Differentially algebraic equations in physics Youssef Abdelaziz, Jean-Marie Maillard (Université Paris VI)
Based on "Modular forms, Schwarzian conditions, and symmetries of differential equations in physics", arXiv 1611.08493 Séminaire CALIN
Univ. Paris Nord, Villetaneuse, 10/01/2017

Hamiltonian of the Ising model

$$
H=\sum_{j, k}\left\{J_{v} \sigma_{j, k} \sigma_{j+1, k}+J_{h} \sigma_{j, k} \sigma_{j, k+1}\right\}
$$

- J_{v}, J_{h} : vertical and horizontal coupling constants
- The spins take the values $\sigma_{j, k}= \pm 1$.
- The partition function: $\exp \left(-\frac{1}{k_{b} T} H\right)$

Nature of power series

- Algebraic: $S(x) \in \mathbb{Q}(x)$ root of a polynomial $P(t, S(t))=0$
- D-finite: $S(x) \in \mathbb{Q}(x)$ satisfying a linear differential equation with polynomial coefficients $c_{r}(t) S^{(t)}(t)+s+c_{0}(t) S(t)=0$
- Hypergeometric: $S(x)=\sum_{n=0}^{\infty} s_{n} x^{n}$ s.t. $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g., the Gauss hypergeometric function:

$$
{ }_{2} F_{1}([a, b],[c], x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!},
$$

Nature of power series

- Algebraic: $S(x) \in \mathbb{Q}(x)$ root of a polynomial $P(t, S(t))=0$
- D-finite: $S(x) \in \mathbb{Q}(x)$ satisfying a linear differential equation with polynomial coefficients $c_{r}(t) S^{(t)}(t)+s+c_{0}(t) S(t)=0$
- Hypergeometric: $S(x)=\sum_{n=0}^{\infty} s_{n} x^{n}$ s.t. $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g., the Gauss hypergeometric function:
${ }_{2} F_{1}([a, b],[c], x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \quad(a)_{n}:=a(a+1) \cdots(a+n-1)$
- E.g.: ${ }_{2} F_{1}(1,1 ; 1 ; z)=\frac{1}{1-z}, \quad{ }_{2} F_{1}(1,1 ; 2 ; z)=-\frac{\ln (1-z)}{z}$
- Partition function 2D square Ising model [Viswanathan, 2014]

$$
\left.{ }_{4} F_{3}\left(\left[1,1, \frac{3}{2}, \frac{3}{2}\right],[2,2,2], 16 k^{2}\right]\right), \quad k=\frac{\tanh (2 \beta J)}{2 \cosh (2 \beta J)}
$$

Magnetic susceptibility of 2D Ising model

Magnetic susceptibility \longrightarrow sum of two point correlation functions

$$
\chi:=\beta \sum_{n=0}^{\infty} \chi^{(2 n+1)}
$$

ability of a material to align itself with an external imposed magnetic field
$\chi^{(2 n+1)} \longrightarrow 2 n$ multiple integrals, e.g. $\chi^{(3)}$ is given by the double integral:

Magnetic susceptibility of 2D Ising model

Magnetic susceptibility \longrightarrow sum of two point correlation functions

$$
\chi:=\beta \sum_{n=0}^{\infty} \chi^{(2 n+1)}
$$

ability of a material to align itself with an external imposed magnetic field
$\chi^{(2 n+1)} \longrightarrow 2 n$ multiple integrals, e.g. $\chi^{(3)}$ is given by the double integral:

$$
\begin{aligned}
& \chi^{(3)}(s)=\frac{(1-s)^{1 / 4}}{s} \frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} d \phi_{1} \int_{0}^{2 \pi} d \phi_{2} y_{1} y_{2} y_{3} \frac{1+x_{1} x_{2} x_{3}}{1-x_{1} x_{2} x_{3}} F \\
& x_{j}=\frac{s}{1+s^{2}-s \cos \phi_{j}+\sqrt{\left(1+s^{2}-s \cos \phi_{j}\right)^{2}-s^{2}}} \\
& y_{j}=\frac{s}{\sqrt{\left(1+s^{2}-s \cos \phi_{j}\right)^{2}-s^{2}}}, \quad(j=1,2,3) \\
& \phi_{1}+\phi_{2}+\phi_{3}=0
\end{aligned}
$$

$$
\text { and } F=f_{23}\left(f_{31}+\frac{f_{23}}{2}\right) \text { with } f_{i j}=\left(\sin \phi_{i}-\sin \phi_{j}\right) \frac{x_{i} x_{j}}{1-x_{i} x_{j}}
$$

