Phase Transition for the mixing time of Glauber Dynamics on Regular Trees at Reconstruction: Colorings and Independent Sets.

Juan Vera
Tilburg University, Netherlands

JOINT WORK WITH
Ricardo Restrepo‡, Daniel Stefankovic‡, Eric Vigoda‡, Linji Yang‡, Prasad Tetali‡
†Georgia Tech, ‡Rochester

LIPN: CALIN
Séminaire de combinatoire,
April 12, 2011
Coloring graphs

Given

- A graph $G = (V, E)$ on n vertices and maximum degree Δ
- A set of k colors

A k-coloring of G is an assignment $f : V \rightarrow \{1, \ldots, k\}$ such that

for all $(u, v) \in E$, $f(u) \neq f(v)$

Given a graph with maximum degree Δ

- How to construct k-colorings
 - Trivial for $k > \Delta$
- How to sample (uniformly at) random k-colorings
 - Non-trivial even for $k > \Delta$
Coloring graphs

Given

- A graph $G = (V, E)$ on n vertices and maximum degree Δ
- A set of k colors

A k-coloring of G is an assignment $f : V \rightarrow \{1, ..., k\}$ such that

$$\text{for all } (u, v) \in E, f(u) \neq f(v)$$

Given a graph with maximum degree Δ

- How to construct k-colorings
 - Trivial for $k > \Delta$
- How to sample (uniformly at) random k-colorings
 - Non-trivial even for $k > \Delta$
Random Coloring graphs

Why are we interested?

- How to sample (uniformly at) random k-colorings?

- How do random k-colorings look?
 - Random colorings is the Gibbs distribution for (zero-temperature) anti-ferromagnetic Potts model.
 - Efficient sampler yields approximation algorithm for counting colorings, which is #P-complete.
Glauber dynamics

Let Ω denote the set of all proper k-colorings of G.

Glauber dynamics (heat bath version)

Given $X_t \in \Omega$,

- Take $v \in V$ uniformly at random (u.a.r.)
- Take c u.a.r. from available colors for v in X_t:
 $$A_{X_t} = \{c : c \notin X_t(N(v))\}.$$
- Obtain $X_{t+1} \in \Omega$ by recoloring v to color c.
Glauber dynamics

A natural threshold: $k \geq \Delta + 2$

For $k \geq \Delta + 2$:

- Glauber dynamics is always ergodic.
- The (unique) stationary distribution is uniform over Ω, independently of initial coloring.

$t \to \infty$: distribution of $X_t \to$ uniform dist. on Ω.

- Run chain long enough to get close to uniform state.
Glauber dynamics
A natural threshold: $k \geq \Delta + 2$

For $k \geq \Delta + 2$:
- Glauber dynamics is always ergodic.
- The (unique) stationary distribution is uniform over Ω, independently of initial coloring.

$t \to \infty$: distribution of $X_t \to$ uniform dist. on Ω.

- Run chain long enough to get close to uniform state.

For $k \leq \Delta + 1$:
- There are graphs where the Glauber dynamics is not ergodic.
- Some graphs are not even colorable for $k \leq \Delta$.
Glauber dynamics
A natural threshold: $k \geq \Delta + 2$

For $k \geq \Delta + 2$:
- Glauber dynamics is always ergodic.
- The (unique) stationary distribution is uniform over Ω, independently of initial coloring.

\[t \to \infty: \text{distribution of } X_t \to \text{uniform dist. on } \Omega. \]

- Run chain long enough to get close to uniform state.

For $k \leq \Delta + 1$:
- There are graphs where the Glauber dynamics is not ergodic.
- Some graphs are not even colorable for $k \leq \Delta$.

T_{mix}: Mixing time
Time until the chain is within total variation distance $\leq 1/4$ from uniform distribution independently of initial state.
Mixing time

T_{mix}: the mixing time

Time until the chain is within total variation distance $\leq 1/4$ from uniform distribution independently of initial state.

Theorem (Hayes and Sinclair 05)

$T_{\text{mix}} = \Omega(n \ln n)$ for general graphs.

- Intuitively, time necessary to see all vertices.

