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Computational complexity
worst vs average

K-SAT = satisfiability of Boolean formulas: NP 
complete (Cook 1971) - concerns worst case 
computational complexity.  

Average computational complexity - in what time on 
average can a large fraction of instances be solved. 
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Historical note

1971 - Cook proves K-SAT to be NP-complete. 

1979 - Golberg shows that if a variable is 
included in a clause with fixed probability this 
ensemble is on average polynomial. 

Until 1991 basically all computer science believes 
that NP-complete problems might in fact all be 
on average easy. 
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1991
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Random K-SAT

‣N variables
‣randomly choose M K-uples of variables
‣negate with probability 1/2

� =
M

N

N = 6,M = 4,K = 3
N �⇥
M �⇥
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Definition of graph coloringLess trivial example

q=3: number of colors
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Random Graph Coloring

✦ Erdos-Renyi random graph: Every edge present 
with probability p=c/(N-1). 

✦ Random regular graph: every node has degree r. 

✦ Planted random graph: Fix a random color for 
every vertex, put M edges randomly only among 
different colors. Forget the “planted” coloring.  
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Where the really hard problems are? 
(Cheeseman, Kanefsky, Taylor’91; Mitchell, Selman, Levesque’92)Random K-SAT

What makes problems hard to solve ?

Experiment : 

 random 3-SAT  
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1st & 2nd moment on something smart (Coja-Oghlan, Vilenchik, 2013)

Naive algorithm which works for connectivities                   :

Repeatedly pick a random vertex and assign it a random color not assigned 
to any of its neighbours.

Large number of colors
q ! 1

c < q ln q

E(Z) = qN
✓
1� 1

q

◆ cN
2

cs ⇡ 2q ln q � ln q
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1st & 2nd moment on something smart (Coja-Oghlan, Vilenchik, 2013)

Naive algorithm which works for connectivities                   :

Repeatedly pick a random vertex and assign it a random color not assigned 
to any of its neighbours.

Large number of colors

An open question (for 30 years):

Is there a polynomial algorithm which would provably color graphs of 
connectivity                            for some           ? c ⇠ (1 + ✏)q ln q ✏ > 0

q ! 1

c < q ln q

E(Z) = qN
✓
1� 1

q

◆ cN
2

cs ⇡ 2q ln q � ln q
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Physics comes into the game
Monasson, Zecchina’97 realized random K-SAT = spin 
glass. Hence replica and cavity method developed for 
spin glasses useful to describe its properties. 

Technical problems in the method for sparse graphs 
resolved by Mezard, Parisi in 2001. 

Mezard, Parisi, Zecchina‘2002

Computed the SAT/UNSAT transition, 

Predicted clustering of solutions causing hardness  

Invented survey propagation - best to solve random 
SAT instances for already more than 10 years.  
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Conjecture: random r-regular graph 
is q-colorable iff

⌘ =

Pq�1
i=0 (�1)i

�q�1
i

�
(1� (i+ 1)⌘)r�1

Pq�1
i=0 (�1)i

� q
i+1

�
(1� (i+ 1)⌘)r�1

⌃ � 0

⌃ = ln

"
q�1X

i=0

(�1)i
✓

q

i+ 1

◆
(1� (i+ 1)⌘)r

#
� r

2
ln (1� q⌘2)

where    is the largest solution of  ⌘

Mezard, Parisi, Zecchina, Weigt, Pagnani, 
Krzakala, Ricci-Tersenghi, Montanari 2002-2004. 
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(I) Clustering of solutions

(II) Condensation

(III) Spinodal transition

(IV) Freezing of solutions

L. Zdeborova, F. Krzakala, Phys. Rev. E 2007, EPL 2007, PRL 2009, etc. 

More phase transitions
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The clustering transition
Consider a random walk (try to flip a color at random, if 
still a valid coloring accept, if not try again) among 
colorings starting from a coloring chosen uniformly at 
random from all of them. 

Conjecture about the clustering threshold: For            
the walk will go to distance close to (q-1)/q in a constant 
number of steps per node. For          it will stay closer 
than 1/2 forever (in large N limit).

The set of solutions divides in exponentially many 
exponentially large clusters (= basins of attractions of 
the random walk). 

c < cd

c > cd
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The clustering transition
Consider a random walk (try to flip a color at random, if still a valid coloring 

accept, if not try again) among colorings starting from a coloring 
chosen uniformly at random from all of them. Monitor the 
Hamming distance from the starting configuration.  

time/N

1-d
⌧ = (c� cd)

� 1
2

cd(q = 3) = 4

cd(4) = 8.35

cd(5) = 12.84

cd(q ! 1) = q ln q

Close relation with reconstruction on trees: construct a 
configuration starting on the root, do the leaves contain 
any information abotu the root? 
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Large q in coloring, large K in K-SAT: Existence of 
exponentially many exponentially large geometrical 
clusters proven (Mora, Mezard, Zecchina’05; Achlioptas, Ricci-
Tersenghi’05, Achlioptas, Coja-Oghlan’08).

Clustering rigorously 

distance from a typical 
solutions per node

lo
g(

#
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)/
N

0
1-1/q
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Large q in coloring, large K in K-SAT: Existence of 
exponentially many exponentially large geometrical 
clusters proven (Mora, Mezard, Zecchina’05; Achlioptas, Ricci-
Tersenghi’05, Achlioptas, Coja-Oghlan’08).

Clustering rigorously 

distance from a typical 
solutions per node

lo
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0
1-1/q

geometrical cluster         random walk clusters 6=
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Condensation transition

Conjecture: at the condensation transition s(c) is non-
analytic (2nd derivative dis-continuous).  

