(f_0,f_1)\text{-pairs for 7-polytopes}\\ \text{Conclusion}\\ \end{array}$

Definitions and background

- The excess degree or excess Σ(P) of a d-polytope P is defined as the sum of the excess degrees of its vertices and given by ε(P) = 2f₁ − df₀ = Σ_u(deg(u) − d).
- (Proposition 1 G. Pineda-Villavicencio, J. Ugon and D. Yost) Let P be a d-polytope. Then the smallest values of Σ(P) are 0 and d − 2.
- We set for all *d*-dimensional polytopes $\phi(v, d) = \frac{1}{2}dv + \frac{1}{2}(v d 1)(2d v)$.
- (Proposition 2) Let P be a d-polytope. If $f_0(P) \le 2d$, then $f_1(P) \ge \phi(f_0(P), d)$. If $d \ge 4$, then $(f_0(P), f_1(P)) \ne (d + 4, \phi(d + 4, d) + 1)$.
- D. W. Barnette proved that for all *d*-dimensional simplicial polytope the following inequality holds: f_{d−1} ≥ (d − 1)f₀ − (d + 1)(d − 2).

(f_0, f_1) -vectors pairs for 6-polytopes

<

• If *P* is a 6-polytope having a simple vertex *v* and *Q* the 6-polytope obtained from *P* by truncating the vertex *v* then

$$f_0(Q) = f_0(P) + 5$$
 and $f_1(Q) = f_1(P) + 15$.

We can prove that if for a 6-polytope P we have $f_1(P) \leq \frac{7}{2}f_0(P)$ then P has at least one simple vertex.

• (Theorem 1) The set of (f_0, f_1) -vectors pairs for 6-polytopes is given by

$$\mathcal{E}^{6} = \left\{ (f_{0}, f_{1}) : 3f_{0} \leq f_{1} \leq \binom{f_{0}}{2} \right\} \setminus \left(\left\{ \left(f_{0}, 3f_{0} + 1 \right) : f_{0} \geq 7 \right\} \cup \left\{ (8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33); (12, 38); (12, 39); (13, 39); (14, 42); (14, 44); (15, 47); (18, 54); (19, 57); (17, 53); (20, 62) \right\} \right).$$

 $\begin{tabular}{l} lntroduction \\ Background \\ \end{tabular} The (f_0, f_1)-pairs for 6-polytopes \\ The (f_0, f_1)-pairs for 7-polytopes \\ Conclusion \end{tabular} \end{tabular} \end{tabular}$

Proof

• If P is a d-polytope with d > 4, then

$$f_1(P) \neq \left\lfloor \frac{d}{2} f_0(P) + 1 \right\rfloor.$$
(3)

- Assume that $f_1(P) = \lfloor \frac{d}{2}f_0(P) + 1 \rfloor$. If $f_0(P)$ is even then $2f_1(P) df_0(P) = 2$ and 0 < 2 < d 2 which is impossible since from Proposition 1, $\Sigma(P)$ can not take any value between 0 and d 2. If $f_0(P)$ is odd then $2f_1(P) df_0(P) = 1$ and 0 < 1 < d 2 which is also impossible.
- The following relations hold (8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33) $\notin \mathcal{E}^6$ and $(f_0 + 1, \lfloor \frac{7}{2}f_0 + 1 \rfloor) \notin \mathcal{E}^6$ for $f_0 = 7, 8, 9$.

Proof

- The fact that (10, 34) ∉ E⁶ is given by Proposition 2 (2) and all the remaining are given by Proposition 2 (1).
- (Lemma 1) The following result is obtained from pyramids over 5-polytopes

$$\left\{ (f_0, f_1) : \frac{7}{2}f_0 - \frac{7}{2} \le f_1 \le \begin{pmatrix} f_0 \\ 2 \end{pmatrix} \right\} \setminus \left(\left\{ \left(f_0 + 1, \left\lfloor \frac{7}{2}f_0 + 1 \right\rfloor \right) : f_0 \ge 7 \right\} \cup \left\{ (9, 28), (10, 34), (14, 48) \right\} \right) \subset \mathcal{E}^6.$$
(4)

• There is no 6-polytope with 11 vertices and 36 edges and no 6-polytope with 12 vertices and 38 edges.