Conjecture (folklore)

In general graphs, for $k \geq \Delta + 2$ the mixing time is optimal, i.e.,

$T_{\text{mix}} = O(n \ln n)$
Mixing time

T_{mix}: the mixing time

Time until the chain is within total variation distance $\leq 1/4$ from uniform distribution independently of initial state.

Theorem (Hayes and Sinclair 05)

$T_{\text{mix}} = \Omega(n \ln n)$ for general graphs.

Intuitively, time necessary to see all vertices.

Conjecture (folklore)

In general graphs, for $k \geq \Delta + 2$ the mixing time is optimal, i.e.,

$T_{\text{mix}} = O(n \ln n)$
Towards the conjecture (selection of results):

Conjecture (folklore)

In general graphs, for \(k \geq \Delta + 2 \) *the mixing time is optimal, i.e.,*

\[
T_{\text{mix}} = O(n \ln n)
\]

- **\(k > 2\Delta \):** [Jerrum ’95]
- **\(k > 11\Delta/6 \):** \((T_{\text{mix}} = O(n^2))\) [Vigoda ’99]
- **Girth and/or max degree assumptions:** [Dyer-Frieze’01], [Molloy’02], [Hayes’03], [Hayes-Vigoda’03], [Frieze-Vera’04], [Dyer-Frieze-Hayes-Vigoda’04]
- **\(\Delta \)-regular trees, any fix boundary:** \(k \geq \Delta + 3 \), [Martinelli-Sinclair-Weitz ’04]
- **Planar graphs, \(k \geq 100\Delta/\ln\Delta \):** \(T_{\text{mix}} = O^*(n^3) \) [Hayes-Vera-Vigoda ’07]
- **For \(\Delta \)-regular trees, \(k = C\Delta/\ln\Delta \):** \(T_{\text{mix}} = n^{\Theta(\min(1,1/C))} \) [Lucier-Molloy ’08], [Goldberg-Jerrum-Karpinski ’08]
Towards the conjecture (selection of results):

Conjecture (folklore)

In general graphs, for $k \geq \Delta + 2$ the mixing time is optimal, i.e.,

\[T_{\text{mix}} = O(n \ln n) \]

- $k > 2\Delta$: [Jerrum ’95]
- $k > 11\Delta/6$: ($T_{\text{mix}} = O(n^2)$) [Vigoda ’99]
- Girth and/or max degree assumptions: [Dyer-Frieze’01], [Molloy’02], [Hayes’03],[Hayes-Vigoda’03],[Frieze-Vera’04],[Dyer-Frieze-Hayes-Vigoda’04]
- Δ-regular trees, any fix boundary: $k \geq \Delta + 3$,
 [Martinelli-Sinclair-Weitz ’04]
- Planar graphs, $k \geq 100\Delta/\ln \Delta$: $T_{\text{mix}} = O^*(n^3)$
 [Hayes-Vera-Vigoda ’07]
- For Δ-regular trees, $k = C\Delta/\ln \Delta$: $T_{\text{mix}} = n^{\Theta(\min(1,1/C))}$
 [Lucier-Molloy ’08],[Goldberg-Jerrum-Karpinski ’08]
Significance of $\Delta/\ln \Delta$:

- **Planar graphs:** $k \geq 100\Delta/\ln \Delta$, $T_{mix} = O^*(n^3)$

 [Hayes-Vera-Vigoda '07]

- **For Δ-regular trees,** $k = C\Delta/\ln \Delta$: $T_{mix} = n^{\Theta(\min(1,1/C))}$

 [Lucier-Molloy '08],[Goldberg-Jerrum-Karpinski '08]

- **What’s significance of $\Delta/\ln \Delta$**

- **What happens below $\Delta/\ln \Delta$?**

Goal: Get detailed picture on trees.

- Better understanding for planar and sparse random graphs.
Significance of $\Delta/\ln\Delta$:

- Planar graphs: $k \geq 100\Delta/\ln\Delta$, $T_{\text{mix}} = O^*(n^3)$
 [Hayes-Vera-Vigoda '07]
- For Δ-regular trees, $k = C\Delta/\ln\Delta$: $T_{\text{mix}} = n^{\Theta(\min(1,1/C))}$
 [Lucier-Molloy '08],[Goldberg-Jerrum-Karpinski '08]

- What's significance of $\Delta/\ln\Delta$
- What happens below $\Delta/\ln\Delta$?