Feynman diagrams are D-finite

Feynman diagrams \longrightarrow first order perturbations of n-fold integral of the operator S (scattering operator) giving the probability of such interactions:

$$
S=\sum_{n=0}^{\infty} \frac{\iota^{n}}{n!} \overbrace{\int \cdots \int}^{n \text { times }} \prod_{j=1}^{n} d^{4} x_{j} T \prod_{j=1}^{n} L\left(x_{j}\right)
$$

$L_{v}\left(x_{j}\right) \longrightarrow$ Lagrangian of interaction, T the time ordered product of operators, $d^{4} x_{j}$ four-vectors

Multiple integrals of an algebraic object

Theorem (Kashiwara)

n times

$$
\overbrace{\int \cdots \int} D \text {-finite function } d x_{1} \cdots d x_{n} \rightarrow D \text {-finite function }
$$

(D-finite $=$ solution of linear ODE with polynomial coefficients)

Diagonal of a rational function

For a formal power series F given by

$$
F\left(z_{1}, z_{2}, \cdots, z_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} F_{m_{1}, \cdots, m_{n}} z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}
$$

the diagonal of F is defined as the single variable series:

$$
\operatorname{Diag}\left(F\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right):=\sum_{m=0}^{\infty} F_{m, \cdots, m} z^{m}
$$

Example. One of the many diagonals leading to Apéry numbers:
$\operatorname{Diag} \frac{1}{\left(1-z_{1}-z_{2}\right)\left(1-z_{3}-z_{4}\right)-z_{1} z_{2} z_{3} z_{4}}=\sum_{n \geq 0} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} z^{n}$
${ }_{2} F_{1}$, modular forms, and physics
The Gauss hypergeometric function ${ }_{2} F_{1} \rightarrow$ PHYSICS!, e.g. the differential operator of $\chi^{2 n+1}$ factorizes into operators that annihilate ${ }_{2} F_{1}$ functions. [A. Bostan, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, J.-A. Weil, N. Zenine, The Ising model: from elliptic curves to modular forms and Calabi-Yau equations, 2011]
[M. Assis, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, B. M. McCoy, Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations, 2012]

$$
\begin{aligned}
& E_{4}(q)=1+240 \sum_{n=0}^{\infty} n^{3} \frac{q^{n}}{1-q^{n}} \\
& ={ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728}{j(\tau)}\right)^{4} \\
& q=\exp (2 i \pi \tau), j(\tau) \rightarrow j \text {-invariant }
\end{aligned}
$$

Modular forms as pullbacked ${ }_{2} F_{1}$ functions

- Emergence of modular forms in physics through ${ }_{2} F_{1}$ functions
- Modular forms emerge through covariance properties of ${ }_{2} F_{1}$:

$$
{ }_{2} F_{1}\left([\alpha, \beta],[\gamma], p_{1}(x)\right)=\mathcal{A}(x)_{2} F_{1}\left([\alpha, \beta],[\gamma], p_{2}(x)\right)
$$

$\mathcal{A}(x), p_{1}(x)$ and $p_{2}(x)$ are rational functions. $p_{1}(x)$ and $p_{2}(x)$ are called pullbacks, the ${ }_{2} F_{1}$ is thus called pullbacked. For instance:

$$
\begin{gathered}
{ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728 x}{\left(5+10 x+x^{2}\right)^{3}}\right)= \\
\left(\frac{5+10 x+x^{2}}{3125+250 x+x^{2}}\right)_{2}^{1 / 4} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728 x^{5}}{\left(3125+250 x+x^{2}\right)^{3}}\right)
\end{gathered}
$$

Modular forms as pullbacked ${ }_{2} F_{1}$ functions

- Emergence of modular forms in physics through ${ }_{2} F_{1}$ functions
- Modular forms emerge through covariance properties of ${ }_{2} F_{1}$:

$$
{ }_{2} F_{1}\left([\alpha, \beta],[\gamma], p_{1}(x)\right)=\mathcal{A}(x)_{2} F_{1}\left([\alpha, \beta],[\gamma], p_{2}(x)\right)
$$