- The following exist $(13, 43), (14, 48) \in \mathcal{E}^6$.
- There is no 6-polytope with 12 vertices and 39 edges.
- (Lemma 2) For an odd integer $f_0 \geq 12$ we have $(f_0 + 1, \lfloor \frac{7}{2}f_0 + 1 \rfloor) \in \mathcal{E}^6$. Furthermore if $(f_0 + 1, \lfloor \frac{7}{2}f_0 + 1 \rfloor) \in \mathcal{E}^6$, then $(f_0 + 7, \lfloor \frac{7}{2}(f_0 + 6) + 1 \rfloor) \in \mathcal{E}^6$.
- Suppose that f_0 is odd. If $f_0 \ge 12$ then $f_0 4 \ge 8$ and from Lemma 1, $(f_0 4, \lfloor \frac{7}{2}(f_0 4) \rfloor) \in \mathcal{E}^6$. Also $\lfloor \frac{7}{2}(f_0 4) \rfloor < \frac{7}{2}(f_0 4)$ as $f_0 4$ is odd then $(f_0 + 1, \lfloor \frac{7}{2}f_0 + 1 \rfloor) \in \mathcal{E}^6$ by truncation of simple vertex.

- Let *P* be a 6-polytope with (f_0, f_1) -pairs equal to $(f_0(P) + 1, \lfloor \frac{7}{2}f_0(P) + 1 \rfloor) \in \mathcal{E}^6$ then after the truncation of a simple vertex of *P* and a pyramid over a simplex facet of the resulting polytope we obtain a 6-polytope *Q* with $f_0(Q) = f_0(P) + 7$ and $f_1(Q) = \lfloor \frac{7}{2}(f_0(P) + 6) + 1 \rfloor$.
- For any integer f_0 satisfying $f_0 \ge 12$, $\left(f_0 + 1, \left\lfloor \frac{7}{2}f_0 + 1 \right\rfloor\right) \in \mathcal{E}^6$.
- Assume that $f_0 \ge 12$. From Lemma 2 it is enough to check the result for $f_0 = 12, 13, 14, 15, 16, 17$. The cases $f_0 = 12, 13, 15, 17$ come from Lemma 2. We now consider $f_0 = 14, 16$ which are (15, 50) and (17, 57).

- Consider the 6-polytope P with $f_0(P) = 10$ and $f_1(P) = 35$ obtained from a pyramid over a 5-polytope Q.
- If we assume that P has no simple vertex then each of its vertices has degree 7 since ∑_{v∈P} deg(v) = 70 and this is impossible since taking a pyramid over Q implies that P has a vertex of degree 9.
- Then P has a simple vertex which truncation gives a polytope P' with f₀(P') = 15 and f₁(P) = 50. Hence (15, 50) ∈ E⁶.
 Let R be a 6-polytope with f₀(R) = 12 and f₁(P) = 42 obtained from a pyramid over a 5-polytope. The same procedure as above gives (17, 57) ∈ E⁶.
- The following polytopes pairs do not exist:

 $(13, 39); (14, 42); (14, 44); (15, 47); (18, 54), (19, 57) \notin \mathcal{E}^{6}.$