Goal: Get detailed picture on trees.
- Better understanding for planar and sparse random graphs.
Outline

1. Introduction
 - Motivation
 - Glauber dynamics
 - Mixing Time

2. Colorings on the complete Δ-Tree
 - Reconstruction
 - Main Result

3. Relation between reconstruction and mixing time

4. Independent Sets on the complete Δ-Tree
Significance of $\Delta/\ln \Delta$:

Consider the complete tree with branching factor Δ and height h.

Recall

For $k = \Delta + 1$ there are colorings that “freeze” the root

- Colors of leaves determine color of root

But this is not true for “typical” colorings

Question

For which values of k does a random coloring of the leaves freeze the root?
Significance of $\Delta/\ln \Delta$:

Consider the complete tree with branching factor Δ and height h.

Recall

For $k = \Delta + 1$ there are colorings that “freeze” the root
- Colors of leaves determine color of root
- But this is not true for “typical” colorings

Question

For which values of k does a random coloring of the leaves freeze the root?
Reconstruction

Generating a random coloring of the tree: Broadcasting model

1. Choose a random color for the root, call it $\sigma(r)$.
2. For each vertex v, given the color of its parent $\sigma(p(v))$, choose a random different color.

Reconstruction

$Reconstruction$ holds if the leaves have a non-vanishing (as $h \to \infty$) influence on the root in expectation.

$$\lim_{h \to \infty} E_{\sigma_L} \left[\left| \frac{\mu(\tau(r)|\tau(L) = \sigma_L)}{k} - \frac{1}{k} \right| \right] > 0.$$

Given (random) coloring of leaves can guess color of root

Reconstruction threshold

Threshold is at $\approx \Delta/\ln \Delta$ [Sly’08, Bhatnagar-Vera-Vigoda’08]
Reconstruction

Generating a random coloring of the tree: Broadcasting model

1. Choose a random color for the root, call it $\sigma(r)$.

2. For each vertex v, given the color of its parent $\sigma(p(v))$, choose a random different color.

Reconstruction

Reconstruction holds if the leaves have a non-vanishing (as $h \to \infty$) influence on the root in expectation.

\[
\lim_{h \to \infty} \mathbb{E}_{\sigma_L} \left[\left| \mu(\tau(r)|\tau(L) = \sigma_L) - \frac{1}{k} \right| \right] > 0.
\]

- Given (random) coloring of leaves can guess color of root

Reconstruction threshold

Threshold is at $\approx \Delta / \ln \Delta$ [Sly’08, Bhatnagar-Vera-Vigoda’08]
Reconstruction

Generating a random coloring of the tree: Broadcasting model

1. Choose a random color for the root, call it $\sigma(r)$.
2. For each vertex v, given the color of its parent $\sigma(p(v))$, choose a random different color.

Reconstruction

Reconstruction holds if the leaves have a non-vanishing (as $h \to \infty$) influence on the root in expectation.

$$\lim_{h \to \infty} E_{\sigma_L} \left[\left| \mu(\tau(r)|\tau(L) = \sigma_L) - \frac{1}{k} \right| \right] > 0.$$

- Given (random) coloring of leaves can guess color of root

Reconstruction threshold

Threshold is at $\approx \Delta / \ln \Delta$ [Sly’08, Bhatnagar-Vera-Vigoda’08]
Connections of reconstruction to the efficiency of local algorithms on trees and tree-like graphs

- $T_{mix} = O(n \ln n)$ on the complete tree implies non-reconstruction [Berger-Kenyon-Mossel-Peres ’05]
- “Clustering of solution space” in reconstruction region for several constraint satisfaction problems, including colorings, on sparse random graphs [Achlioptas,Coja-Oghlan ’08]

We prove:
Mixing time of the Glauber dynamics for random colorings of the complete tree undergoes a phase transition. Critical point appears to coincide with the reconstruction threshold.
Main Result

