Exponential recursive trees: Profile study

Rafik Aguech

Faculté des Sciences de Monastir (Tunisia) \& King Saud Univ. (Saudi Arabia) Seminar @ Univ. Sorbonne Paris Nord, 6 Dec. 2022

Based on joint works with

Sudip Bose

Hosam Mahmoud

Yi Zhang (USA)

Mehri Javanian Zanjan Univ. (Iran)

Aguech, Bose, Mahmoud, Zhang: Some properties of exponential trees, International Journal of Computer Mathematics: Computer Systems Theory, 2021.

Aguech, Javanian: Protected nodes in exponential recursive trees, submitted, 2022.

Motivations

Classic litterature on growing trees and graphs deals mostly with objects growing "slowly" by adding a small number of nodes and edges at each step.

Modern (social/professional/political) networks, such as Facebook, Instagram, Linkedln and Twitter, grow very quickly and exhibit degree distributions not compatible with models like Erdős-Renyi random graphs, Galton-Watson random trees...

To cope with the need to model certain aspects of fast growing stuctures, some interesting tree models were introduced:
[Feng, Mahmoud 2018]: Profile of random exponential binary trees [Mahmoud 2021]: Profile of random exponential recursive trees

Table of contents

(1) Exponential recursive trees
(2) Size of exponential recursive trees
(3) Leaves in exponential recursive trees

4 Leaf profile in exponential recursive trees
(5) Internal path length in exponential recursive trees
(6) Protected nodes

Exponential recursive trees

To each node is attached a new child with probability p.
1

Size of exponential recursive trees

General presentation

$$
S_{n}=S_{n-1}+\operatorname{Bin}\left(S_{n-1}, p\right)
$$

Let \mathcal{F}_{n} be the sigma field generated by the first n steps of evolution. We have

$$
\mathbb{E}\left[S_{n} \mid \mathcal{F}_{n-1}\right]=S_{n-1}+p S_{n-1}=(1+p) S_{n-1} .
$$

So $S_{n} /(1+p)^{n}$ is an L^{1} bounded martingale, therefore it converges almost surely to some random variable S_{*}.

What is the distribution of S_{*} ?

Martingales

Definition

A discrete time process $\left(X_{n}\right)_{n}$ is called a martingale relative to the sigma field (aka, filtration) $\left(\mathcal{F}_{n}\right)_{n}$ if for all $n \geq 0$:

- X_{n} is \mathcal{F}_{n} mesurable;
- $\mathbb{E}\left[\left|X_{n}\right|\right]<+\infty$;

- $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=X_{n-1}$ almost surely.

Martingale convergence theorem

If $\left(X_{n}, F_{n}\right)_{n}$ is an L^{1} bounded martingale
(i.e. there is c such that for all $n, \mathbb{E}\left[\left|X_{n}\right|\right] \leq c$),
then there exists a real valued random variable X defined on the same probability space as $\left(X_{n}\right)_{n}$ such that $\lim _{n} X_{n}=X$ almost surely.

Remark: X is also in L^{1}.

Size of exponential recursive trees

Let \mathbb{I} be the indicator of success in recruiting at the root in the first step.

$$
S_{n} \stackrel{D}{=} S_{n-1} \mathbb{I}+\widetilde{S}_{n-1}
$$

Size of exponential recursive trees

Proposition [Mahmoud 2020]

Let S_{n} be the size (number of nodes) of an exponential recursive tree after n steps. Then

$$
\frac{S_{n}}{(p+1)^{n}} \xrightarrow{\text { a.s. }} S_{*},
$$

where the limiting random variable S_{*} has moments $a_{m}:=\mathbb{E}\left[S_{*}^{m}\right]$ defined inductively by

$$
a_{m}=\frac{p}{(p+1)^{m}-(p+1)} \sum_{i=1}^{m-1}\binom{m}{i} a_{i} a_{m-i}, \quad \text { for } m \geq 2
$$

with $a_{1}=\mathbb{E}\left[S_{*}\right]=1$.