- Consider the case (19, 57) which is a simple polytope if it exists. Let P be such polytope. The dual P^* of P is a simplicial polytope with f-vector sequence $(f_0, f_1, f_2, f_3, f_4, f_5)$ where $f_4 = 57$ and $f_5 = 19$.
- For all d-dimensional simplicial polytope the following inequality holds: $f_{d-1} \ge (d-1)f_0 - (d+1)(d-2)$. Then $f_5 \ge 5f_0 - 28$ implies that $f_0 = 8$ or $f_0 = 9$.
- The g-theorem for simplicial polytopes says that the sequence of integers
 (h₀, ..., h₇) is the h-vector of P^{*}. We also have h_i = h_{7-i} ∀ i = 0, ..., 7 and now
 compute the numbers h_i's and obtain:

$$\begin{array}{rcl} h_1 &=& -7+f_0, \\ h_2 &=& 21-6f_0+f_1, \\ h_3 &=& -35+15f_0-5f_1+f_2, \\ h_4 &=& 35-20f_0+10f_1-4f_2+f_3, \\ h_5 &=& -21+15f_0-10f_1+6f_2-3f_3+f_4, \\ h_6 &=& 7-6f_0+5f_1-4f_2+3f_3-2f_4+f_5. \end{array}$$

- From $h_1 = h_6$ and $h_2 = h_5$ we get $f_2 = \frac{1}{2}(28 14f_0 + 6f_1 + f_4 f_5)$ and the system of equations $h_3 = h_4$; $h_2 = h_5$ also gives $f_2 = \frac{1}{9}(168 84f_0 + 34f_1 + f_4)$.
- Equaling these two expressions of f₂ we get f₁ = ¹/₁₄(-84 + 42f₀ + 7f₄ 9f₅) which is not an integer for f₀ = 8, 9. In conclusion (19, 57) ∉ E⁶.
- The following pairs are possible:

 $(15, 45); (15, 49); (16, 48); (17, 54); (19, 59); (23, 69); (24, 72); (27, 83); (35, 107) \in \mathcal{E}^{6}.$

We set

$$X' = \left\{ (8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33); (11, 36); (12, 38); (12, 39); (13, 39); (14, 42); (14, 44); (15, 47); (18, 54); (17, 53); (19, 57); (20, 62) \right\}$$

- For $f_0 \ge 7$; if $(f_0, f_1) \notin X'$ and $f_1 \in \{3f_0\} \cup \left]3f_0 + 1, \frac{7}{2}f_0 \frac{7}{2}\right[$ then $(f_0, f_1) \in \mathcal{E}^6$.
- The cases (17, 53); (20, 62) are unfeasible and (22, 68); (25, 77); (30, 92) $\in \mathcal{E}^6$ holds.
- Let *E*^d_{>3d-10} be the set of *d*-polytopes whose excess degree is larger than 3*d* − 10.
 For *d* = 4, the set *E*⁴_{>2} of 4-polytopes whose excess degree is larger than 2 is given by:

$$\mathcal{E}^4_{>2} = \left\{ (f_0, f_1) : 1 + 2f_0 < f_1 \le egin{pmatrix} f_0 \ 2 \end{pmatrix}
ight\}.$$

The case d = 7

• In the same way for d = 5, 6 we obtain:

$$\mathcal{E}_{>5}^5 = \left\{ (f_0, f_1) : rac{5}{2} + rac{5}{2} f_0 < f_1 \le inom{f_0}{2}
ight\},$$

and

$$\mathcal{E}^6_{>8} = \left\{ (f_0, f_1) : 4 + 3f_0 < f_1 \le inom{f_0}{2}
ight\}.$$

(Theorem 2) Let *E*⁷ be the set of (*f*₀, *f*₁)-pairs of 7-polytopes. For *v* = (*p*, *q*) such that *p* ≥ 8 and ⁷/₂*p* ≤ *q* ≤ (^{*p*}₂), if *v* ∉ *E*⁷ then *ε*₇(*v*) ≤ 4 × 7 − 10 = 11. In other words the set of (*f*₀, *f*₁)-vector pairs for 7-polytopes with excess strictly larger than 11 is given by

$$\mathcal{E}_{>11}^7 = \left\{ (f_0, f_1) : \frac{7}{2}f_0 + \frac{11}{2} < f_1 \le \begin{pmatrix} f_0 \\ 2 \end{pmatrix} \right\}.$$

With $\epsilon_d(v) = 2q - dp$.