Theorem

Let $k = \frac{C\Delta}{\ln \Delta}$. There exists Δ_0 such that, for all $\Delta > \Delta_0$, the Glauber dynamics on the complete Δ-tree on n vertices satisfies:

1. For $C \geq 1$:
 \[
 \Omega(n \ln n) \leq T_{\text{mix}} \leq O\left(n^{1+o_{\Delta}(n)} \ln^2 n\right)
 \]

2. For $C < 1$:
 \[
 \Omega\left(n^{1/C+o_{\Delta}(n)}\right) \leq T_{\text{mix}} \leq O\left(n^{1/C+o_{\Delta}(n)} \ln^2 n\right)
 \]

Next
Ideas on lower bound for reconstruction region ($C < 1$)
Main Result

Theorem

Let \(k = C\Delta / \ln \Delta \). There exists \(\Delta_0 \) such that, for all \(\Delta > \Delta_0 \), the Glauber dynamics on the complete \(\Delta \)-tree on \(n \) vertices satisfies:

1. For \(C \geq 1 \):

\[
\Omega \left(n \ln n \right) \leq T_{\text{mix}} \leq O \left(n^{1+o_\Delta(n)} \ln^2 n \right)
\]

2. For \(C < 1 \):

\[
\Omega \left(n^{1/C+o_\Delta(n)} \right) \leq T_{\text{mix}} \leq O \left(n^{1/C+o_\Delta(n)} \ln^2 n \right)
\]

Next

Ideas on lower bound for reconstruction region (\(C < 1 \))
Lowerbound for $C < 1$

Usually reconstruction is proven via a *reconstruction algorithm*

Reconstruction Algorithm

Function $A : \Omega_L \rightarrow \{0, 1\}$ (ideally efficiently computable)

- For any σ, $A(\sigma_L)$ and $\sigma(r)$ are positively correlated.
- Assume: when coloring of L freezes the root, A gives correct answer

Given reconstruction algorithm A

- Let

$$S_c = \{ \sigma \in \Omega : A(\sigma_L) = c \}$$

- $S_c \supseteq \{ \sigma \in \Omega : \sigma_L \text{ freezes } r \text{ to } c \}$.

Intuitive key Idea:

Under reconstruction: If initial coloring in S_R it is "difficult" to get to coloring in S_B.

Juan Vera (Tilburg)

Phase Transition at Reconstruction

LIPN: CALIN, Apr 2010
Lowerbound for $C < 1$

Usually reconstruction is proven via a reconstruction algorithm

Reconstruction Algorithm

Function $A : \Omega_L \rightarrow \{0, 1\}$ (ideally efficiently computable)

- For any σ, $A(\sigma_L)$ and $\sigma(r)$ are positively correlated.
- Assume: when coloring of L freezes the root, A gives correct answer

Given reconstruction algorithm A

- Let

$$S_c = \{ \sigma \in \Omega : A(\sigma_L) = c \}$$

- $S_c \supseteq \{ \sigma \in \Omega : \sigma_L \text{ freezes } r \text{ to } c \}$.

Intuitive key Idea:

Under reconstruction: If initial coloring in S_R it is "difficult" to get to coloring in S_B.
Lowerbound for $C < 1$

Intuitive key Idea:
Under reconstruction: If initial coloring in S_R it is "difficult" to get to coloring in S_B.

Conductance
Let $S \subseteq \Omega$ and $\bar{S} = \Omega \setminus S$. Define

$$\Phi_S = \frac{\sum_{\sigma \in S} \sum_{\eta \in \bar{S}} \pi(\sigma)P(\sigma, \eta)}{\pi(S)\pi(\bar{S})}$$

- Related to probability of escaping from S in one step

Theorem (Lawler-Sokal '88. Sinclair-Jerrum '89)
For all $S \subseteq \Omega$

$$T_{mix} \geq \Omega(1/\Phi_S)$$

Formalized Key idea
Show S_c has small conductance
Lowerbound for $C < 1$

Intuitive key Idea:
Under reconstruction: If initial coloring in S_R it is "difficult" to get to coloring in S_B.