Leaves in exponential recursive trees

For an exponential recursive tree \mathcal{T}_{n} of age n, let L_{n} be its number of leaves.

- If $\mathbb{I}=0$ the tree $\mathcal{T}_{n-1}^{\prime}$ in the following $n-1$ steps behaves as a tree of size $n-1$, with L_{n-1}^{\prime} leaves, and $L_{n-1}^{\prime} \stackrel{D}{=} L_{n-1}$.

Leaves in exponential recursive trees

For an exponential recursive tree \mathcal{T}_{n} of age n, let L_{n} be its number of leaves.

- If $\mathbb{I}=0$ the tree $\mathcal{T}_{n-1}^{\prime}$ in the following $n-1$ steps behaves as a tree of size $n-1$, with L_{n-1}^{\prime} leaves, and $L_{n-1}^{\prime} \stackrel{D}{=} L_{n-1}$.
- If $\mathbb{I}=1$ at step 1 we obtain a root and a child, each acting independently to construct its own exponential tree in $n-1$ steps. The child will develop a tree $\mathcal{T}_{n-1}^{\prime \prime}$ with $L_{n-1}^{\prime \prime} \stackrel{D}{=} L_{n-1}$ leaves. The root continues to recruit and will father a tree $\mathcal{T}_{n-1}^{\prime \prime \prime}$ with $L_{n-1}^{\prime \prime \prime} \stackrel{D}{=} L_{n-1}$ leaves.

Leaves in exponential recursive trees

For an exponential recursive tree \mathcal{T}_{n} of age n, let L_{n} be its number of leaves.

- If $\mathbb{I}=0$ the tree $\mathcal{T}_{n-1}^{\prime}$ in the following $n-1$ steps behaves as a tree of size $n-1$, with L_{n-1}^{\prime} leaves, and $L_{n-1}^{\prime} \stackrel{D}{=} L_{n-1}$.
- If $\mathbb{I}=1$ at step 1 we obtain a root and a child, each acting independently to construct its own exponential tree in $n-1$ steps. The child will develop a tree $\mathcal{T}_{n-1}^{\prime \prime}$ with $L_{n-1}^{\prime \prime} \stackrel{D}{=} L_{n-1}$ leaves. The root continues to recruit and will father a tree $\mathcal{T}_{n-1}^{\prime \prime \prime}$ with $L_{n-1}^{\prime \prime \prime} \stackrel{D}{=} L_{n-1}$ leaves.
- When the tree $\mathcal{T}_{n-1}^{\prime \prime \prime}$ is hooked to $\mathcal{T}_{n-1}^{\prime \prime}$ to construct $\widetilde{\mathcal{T}}_{n}$ (a tree distributed like \mathcal{T}_{n}), its contribution to the total number of leaves in $\widetilde{\mathcal{T}}_{n}$ is potentially reduced by 1 , if $\mathcal{T}_{n-1}^{\prime \prime \prime}$ is a single node (also a leaf), as the hooking changes the outdegree of the root to 1 . Let us indicate the event that $\mathcal{T}_{n-1}^{\prime \prime \prime}$ is a leaf by the indicator variable \mathbb{J}_{n-1}.

Leaves in exponential recursive trees

$\mathbb{J}_{n-1}=$ the indicator of the event that $\mathcal{T}_{n-1}^{\prime \prime \prime}$ is a leaf.

Remark

We have

$$
\mathbb{P}\left(\mathbb{J}_{n-1}=1\right)=q^{n-1}
$$

Leaves in exponential recursive trees

Proposition

$$
L_{n} \stackrel{D}{=} L_{n-1}^{\prime}(1-\mathbb{I})+\left(L_{n-1}^{\prime \prime}+L_{n-1}^{\prime \prime \prime}-\mathbb{J}_{n-1}\right) \mathbb{I}
$$

where $L_{k}^{\prime}, L_{k}^{\prime \prime}$ and $L_{k}^{\prime \prime \prime}$ are independent copies of L_{k}.