 $\label{eq:constraint} \begin{array}{c} & \mbox{Introduction} \\ & \mbox{Background} \\ \mbox{The} (f_0, f_1)\mbox{-pairs for 6-polytopes} \\ \mbox{The} (f_0, f_1)\mbox{-pairs for 7-polytopes} \\ & \mbox{Conclusion} \end{array}$

The case d = 7

• From the previous section we had

$$\mathcal{E}^{6} = \left\{ (f_{0}, f_{1}) : 3f_{0} \leq f_{1} \leq {\binom{f_{0}}{2}} \right\} \setminus \left(\left\{ \left(f_{0}, 3f_{0} + 1\right) : f_{0} \geq 7 \right\} \cup \left\{ (8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33); (12, 38); (12, 39); (13, 39); (14, 42); (14, 44); (15, 47); (18, 54); (19, 57); (17, 53); (20, 62) \right\} \right)$$

$$(6)$$

• A pyramid over the 6-polytopes gives:

$$\left\{ (f_0, f_1) : 4f_0 - 4 \le f_1 \le \begin{pmatrix} f_0 \\ 2 \end{pmatrix} \right\} \setminus \left(\left\{ \left(f_0 + 1, 4f_0 + 1 \right) : f_0 \ge 7 \right\} \cup \\ \left\{ (9, 32); (10, 36); (10, 38); (11, 40); (11, 42); (11, 44); (12, 44); (13, 50); (13, 51); \\ (14, 52); (15, 56); (15, 58); (16, 62); (18, 70); (19, 72); (20, 76); (21, 82) \right\} \right) \subset \mathcal{E}^7.$$

- A direct computation shows that $\epsilon_7((f_0 + 1, 4f_0 + 1)) > 11$ if and only if $f_0 > 17$. Assume that $f_0 > 17$ and let us prove that $(f_0 - 6, 3f_0 - 14) \in \mathcal{E}^6$.
- We have $\epsilon_6((f_0 6, 3f_0 14)) = 8$ and if $(f_0 6, 3f_0 14) \notin \mathcal{E}^6$ then $(f_0 6, 3f_0 14) = (10, 34)$, because (10, 34) is the only vector not in \mathcal{E}^6 with excess equal to 8.
- Therefore we get $f_0 = 16$ which is a contradiction. In conclusion for $f_0 > 17$ there is a 6-polytope P with (f_0, f_1) -pair $(f_0 6, 3f_0 14)$; and a pyramid over P give a 7-polytope Q having (f_0, f_1) -vector which is equal to $(f_0 5, 4f_0 20)$.
- As $4(f_0 5) < (4f_0 20) + 1$ the polytope Q has a simple vertex whose truncation gives a 7-polytope having (f_0, f_1) -pair equals $(f_0 + 1, 4f_0 + 1)$.

Proof

- We can conclude that all the 7-polytopes with excess greater than 11 and with (f_0, f_1) -pairs in $\left\{ (f_0 + 1, 4f_0 + 1) : f_0 \ge 7 \right\}$ exist.
- Let us focus on the set

$$L = \left\{ (9, 32); (10, 36); (10, 38); (11, 40); (11, 42); (11, 44); (12, 44); (13, 50); (13, 51); (14, 52); (15, 56); (15, 58); (16, 62); (18, 70); (19, 72); (20, 76); (21, 82) \right\}.$$

• The only vectors $v = (p,q) \in L$ with $\epsilon_7(v) > 11$ are

v = (p, q) = (16, 62); (18, 70); (20, 76); (21, 82); (23, 90); (26, 102); (31, 123).