Conductance
Let $S \subseteq \Omega$ and $\bar{S} = \Omega \setminus S$. Define

$$\Phi_S = \frac{\sum_{\sigma \in S} \sum_{\eta \in \bar{S}} \pi(\sigma)P(\sigma, \eta)}{\pi(S)\pi(\bar{S})}$$

- Related to probability of escaping from S in one step

Theorem (Lawler-Sokal ’88. Sinclair-Jerrum ’89)
For all $S \subseteq \Omega$

$$T_{\text{mix}} \geq \Omega\left(1/\Phi_S\right)$$

Formalized Key idea
Show S_c has small conductance
Lowerbound for $C < 1$

Intuitive key Idea:
Under reconstruction: If initial coloring in S_R it is "difficult" to get to coloring in S_B.

Conductance

Let $S \subseteq \Omega$ and $\bar{S} = \Omega \setminus S$. Define

$$\Phi_S = \frac{\sum_{\sigma \in S} \sum_{\eta \in \bar{S}} \pi(\sigma) P(\sigma, \eta)}{\pi(S) \pi(\bar{S})}$$

- Related to probability of escaping from S in one step

Theorem (Lawler-Sokal ’88. Sinclair-Jerrum ’89)

For all $S \subseteq \Omega$

$$T_{mix} \geq \Omega(1/\Phi_S)$$

Formalized Key idea
Show S_c has small conductance
Lowerbound for $C < 1$

Intuitive key Idea:
Under reconstruction: If initial coloring in S_R it is "difficult" to get to coloring in S_B.

Conductance
Let $S \subseteq \Omega$ and $\tilde{S} = \Omega \setminus S$. Define

$$\Phi_S = \frac{\sum_{\sigma \in S} \sum_{\eta \in \tilde{S}} \pi(\sigma) P(\sigma, \eta)}{\pi(S) \pi(\tilde{S})}$$

- Related to probability of escaping from S in one step

Theorem (Lawler-Sokal ’88. Sinclair-Jerrum ’89)
For all $S \subseteq \Omega$

$$T_{mix} \geq \Omega\left(\frac{1}{\Phi_S}\right)$$

Formalized Key idea
Show S_c has small conductance
Relation between reconstruction and conductance

Goal
Show S_c has small conductance

Theorem
Under reconstruction, for any reconstruction function A,

$$\Phi_{S_c} = O(\mathbb{E}_\sigma [\Psi_A(\sigma)|\sigma \in S_c])$$

where

$$\Psi_A(\sigma) = \#\{v \in L : \exists d \in [k] A(\sigma^v,d) \neq A(\sigma)\}.$$

- **Sensitivity** of A at σ: For how many leaves, changing color of leaf will change outcome of A.
Relation between reconstruction and conductance

Goal
Show S_c has small conductance

Theorem
Under reconstruction, for any reconstruction function A,

$$
\Phi_{S_c} = O \left(E_\sigma [\Psi_A(\sigma) | \sigma \in S_c] \right)
$$

where

$$
\Psi_A(\sigma) = \# \{ v \in L : \exists d \in [k] A(\sigma^v, d) \neq A(\sigma) \}.
$$

- **Sensitivity** of A at σ: For how many leaves, changing color of leaf will change outcome of A.
Lowerbound for $C < 1$

Goal

Show S_c has small conductance

Actually, let $S = \bigcup_{c<k/2} S_c$.

- [Goldberg, Jerrum, and Karpinski - 08] For $0 < C < 1/2$
 \[\Phi_S = O(n^{-\frac{1}{6C}}) \]

- We prove for $C < 1$
 \[\Phi_S = O^*(n^{-1/C}) \]
Main Result

Theorem

Let \(k = C\Delta / \ln \Delta \). There exists \(\Delta_0 \) such that, for all \(\Delta > \Delta_0 \), the Glauber dynamics on the complete \(\Delta \)-tree on \(n \) vertices satisfies:

1. For \(C \geq 1 \):

\[
\Omega(n \ln n) \leq T_{\text{mix}} \leq O\left(n^{1+o_\Delta(n)} \ln^2 n\right)
\]

2. For \(C < 1 \):

\[
\Omega\left(n^{1/C-o_\Delta(n)}\right) \leq T_{\text{mix}} \leq O\left(n^{1/C+o_\Delta(n)} \ln^2 n\right)
\]

Does a similar phenomenon hold for independent sets?