Remark

$\left(\mathbb{I}, L_{n-1}^{\prime}, L_{n-1}^{\prime \prime}\right)$ is a block of independent random variables. This block is independent of of the block $\left(\mathbb{J}_{n-1}, L_{n-1}^{\prime \prime \prime}\right)$.

Leaves in exponential recursive trees

Proposition

Let L_{n} be the number of leaves in an exponential recursive tree at age n. The mean and variance of L_{n} are

$$
\begin{aligned}
\mathbb{E}\left[L_{n}\right]= & \frac{1}{2}(p+1)^{n}+\frac{1}{2}(1-p)^{n} \sim \frac{1}{2}(p+1)^{n}, \\
\operatorname{Var}\left[L_{n}\right]= & \frac{1}{4}(1-p)(p+1)^{2 n-1}-\frac{1}{6-2 p}(1-p)^{2}(p+1)^{n-1} \\
& +\frac{1}{2}(1-p)^{n}-\frac{1}{4(3-p)}(1-p)^{2 n+1}-\frac{1}{2}\left(1-p^{2}\right)^{2 n} \\
\sim & \frac{1}{4}(1-p)(p+1)^{2 n-1} .
\end{aligned}
$$

Leaves in exponential recursive trees

Theorem

Let L_{n} be the number of leaves in an exponential recursive tree at age n. We have the convergence

$$
\frac{L_{n}}{(p+1)^{n}} \xrightarrow{D} L_{*},
$$

where the limiting random variable L_{*} has moments $b_{m}:=\mathbb{E}\left[L_{*}^{m}\right]$ defined inductively by

$$
b_{m}=\frac{p}{(p+1)^{m}-(p+1)} \sum_{i=1}^{m-1}\binom{m}{i} b_{i} b_{m-i}, \quad \text { for } m \geq 2
$$

with $b_{1}=\mathbb{E}\left[L_{*}\right]=\frac{1}{2}$.

Leaf profile in exponential recursive trees

Let $X_{n, k}$ the number of nodes at level k in \mathcal{T}_{n}. [Mahmoud 2020] finds

$$
\mathbb{E}\left[X_{n, k}\right]=p^{k}\binom{n}{k} .
$$

How many nodes among these are leaves?
Let $L_{n, k}$ be this number of leaves.

Lemma

In distribution, we have, for $1 \leq k \leq n$

$$
L_{n, k}=\operatorname{Bin}\left(X_{n-1, k-1}, p\right)+\operatorname{Bin}\left(L_{n-1, k}, q\right)
$$

Leaf profile in exponential recursive trees

Theorem

Let $L_{n, k}$ be the number of leaves at level k in an exponential recursive tree at age n.
We then have, for $1 \leq k \leq n$

$$
\mathbb{E}\left[L_{n, k}\right]=p^{k} \sum_{\ell=0}^{n-k} q^{\ell}\binom{n-1-\ell}{k-1}
$$

Internal path length in exponential recursive trees

Definition

The distance of a node to the root of a tree (measured in the number of edges on the joining path) is called the depth of the node in the tree.

After n steps of evolution, the tree has S_{n} nodes at various depths. Label the nodes of the tree \mathcal{T}_{n} arbitrarily with labels $1,2, \ldots, S_{n}$. We note D_{i} the depth of node i.

Definition

The internal path length I_{n} is the sum of the depths of all the nodes:

$$
I_{n}=\sum_{i=1}^{S_{n}} D_{i}
$$

Internal path length in exponential recursive trees

 Recursive evolution of I_{n}One has the stochastic equality:

$$
I_{n}=\sum_{i=1}^{S_{n-1}} D_{i}+\left(D_{i}+1\right) \llbracket \text { proba that one adds a child to node } i \rrbracket .
$$

Taking an expectation conditioned of \mathcal{F}_{n-1}, we get

$$
\mathbb{E}\left[I_{n} \mid \mathcal{F}_{n-1}\right]=\sum_{i=1}^{S_{n-1}} D_{i}+p \sum_{i=1}^{S_{n-1}}\left(D_{i}+1\right)=(p+1) I_{n-1}+p S_{n-1}
$$

Lemma

With respect to the filtration $\left(\mathcal{F}_{n}\right)_{n}$, the process

$$
M_{n}=\frac{1}{(p+1)^{n}} I_{n}-\frac{p n}{(p+1)^{n+1}} S_{n}
$$

is a martingale.