- For v = (p, q) = (16, 62); (20, 76); (21, 82); (26, 102); (31, 123), we compute v' = (p 8, q p 20) = (8, 26); (12, 36); (13, 41); (18, 56); (23, 72) $\in \mathcal{E}^6$.
- Then their exist 6-polytopes P_{v'} whose (f₀, f₁)-pairs are equal to v'. A pyramid over them give 7-polytopes having (f₀, f₁)-pairs equal to (p 7, q 28) = (9, 34); (13, 48); (14, 54); (19, 74); (24, 95).
- In each case we observe that q 28 < 4(p 7) which means that each of them has a simple vertex whose truncation give 7-polytopes with (f_0, f_1) -pairs equal to (p 1, q 7). As truncations of simple vertices generate simplex facets then pyramids on these give the result.

- Consider v = (18, 70). There is a 6-polytope R with (f₀, f₁) = (10, 35). A pyramid over R gives a 7-polytope R' having (f₀, f₁)-vector equal to (11, 42). As 42 < 4 × 11 then R' has a simple vertex whose truncation gives a 7-polytopes R'' with (f₀(R''), f₁(R'')) = (17, 63).
- The truncation of a simple vertex in R'' with generate a simplex facet F and a pyramid other F gives a 7-polytope with (f_0, f_1) -vector equal to (18, 70). The same method works for (23, 90).
- We now turn to the pair $v = (f_0, f_1)$ with $f_0 \ge 8$ and $f_1 \in]\frac{7}{2}f_0, 4f_0 + 1[$. The condition $\epsilon_7(v) > 11$ implies that $f_1 \ge \frac{11}{2} + \frac{7}{2}f_0$ and then we need to discuss two cases: $\frac{11}{2} + \frac{7}{2}f_0 > 4f_0 4$ and $\frac{11}{2} + \frac{7}{2}f_0 < 4f_0 4$.

- If $\frac{11}{2} + \frac{7}{2}f_0 > 4f_0 4$ then there is nothing else to prove as we end up in the pyramid case. Suppose that $\frac{11}{2} + \frac{7}{2}f_0 < 4f_0 4$ i.e. $f_0 > 19$ and set for k, $X_k^7 = \{(k, f_1); \frac{11}{2} + \frac{7}{2}k < f_1 < 4k 4\}.$
- We can prove by truncation that if $X_k^7 \subset \mathcal{E}_{>11}^7$, then $X_{k+6}^7 \subset \mathcal{E}_{>11}^7$. To prove that each vector (f_0, f_1) satisfying this condition defines a 7-polytope it is sufficient to show that $X_k^7 \subset \mathcal{E}_{>11}^7$ for $k = 8, \cdots, 13$. Which have already been solved.
- Finally we conclude that all the pairs (p, q) with $p \ge 8$, $\epsilon_7(v) > 11$ and $\frac{7}{2}p \le q \le {p \choose 2}$, characterize 7-polytopes. In other words the set of (f_0, f_1) -vectors pair for 7-polytopes with excess strictly larger than 11 is given by

$$\mathcal{E}^{7}_{>11} = igg\{(f_{0}, f_{1}): rac{7}{2}f_{0} + rac{11}{2} < f_{1} \leq igg(f_{0}) igg\}.$$

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Background}\\ \mbox{The} \left(f_0, f_1\right)\mbox{-pairs for 6-polytopes}\\ \mbox{The} \left(f_0, f_1\right)\mbox{-pairs for 7-polytopes}\\ \mbox{Conclusion} \end{array}$

Conjecture

Let $d \ge 4$ be an integer and \mathcal{E}^d be the set of (f_0, f_1) -pairs of d-polytopes. For v = (p, q) such that $p \ge d + 1$ and $\frac{d}{2}p \le q \le {p \choose 2}$, if $v \notin \mathcal{E}^d$ then $2q - dp \le 4d - 10$. In other words the set of (f_0, f_1) -pairs for d-polytopes; $d \ge 4$ with excess strictly larger than 3d - 10 is given by

$$\mathcal{E}^{d}_{>3d-10} = \left\{(f_0, f_1): rac{d}{2}f_0 + rac{3d-10}{2} < f_1 \leq inom{f_0}{2}
ight\}.$$