$\mathcal{A}(x), p_{1}(x)$ and $p_{2}(x)$ are rational functions. $p_{1}(x)$ and $p_{2}(x)$ are called pullbacks, the ${ }_{2} F_{1}$ is thus called pullbacked. For instance:

$$
\begin{gathered}
{ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728 x}{\left(5+10 x+x^{2}\right)^{3}}\right)= \\
\left(\frac{5+10 x+x^{2}}{3125+250 x+x^{2}}\right)_{2}^{1 / 4} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728 x^{5}}{\left(3125+250 x+x^{2}\right)^{3}}\right) .
\end{gathered}
$$

- w.l.o.g we have: $\mathcal{A}(x){ }_{2} F_{1}([\alpha, \beta],[\gamma], y(x))={ }_{2} F_{1}([\alpha, \beta],[\gamma], x)$ $\mathcal{A}(x)$ and $y(x)$ algebraic functions.

Modular forms as pullbacked ${ }_{2} F_{1}$ functions

- Emergence of modular forms in physics through ${ }_{2} F_{1}$ functions
- Modular forms emerge through covariance properties of ${ }_{2} F_{1}$:

$$
{ }_{2} F_{1}\left([\alpha, \beta],[\gamma], p_{1}(x)\right)=\mathcal{A}(x)_{2} F_{1}\left([\alpha, \beta],[\gamma], p_{2}(x)\right)
$$

$\mathcal{A}(x), p_{1}(x)$ and $p_{2}(x)$ are rational functions. $p_{1}(x)$ and $p_{2}(x)$ are called pullbacks, the ${ }_{2} F_{1}$ is thus called pullbacked. For instance:

$$
\begin{gathered}
{ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728 x}{\left(5+10 x+x^{2}\right)^{3}}\right)= \\
\left(\frac{5+10 x+x^{2}}{3125+250 x+x^{2}}\right)_{2}^{1 / 4} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], \frac{1728 x^{5}}{\left(3125+250 x+x^{2}\right)^{3}}\right) .
\end{gathered}
$$

- w.l.o.g we have: $\mathcal{A}(x){ }_{2} F_{1}([\alpha, \beta],[\gamma], y(x))={ }_{2} F_{1}([\alpha, \beta],[\gamma], x)$ $\mathcal{A}(x)$ and $y(x)$ algebraic functions. Modular equation $M(x, y(x))=0$:

$$
\begin{array}{r}
1953125 x^{3} y^{3}-187500 x^{2} y^{2}(x+y)+375 x y\left(16 x^{2}-4027 x y+16 y^{2}\right) \\
-64(x+y)\left(x^{2}+1487 x y+y^{2}\right)+110592 x y=0
\end{array}
$$

Schwarzian condition

Theorem (Abdelaziz-Maillard, 2016)

If we have a pullback given by:

$$
\mathcal{A}(x)_{2} F_{1}([\alpha, \beta],[\gamma], x)={ }_{2} F_{1}([\alpha, \beta],[\gamma], y(x))
$$

then we have the following "Schwarzian condition":

$$
\begin{gathered}
W(x)-W(y(x)) y^{\prime}(x)^{2}+\{y(x), x\}=0 \\
\text { where } \quad W(x):=p^{\prime}(x)+\frac{p(x)^{2}}{2}-2 q(x) \\
\text { with } \quad p(x)=\frac{(\alpha+\beta+1) x-\gamma}{x(x-1)} \quad q(x)=\frac{\alpha \beta}{x(x-1)}
\end{gathered}
$$

NB: The Schwarzian derivative is defined by

$$
\{y(x), x\}:=\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x)}-\frac{3}{2}\left(\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}\right)^{2}
$$

Schwarzian condition

Theorem (Abdelaziz-Maillard, 2016)

If we have a pullback given by:

$$
\mathcal{A}(x)_{2} F_{1}([\alpha, \beta],[\gamma], x)={ }_{2} F_{1}([\alpha, \beta],[\gamma], y(x))
$$

then we have the following "Schwarzian condition":

$$
\begin{gathered}
W(x)-W(y(x)) y^{\prime}(x)^{2}+\{y(x), x\}=0 \\
\text { where } \quad W(x):=p^{\prime}(x)+\frac{p(x)^{2}}{2}-2 q(x) \\
\text { with } \quad p(x)=\frac{(\alpha+\beta+1) x-\gamma}{x(x-1)} \quad q(x)=\frac{\alpha \beta}{x(x-1)}
\end{gathered}
$$