Internal path length in exponential recursive trees

Convergence of the martingale M_{n}

With $\alpha=p /(1+p)$, we have

$$
\mathbb{E}\left[I_{n}\right]=n p(p+1)^{n-1}=\alpha n \mathbb{E}\left[S_{n}\right],
$$

which suggests that $I_{n} /\left(n(p+1)^{n}\right)$ converges in L^{1} to αS^{*}. Toward this end, we use [Mahmoud 2020], which asserts that a large number of nodes falls at depths around αn, where the tree is widest.
We evaluate the difference

$$
M_{n}=\frac{I_{n}}{(p+1)^{n}}-\frac{\alpha n S_{n}}{(p+1)^{n}}=\frac{1}{(p+1)^{n}} \sum_{k=1}^{S_{n}}\left(D_{i}-\alpha n\right)
$$

Internal path length in exponential recursive trees

Convergence of the martingale M_{n}

Recall that $X_{n, k}$ is the number of nodes at level k, we have

$$
M_{n}=(p+1)^{-n} \sum_{k=1}^{n}(k-\alpha n) X_{n, k}
$$

Splitting this sum according to whether $|k-\alpha n| \leq n^{3 / 4}$ or not, we get

$$
\begin{aligned}
M_{n} & =\frac{1}{(p+1)^{n}} \sum_{\substack{k=1 \\
|k-\alpha n| \leq n^{3 / 4}}}^{n}(k-\alpha n) X_{n, k} \\
& +\frac{1}{(p+1)^{n}} \sum_{\substack{k=1 \\
|k-\alpha n|>n^{3 / 4}}}^{n}(k-\alpha n) X_{n, k} \\
& =: M_{n}^{(1)}+M_{n}^{(2)} .
\end{aligned}
$$

Internal path length in exponential recursive trees

Convergence of the martingale M_{n} / n : First step

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{n}^{(1)}\right|\right] & =\frac{1}{(p+1)^{n}} \sum_{\substack{k=1 \\
|k-\alpha n| \leq n^{3 / 4}}}^{n}|k-\alpha n| p^{k}\binom{n}{k} \\
& =\frac{n^{3 / 4}}{(1-\alpha)^{n}(p+1)^{n}} \sum_{\substack{k=1 \\
|k-\alpha n| \leq n^{3 / 4}}}^{n} \alpha^{k}(1-\alpha)^{n-k}\binom{n}{k} \\
& \leq n^{3 / 4},
\end{aligned}
$$

providing the limit $\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{M_{n}^{(1)}}{n}\right]=0$.

Internal path length in exponential recursive trees

Convergence of the martingale M_{n} / n : Second step

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{n}^{(2)}\right|\right] & =\frac{1}{(p+1)^{n}} \sum_{\substack{k=1 \\
|k-\alpha n|>n^{3 / 4}}}^{n}|k-\alpha n| p^{k}\binom{n}{k} \\
& \leq \frac{1}{(1-\alpha)^{n}(p+1)^{n}} \\
& \times \sum_{\substack{k=1 \\
|k-\alpha n|>n^{3 / 4}}}^{n}(n-\alpha n)((1-\alpha) p)^{k}(1-\alpha)^{n-k}\binom{n}{k} \\
& =(1-\alpha) n \sum_{\substack{k=1 \\
|k-\alpha n|>n^{3 / 4}}}^{n} \alpha^{k}(1-\alpha)^{n-k}\binom{n}{k} .
\end{aligned}
$$