Beyond condensation almost all solutions belong to a 
finite number of clusters. 

lnE(Z) = E(ln (Z + 1)) + o(N) for c < cc

9✏ > 0 : lnE(Z) > E(ln (Z + 1)) + ✏N for c > cc

s(c) ⌘ lim
N!1

E(ln (Z + 1))

cd(q = 3) = 4

cd(4) = 8.35

cd(5) = 12.84

cd(q ! 1) = q ln q

cc(4) = 8.46

cc(q = 3) = 4

cc(5) = 13.23

cc(q ! 1) = 2q ln q
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In random Not-All-Equal SAT (2-coloring of k-hyper-graphs) 
the condensation transition exists. 

(A. Coja-Oghlan, LZ, arxiv, 2011, SODA 2012)

(Proof of 1.6 in: A. Coja-Oghlan, K. Panagiotou, arxiv 2011)
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Two main ideas of the proof:
The planted ensemble is very similar to the random 
ensemble (high probability properties of one are high 
probability properties of the other) before the 
condensation transition, and the planted ensemble is 
easier to analyze. 

In the large k regime clusters look like small 
“subcubes”, only fraction        of variables not frozen, 
and their values are almost independent.

In the proof use subcubes to bound the expected size 
of the planted cluster and look when this becomes 
larger than the total expected number of solutions. 

2�k/2
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Planted Coloring
(Krzakala, Zdeborova’09)

Generating planted instances: Fix a configuration. Choose 
constraints randomly such that all (but fraction p) are 
satisfied by the fixed configuration. 

Conjecture: Planted coloring on average easy for  
c > (q � 1)2

 i!j
si =

1

Zi!j

Y

k2@i\j

(1�  k!i
si )

Using Belief Propagation

Rigorous bound: for q>q_0 there is a constant s.t. planted 
coloring easy on average for c > const.q2

(Coja-Oghlan, Mossel, Vilenchik, 2009)
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Algorithmic consequences
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Algorithms (belief propagation or stochastic local 
search) find solutions even in the glassy phase - 
empirical evidence everywhere.

In 3-coloring condensation c=4, algorithms 
provably work up to 4.03 (Achlioptas, Moore’03) 

Hard to sample       Hard to solve6=

Does clustering or condensation 
make the coloring hard? 

cd cc cs

Tuesday, June 18, 13



Freezing of variables
Def.: Variable is frozen in a cluster (= set of colorings) if it 
takes the same color in the whole set. Cluster is frozen if 
is has a finite fraction of frozen variables. Rigidity 
transition - typical solution belongs to a frozen cluster. 

Coloring belongs to a frozen cluster iff (          ) it has a 
non-trivial whitening. Whitening: If a node has a neighbor 
that does not have the other q-1 colors on its other 
neighbors, turn this node white and iterate.    

N ! 1

Recent proofs about 
freezing: (Molloy’12)
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cr ' q(ln q + ln ln q + 1)

cc ' 2q ln q � ln q � 2 ln 2

cs ' 2q ln q � ln q � 1

c
spinodal

= (q � 1)2

 = rigorous upper bound Coja-Oghlan 2013.  

 = rigorous lower bound 
Coja-Oghlan, Vilenchik 2013.  

 = rigorous proof Molloy 2012.  

bounded by Coja-Oghlan, 
Mossel, Vilenchik, 2009
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‣ Algorithms never find frozen solutions. Empirically but 
also predicted by the only known explanations of why 
algorithms work in clustered region (state following, 
Krzakala, Zdeborova‘2010). 

Conjecture (Zdeborova, Krzakala 2007): Freezing of variables 
responsible for the onset of algorithmic hardness for 
a large class of algorithms. 
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Probability that an unfrozen solution exists in 3-SAT
(Ardelius, Zdeborova’08)
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Zoom at the freezing transition
(Ardelius, Zdeborova’08)
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Locked CSP
(Zdeborova, Mezard’08)

Definition: A closed loop of variables has to be flipped to 
go from one solution to another. 

Examples: XOR-SAT on the core, 1-in-K SAT without 
leaves. 

In locked CSP clusters are point like, always frozen. 

Tuesday, June 18, 13



Example: 1-or-3-in-5 SAT
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Example: 1-or-3-in-5 SAT
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Example: 1-or-3-in-5 SAT
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Locked CSP 
(1) clustering = freezing
(2) For symmetric ones SAT threshold computed 
from 2nd moment

2 ld ls
average degree= 4.72= 3.07
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      Thank you for your attention!
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Planted COL
(Krzakala, Zdeborova’09)

Generating planted instances: 

‣ Fix a configuration. 

‣ Choose constraints randomly such that all (but fraction p) 
are satisfied by the fixed configuration. 

Planted 3-COL easy - not a generic situation. 

Properties (hardness) of planted CSP generalize to many 
inference problems (LDPC, community detection, 
compressed sensing, etc.)
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Algorithmic consequences
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Planting: a proof technique

Since (a) planted ensemble = random ensemble 
before the condensation transition, and (b) 
planted ensemble is easier to analyze. => One 
can prove clustering, freezing and condensation 
(Coja-Oghlan, et al 2010-ongoing)
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Lenka Zdeborová

 Learning from         

      Example of 6-coloring, connectivities 17, 18, 19, 20 (from top). 
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Lenka Zdeborová

6 coloring of regular random graph very low connectivity
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Lenka Zdeborová

6 coloring of regular random graph connectivity c=17
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Lenka Zdeborová

6 coloring of regular random graph connectivity c=18
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Lenka Zdeborová

6 coloring of regular random graph connectivity c=19
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Lenka Zdeborová

6 coloring of regular random graph connectivity c=20
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