NB: The Legendre derivative is defined by

$$
\{y(x), x\}:=\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x)}-\frac{3}{2}\left(\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}\right)^{2}
$$

Schwarzian condition

Theorem (Abdelaziz-Maillard, 2016)

If we have a pullback given by:

$$
\mathcal{A}(x)_{2} F_{1}([\alpha, \beta],[\gamma], x)={ }_{2} F_{1}([\alpha, \beta],[\gamma], y(x))
$$

then we have the following "Schwarzian condition":

$$
\begin{gathered}
W(x)-W(y(x)) y^{\prime}(x)^{2}+\{y(x), x\}=0 \\
\text { where } \quad W(x):=p^{\prime}(x)+\frac{p(x)^{2}}{2}-2 q(x) \\
\text { with } \quad p(x)=\frac{(\alpha+\beta+1) x-\gamma}{x(x-1)} \quad q(x)=\frac{\alpha \beta}{x(x-1)}
\end{gathered}
$$

NB: The Schwarzian derivative is defined by

$$
\{y(x), x\}:=\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x)}-\frac{3}{2}\left(\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}\right)^{2}
$$

We introduce

- the operator $L_{2}:=D_{x}^{2}+p(x) D_{x}+q(x)$ annihilating

$$
F(x):={ }_{2} F_{1}([\alpha, \beta],[\gamma], x)
$$

- the operator $L_{2}^{(c)}:=\frac{1}{v(x)} L_{2} v(x)$, i.e.

$$
L_{2}^{(c)}=D_{x}^{2}+\left(p(x)+2 \frac{v^{\prime}(x)}{v(x)}\right) D_{x}+q(x)+p(x) \frac{v^{\prime}(x)}{v(x)}+\frac{v^{\prime \prime}(x)}{v(x)}
$$

NB: $L_{2}^{(c)}$ annihilates $\mathcal{A}(x) F(x)$ (with $\mathcal{A}(x)=1 / v(x)$):
$L_{2}^{(c)} \frac{1}{v} F(x)=\frac{1}{v} L_{2} \frac{x}{v} F(x)=0$

We introduce

- the operator $L_{2}:=D_{x}^{2}+p(x) D_{x}+q(x)$ annihilating

$$
F(x):={ }_{2} F_{1}([\alpha, \beta],[\gamma], x)
$$

- the operator $L_{2}^{(c)}:=\frac{1}{v(x)} L_{2} v(x)$, i.e.

$$
L_{2}^{(c)}=D_{x}^{2}+\left(p(x)+2 \frac{v^{\prime}(x)}{v(x)}\right) D_{x}+q(x)+p(x) \frac{v^{\prime}(x)}{v(x)}+\frac{v^{\prime \prime}(x)}{v(x)}
$$

NB: $L_{2}^{(c)}$ annihilates $\mathcal{A}(x) F(x)$ (with $\mathcal{A}(x)=1 / v(x)$):

$$
L_{2}^{(c)} \frac{1}{v} F(x)=\frac{1}{v} L_{2} \nu \frac{X}{k} F(x)=0
$$

- So, the operator annihilating $F(y(x))$ is

$$
L_{2}^{(p)}=D_{x}^{2}+\left(p(y(x)) y^{\prime}(x)-\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}\right) D_{x}+q(y(x)) y^{\prime}(x)^{2}
$$

- When does the equality $L_{2}^{(c)}=L_{2}^{(p)}$ hold?

Proof of our theorem of the Schwarzian condition

Well, identifying $L_{2}^{(c)}=L_{2}^{(p)}$ gives us two conditions:
Condition 1: $\quad p(x)+2 \frac{v^{\prime}(x)}{v(x)}=p(y(x)) y^{\prime}(x)-\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}$
Condition 2: $\quad q(x)+p(x) \frac{v^{\prime}(x)}{v(x)}+\frac{v^{\prime \prime}(x)}{v(x)}=q(y(x)) y^{\prime \prime}(x)^{2}$
Introducing $w(x):=\exp \left(-\int p(x) d x\right)$, i.e. $p(x)=-\frac{w^{\prime}(x)}{w(x)}$, Condition 1 rewrites

$$
-\frac{w^{\prime}(x)}{w(x)}+2 \frac{v^{\prime}(x)}{v(x)}=-\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}+\frac{w^{\prime}(y(x))}{w(y(x))}
$$

Integrating the log-derivative terms we get:

$$
-\ln w(x)+2 \ln v(x)=-\ln y^{\prime}(x)-\ln w(y(x))
$$

Taking exponential gives

$$
v(x)=\sqrt{\frac{w(x)}{w(y(x)) y^{\prime}(x)}}
$$

inserting it in Condition 2 gives the Schwarzian condition in the theorem.