Internal path length in exponential recursive trees

Convergence of the martingale M_{n} / n : Second step
Introduce the random variables $G_{n}:=\operatorname{Bin}(n, \alpha)$ and $Z:=\mathcal{N}(0,1)$.
We have

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{n}^{(2)}\right|\right] & \leq(1-\alpha) n \mathbb{P}\left(\left|G_{n}-\alpha n\right|>n^{3 / 4}\right) \\
& =(1-\alpha) n \mathbb{P}\left(\left|\frac{G_{n}-\alpha n}{\sqrt{\alpha(1-\alpha) n}}\right|>\frac{n^{3 / 4}}{\sqrt{\alpha(1-\alpha) n}}\right) \\
& =(1-\alpha) n \mathbb{P}\left(|Z|>\frac{n^{1 / 4}}{\sqrt{\alpha(1-\alpha)}}\right)(1+o(1)) .
\end{aligned}
$$

In the last line we applied the central limit theorem approximation. By Markov's inequality $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$, we get, as $n \rightarrow \infty$

$$
\mathbb{E}\left[\left|\frac{M_{n}^{(2)}}{n}\right|\right] \leq \frac{\mathbb{E}[|Z|](1-\alpha) \sqrt{\alpha(1-\alpha)}}{n^{1 / 4}}(1+o(1)) \rightarrow 0
$$

Internal path length in exponential recursive trees

 Limit in L^{1} of I_{n}
Theorem

Let I_{n} be the internal path length of an exponential recursive tree at age n. As $n \rightarrow \infty$, we have

$$
I_{n} \sim n p(1+p)^{n-1} S_{*},
$$

that is, more rigorously,

$$
\frac{I_{n}}{n(1+p)^{n}} \xrightarrow{L^{1}} \frac{p}{p+1} S_{*} .
$$

Protected nodes

A node is called protected if it is at distance ≥ 2 of any leaf.

Figure: (a) An evolution (first 7 seps) of an exponential recursive tree, with the corresponding probabilities. (b) $\ln \mathcal{T}_{7}$, protected nodes are shown in black.

Protected nodes

Theorem

Let X_{n} be the number of protected nodes in an exponential recursive tree of age n. We have the convergence in distribution

$$
\frac{X_{n}}{(p+1)^{n}} \xrightarrow{D} X_{*}
$$

where the limiting random variable X_{*} has moments $b_{m}:=\mathbb{E}\left[X_{*}^{m}\right]$ defined inductively by

$$
b_{m}=\frac{p}{(p+1)^{m}-(p+1)} \sum_{i=1}^{m-1}\binom{m}{i} b_{i} b_{m-i}, \quad m \geq 2
$$

with $b_{1}=\mathbb{E}\left[X_{*}\right]=\mu_{p}=\lim _{n \rightarrow \infty} \mu_{n, p}$.

Conclusion, open problems

Natural model: exponential recursive trees
$=$ each (internal or external) node gets a new child with probability p.
We got the asymptotic behaviour for
\checkmark size after n iterations
\checkmark \# leaves (and number $L_{n, k}$ of leaves at depth k)
internal path length
\# protected nodes
Open problems:

- law of the (maximal) height H_{n} ?
- law of the profile (not just the mean): limit of the joint law $\left(L_{n, 1}, \ldots, L_{n, H_{n}}\right)$?
- law of the location of the largest width?

Conclusion, open problems

Natural model: exponential recursive trees
$=$ each (internal or external) node gets a new child with probability p.
We got the asymptotic behaviour for
\checkmark size after n iterations
\checkmark \# leaves (and number $L_{n, k}$ of leaves at depth k)
\checkmark internal path length
\# protected nodes
Open problems:

- law of the (maximal) height H_{n} ?
- law of the profile (not just the mean): limit of the joint law $\left(L_{n, 1}, \ldots, L_{n, H_{n}}\right)$?
- law of the location of the largest width?

$$
\exp (\exp (\exp (\exp (\text { thanks }))))!
$$