Global nilpotence

Assuming that the operator is globally nilpotent is equivalent to:

$$
p(x)=-\frac{w^{\prime}(x)}{w(x)}
$$

The following statements are a consequence of global nilpotence:

- The Wronskian is the n-th root of a rational function
- The solutions of the differential equation have rational coefficients
- The p-curvature is a nilpotent matrix mod prime
- Global nilpotence \rightarrow rational coefficients of solutions \rightarrow $p(x)=\frac{d}{d x} \ln w(x)$

Modular equation $\mathrm{M}(\mathrm{x}, \mathrm{y}(\mathrm{x}))=0$ and modular invariant

The j-invariant of the elliptic curve:

$$
j(k)=256 \frac{\left(1-k^{2}+k^{4}\right)^{3}}{k^{4}\left(1-k^{2}\right)^{2}}
$$

The Landen transformation:

$$
k_{L}=\frac{2 \sqrt{k}}{1+k}
$$

The transform of the elliptic invariant through k_{L} :

$$
j\left(k_{L}\right)=16 \frac{\left(1+14 k^{2}+k^{4}\right)^{3}}{k^{2}\left(1-k^{2}\right)^{4}}
$$

Modular equation $\mathrm{M}(\mathrm{x}, \mathrm{y}(\mathrm{x}))=0$ and modular invariant

The j-invariant of the elliptic curve:

$$
j(k)=256 \frac{\left(1-k^{2}+k^{4}\right)^{3}}{k^{4}\left(1-k^{2}\right)^{2}}
$$

The Landen transformation:

$$
k_{L}=\frac{2 \sqrt{k}}{1+k}
$$

The transform of the elliptic invariant through k_{L} :

$$
j\left(k_{L}\right)=16 \frac{\left(1+14 k^{2}+k^{4}\right)^{3}}{k^{2}\left(1-k^{2}\right)^{4}}
$$

The two corresponding Hauptmoduls (similar to a group generator):

$$
x=\frac{1728}{j(k)} \quad y=\frac{1728}{j\left(k_{L}\right)}
$$

are related through the modular equation $\tau \rightarrow 2 \tau$:

$$
\begin{gathered}
M(x, y)=1953125 x^{3} y^{3}-187500 x^{2} y^{2}(x+y)+375 x y\left(16 x^{2}-4027 x y+16 y^{2}\right) \\
-64(x+y)\left(x^{2}+1487 x y+y^{2}\right)+110592 x y=0
\end{gathered}
$$

Isogeny structure, commutation

For one ${ }_{2} F_{1}([a, b],[1], x)$ with two different pullbacks

$$
\begin{gathered}
\alpha x+\cdots \\
\alpha x^{2}+\cdots \\
\alpha x^{3}+\cdots
\end{gathered}
$$

we obtain the isogenies series-solution "structure"

Isogeny structure, commutation

For one ${ }_{2} F_{1}([a, b],[1], x)$ with two different pullbacks

$$
\begin{gathered}
\alpha x+\cdots \\
\alpha x^{2}+\cdots \\
\alpha x^{3}+\cdots
\end{gathered}
$$

we obtain the isogenies series-solution "structure"

This set of solutions is either:

- Algebraic: e.g. ${ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], x\right)$, we recover "some" commutation like in the case of isogenies (as we will see below)
- Transcendent

Schwarzian condition and modular forms: $\tau \rightarrow 2 \tau$ and beyond

The modular form:

$$
\begin{equation*}
\mathcal{A}(x)_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], x\right)={ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], y(x)\right) \tag{1}
\end{equation*}
$$

- $\mathcal{A}(x)$ is an algebraic function
- $y(x)$ is an algebraic function corresponding to the modular equation corresponding to $\tau \rightarrow 2 \tau$

Schwarzian condition and modular forms: $\tau \rightarrow 2 \tau$ and

beyond

The modular form:

$$
\begin{equation*}
\mathcal{A}(x)_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], x\right)={ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], y(x)\right) \tag{1}
\end{equation*}
$$

- $\mathcal{A}(x)$ is an algebraic function
- $y(x)$ is an algebraic function corresponding to the modular equation corresponding to $\tau \rightarrow 2 \tau$

$$
y(x)=\frac{1}{1728} x^{2}+\frac{31}{62208} x^{3}+\frac{1337}{3359232} x^{4}+\frac{349115}{1088391168} x^{5}+\cdots
$$

The Schwarzian condition is verified in this case with:

$$
W(x)=-\frac{32 x^{2}-41 x+36}{72 x^{2}(x-1)^{2}}, p(x)=\frac{3 x-2}{2 x(x-1)}, q(x)=\frac{5}{144 x(x-1)}
$$

Schwarzian condition and modular forms: $\tau \rightarrow 2 \tau$ and

beyond

The modular form:

$$
\begin{equation*}
\mathcal{A}(x)_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], x\right)={ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],[1], y(x)\right) \tag{1}
\end{equation*}
$$

- $\mathcal{A}(x)$ is an algebraic function
- $y(x)$ is an algebraic function corresponding to the modular equation corresponding to $\tau \rightarrow 2 \tau$

$$
y(x)=\frac{1}{1728} x^{2}+\frac{31}{62208} x^{3}+\frac{1337}{3359232} x^{4}+\frac{349115}{1088391168} x^{5}+\cdots
$$

The Schwarzian condition is verified in this case with:

$$
W(x)=-\frac{32 x^{2}-41 x+36}{72 x^{2}(x-1)^{2}}, p(x)=\frac{3 x-2}{2 x(x-1)}, q(x)=\frac{5}{144 x(x-1)}
$$

It turns out that one can write, for the modular equations corresponding to $\tau \rightarrow N \tau$, the function in the form of (1) above. Thus the equation (1) above encapsulates all the modular equations corresponding to $\tau \rightarrow N \tau$.

Modular equations of higher order

The modular equation of order three $\tau \rightarrow 3 \tau$:

$$
\begin{array}{r}
262144000000000 x^{3} y^{3}(x+y)+4096000000 x^{2} y^{2}\left(27 x^{2}-45946 x y+27 y^{2}\right) \\
+15552000 x y(x+y)\left(x^{2}+241433 x y+y^{2}\right) \\
+729 x^{4}-779997924 x^{3} y+1886592284694 x^{2} y^{2}-779997924 x y^{3}+729 y^{4} \\
+
\end{array} 2811677184 x y(x+y)-2176782336 x y=0
$$

has the series expansion starting in x^{3} and given by:

$$
y(x)=\frac{x^{3}}{2985984}+\frac{31 x^{4}}{71663616}+\frac{36221 x^{5}}{82556485632}+\frac{29537101 x^{6}}{71328803586048}+\ldots
$$

Modular equations of higher order

The modular equation of order three $\tau \rightarrow 3 \tau$:

$$
\begin{array}{r}
262144000000000 x^{3} y^{3}(x+y)+4096000000 x^{2} y^{2}\left(27 x^{2}-45946 x y+27 y^{2}\right) \\
+15552000 x y(x+y)\left(x^{2}+241433 x y+y^{2}\right) \\
+729 x^{4}-779997924 x^{3} y+1886592284694 x^{2} y^{2}-779997924 x y^{3}+729 y^{4} \\
+
\end{array} 2811677184 x y(x+y)-2176782336 x y=00
$$

has the series expansion starting in x^{3} and given by:

$$
y(x)=\frac{x^{3}}{2985984}+\frac{31 x^{4}}{71663616}+\frac{36221 x^{5}}{82556485632}+\frac{29537101 x^{6}}{71328803586048}+\ldots
$$

Similarly for $\tau \rightarrow 4 \tau$, we get a series starting in x^{4} :

$$
y(x)=\frac{x^{4}}{5159780352}+\frac{31 x^{5}}{92876046336}+\frac{43909 x^{6}}{106993205379072}+\cdots
$$

Modular equations of higher order

- Except for this last series solution, the solution series corresponding to the isogenies $\tau \rightarrow N \tau$ have the form $a x^{N}+\cdots$
- The series solution corresponding to $\tau \rightarrow 3 \tau$ and $\tau \rightarrow 4 \tau$ are solution of the Schwarzian condition

Modular equations of higher order

- Except for this last series solution, the solution series corresponding to the isogenies $\tau \rightarrow N \tau$ have the form $a x^{N}+\cdots$
- The series solution corresponding to $\tau \rightarrow 3 \tau$ and $\tau \rightarrow 4 \tau$ are solution of the Schwarzian condition

Generalizing the solution series corresponding to $\tau \rightarrow 2 \tau$ we seek solution series of the Schwarzian condition of the form $a x^{2}+\cdots$:

$$
y_{2}=a x^{2}+\frac{31 a x^{3}}{36}-\frac{a(5952 a-9511)}{13824} x^{4}+\cdots
$$

reducing to the solution of $\tau \rightarrow 2 \tau$ when $a=1 / 1728$

Modular equations of higher order

A one-parameter family of solution-series $b x^{3}+\cdots$ for the modular equation corresponding to $\tau \rightarrow 3 \tau$:

$$
y_{3}=b x^{3}+\frac{31 b}{24} x^{4}+\frac{36221 b}{27648} x^{5}+\cdots
$$

reduces to a previous series having the form $x^{3}+\cdots$ when $b=1 / 1728^{2}$.

Modular equations of higher order

A one-parameter family of solution-series $b x^{3}+\cdots$ for the modular equation corresponding to $\tau \rightarrow 3 \tau$:

$$
y_{3}=b x^{3}+\frac{31 b}{24} x^{4}+\frac{36221 b}{27648} x^{5}+\cdots
$$

reduces to a previous series having the form $x^{3}+\cdots$ when $b=1 / 1728^{2}$.
Finally the one-parameter series

$$
y_{4}=c x^{4}+\frac{31 c}{18} x^{5}+\frac{43909 c}{20736} x^{6}+\cdots
$$

reduces to a previous series of the form $x^{4}+\cdots$ for $c=1 / 5159780352=1 / 1728^{3}$

Commuting series

- These series do not commute: $y_{i}\left(y_{j}(x)\right) \neq y_{j}\left(y_{i}(x)\right)$.
- Composing the solution series y_{3} and y_{2} with $d=a b^{2}$:

$$
y_{2}\left(y_{3}(x)\right)=d x^{6}+\frac{31 d x^{7}}{12}+\frac{59285 d}{13824} x^{8}+\cdots
$$

- $y_{2}\left(y_{3}(x)\right)=y_{3}\left(y_{2}(x)\right) \leftrightarrow$?

Commuting series

- These series do not commute: $y_{i}\left(y_{j}(x)\right) \neq y_{j}\left(y_{i}(x)\right)$.
- Composing the solution series y_{3} and y_{2} with $d=a b^{2}$:

$$
y_{2}\left(y_{3}(x)\right)=d x^{6}+\frac{31 d x^{7}}{12}+\frac{59285 d}{13824} x^{8}+\cdots
$$

- $y_{2}\left(y_{3}(x)\right)=y_{3}\left(y_{2}(x)\right) \leftrightarrow \quad a b^{2}=b a^{3}$

Conclusion

- The Schwarzian condition encapsulates the infinite number of modular equations $\tau \rightarrow N \tau$.
- Strong incentive to develop more differentially algebraic tools from an algorithmic perspective : to test the non-D-finiteness of the Ising susceptibility for example!
- Strong incentive to examine further the occurence of non-linear symmetries (like the Landen transformation) in physics.

Questions: non-linear differential Galois group

- Built to generalize the differential Galois group to non-linear ODE's and non linear functional equations having the form $f(x+1)=y(f(x))$.
- Having a finite non-linear differential Galois group guarantees "some integrability" and this is guaranteed by Casale's condition:

$$
\nu(y) y^{\prime \prime}(x)^{2}-\nu(x)+\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x)}-\frac{3}{2}\left(\frac{y^{\prime \prime}(x)}{y^{\prime}(x)}\right)^{2}=0
$$

Modular equations: definition through θ functions

With $q=\exp (i \pi \tau), \tau=i K^{\prime} / K$ the θ_{3} and θ_{4} functions are defined as follows:

$$
\theta_{2}=2 q^{1 / 4} \prod_{n \geq 1}\left(\frac{1-q^{4 n}}{1-q^{4 n-2}}\right), \quad \theta_{3}=\sum_{-\infty}^{\infty} q^{n^{2}}, \quad \theta_{4}=\sum_{-\infty}^{\infty}(-1)^{n} q^{n^{2}}
$$

where $K=(\pi / 2) \theta_{3}^{2}(\tau)$ and $K^{\prime}(\tau)=K(-1 \tau)$. We can write the identity:

$$
\theta_{3}(\tau)^{2}+\theta_{4}(\tau)^{2}=2 \theta_{3}(2 \tau)^{2}=\frac{2}{1+k^{\prime}}
$$

with $\sqrt{k(\tau)}=\frac{\theta_{2}(\tau)}{\theta_{3}(\tau)}, \sqrt{k^{\prime}(\tau)}=\frac{\theta_{4}(\tau)}{\theta_{3}(\tau)}$ and $l^{\prime}(\tau)=k^{\prime}(p \tau)$ where p is given by a positive integer, we have:

$$
\frac{1}{l^{\prime}}=\frac{1}{2}\left(\sqrt{k^{\prime}}+\frac{1}{\sqrt{k^{\prime}}}\right)
$$

giving in the case $p=2$ the modular equation that sends τ to 2τ.

Painlevé equations

- The hypergeometric function, the Bessel function, the Airy function, the Hermite polynomials, are all "special" (appearing in problems elated to physics) functions solution of linear differential equations.
- Elliptic functions are also "special" functions: they appear in physics as we shall see here, yet they are solution of simple, yet non-linear differential equations.
- Painlevé was set out to find special functions satisfying non-linear differential equations, yet have nice properties (all their singularities are poles).
Painlevé wanted to classify all differential equations of order two having the form:

$$
u_{x x}=R\left(x, u, u_{x}\right)
$$

with R being a rational function. Painlevé found 50 equations having this form, six of these were irreducible to known functions; they are known today as the six Painlevé equations.

Magnetic susceptibility = ratio of D-finite functions?

The hypergeometric function:

$$
{ }_{2} F_{1}([1 / 3,1 / 3],[1], 27 x)
$$

is D-finite and verifies the following linear differential equation

$$
\left(27 x^{2}-x\right)\left(\frac{d^{2}}{d x^{2}} F(x)\right)+(45 x-1)\left(\frac{d}{d x} F(x)\right)+3 F(x)
$$

Similarly the hypergeometric function given by

$$
{ }_{2} F_{1}([1 / 2,1 / 2],[1], 16 x)
$$

verifies the \mathbf{D}-finite equation

$$
\left(16 x^{2}-x\right)\left(\frac{d^{2}}{d x^{2}} F(x)\right)+(32 x-1)\left(\frac{d}{d x} F(x)+4 F(x)\right) .
$$

Reminder: A function is D-finite when it is solution of a linear differential equation and with rational coefficients in x.

Magnetic susceptibility = ratio of D-finite functions?

The ratio of these two D-finite functions is given by:

$$
\frac{{ }_{2} F_{1}([1 / 3,1 / 3],[1], 27 x)}{{ }_{2} F_{1}([1 / 2,1 / 2],[1], 16 x)}
$$

- While the product of two D-finite functions is always D-finite, the ratio of two D-finite functions is generally not so (except if the D-finite function at the denominator is an algebraic function)!
- In fact the differential equation that this ratio verifies is non-linear as we can see in the next slide

$$
\begin{array}{r}
-2 x^{2}(27 x-1)(-1+16 x)\left((27 x-1)(-1+16 x) \frac{d}{d x} F(x)\right. \\
-72 x F(x)-F(x)) \frac{d^{3}}{d x^{3}} F(x) \\
+3 x^{2}(27 x-1)^{2}(-1+16 x)^{2}\left(\frac{d^{2}}{d x^{2}} F(x)\right)^{2} \\
-2 x\left(93312 \frac{d}{d x} F(x) x^{4}-7992 \frac{d}{d x} F(x) x^{3}\right. \\
-93312 x^{3} F(x)+87 \frac{d}{d x} F(x) x^{2}+168 x^{2} F(x) \\
\left.+3 \frac{d}{d x} F(x) x+297 x F(x)-4 F(x)\right) \frac{d^{2}}{d x^{2}} F(x) \\
+(-1+16 x)\left(1944 x^{3}-1569 x^{2}+58 x-1\right)\left(\frac{d}{d x} F(x)\right)^{2} \\
+2 F(x)\left(29376 x^{3}+5580 x^{2}-221 x+1\right) \frac{d}{d x} F(x) \\
+\left(144 x^{2}-432 x+1\right) F(x)^{2}=0
\end{array}
$$