No, more interesting phenomenon occurs.
Main Result

Theorem

Let \(k = C\Delta / \ln \Delta \). There exists \(\Delta_0 \) such that, for all \(\Delta > \Delta_0 \), the Glauber dynamics on the complete \(\Delta \)-tree on \(n \) vertices satisfies:

1. For \(C \geq 1 \):
 \[
 \Omega \left(n \ln n \right) \leq T_{\text{mix}} \leq O \left(n^{1-o(\Delta(n))} \ln^2 n \right)
 \]

2. For \(C < 1 \):
 \[
 \Omega \left(n^{1/C-o(\Delta(n))} \right) \leq T_{\text{mix}} \leq O \left(n^{1/C+o(\Delta(n))} \ln^2 n \right)
 \]

Does a similar phenomenon hold for independent sets?

No, more interesting phenomenon occurs.
Main Result

Theorem

Let \(k = C\Delta/\ln \Delta \). There exists \(\Delta_0 \) such that, for all \(\Delta > \Delta_0 \), the Glauber dynamics on the complete \(\Delta \)-tree on \(n \) vertices satisfies:

1. For \(C \geq 1 \):

\[
\Omega(n \ln n) \leq T_{\text{mix}} \leq O\left(n^{1+o_\Delta(n)} \ln^2 n\right)
\]

2. For \(C < 1 \):

\[
\Omega\left(n^{1/C-o_\Delta(n)}\right) \leq T_{\text{mix}} \leq O\left(n^{1/C+o_\Delta(n)} \ln^2 n\right)
\]

Does a similar phenomenon hold for independent sets?

No, more interesting phenomenon occurs.
Hard-core model

- Graph $G = (V, E)$ with n vertices and maximum degree Δ.
- Independent set is a subset $S \subseteq V$ where for all $(v, w) \in E$, either $v \notin S$ and/or $w \notin S$.
- Activity (or fugacity) $\lambda > 0$.
- Hard-core distribution (i.e., Gibbs measure): $\mu(S) \sim \lambda^{|S|}$.

Juan Vera (Tilburg)
Reconstruction threshold for the hard-core model

Consider the complete tree with branching factor Δ and height h. Let ω be the solution to $\lambda = \omega(1 + \omega)^\Delta$.

Broadcasting model:

1. Occupy the root with probability $p = \frac{\omega}{1 + \omega}$ and leave it unoccupied with $1-p$.
2. For each vertex v, if the parent is unoccupied, occupy v with probability p.

Reconstruction is said to hold if the leaves have a non-vanishing (as $h \to \infty$) influence on the root in expectation:

$$\lim_{h \to \infty} E_{\sigma_L} \left[\mu(r \in \tau|\tau(L) = \sigma_L) - \frac{\omega}{1 + \omega} \right] > 0.$$
Reconstruction threshold and mixing of the Glauber dynamics?

- **Reconstruction threshold:** \(\omega_r \approx \frac{\ln \Delta + \ln \ln \Delta}{\Delta} \)

 [Bhatnagar-Sly-Tetali ’10],[Brightwell-Winkler ’04]

- Rapid mixing for free boundary: For the complete tree on \(n \) vertices, \(T_{\text{mix}} = O(n \log n) \) for all \(\lambda \)

 [Martinelli-Sinclair-Weitz ’04]

So, no slow down at reconstruction?

- Free boundary does not correspond to the broadcast process for the hard-core model.
 - it does for colorings.

- There exist boundary conditions with a slow down at reconstruction.
Reconstruction threshold and mixing of the Glauber dynamics?

- **Reconstruction threshold:** \(\omega_r \approx \frac{\ln \Delta + \ln \ln \Delta}{\Delta} \)

 [Bhatnagar-Sly-Tetali ’10], [Brightwell-Winkler ’04]

- **Rapid mixing for free boundary:** For the complete tree on \(n \) vertices, \(T_{\text{mix}} = O(n \log n) \) for all \(\lambda \)
 [Martinelli-Sinclair-Weitz ’04]

So, no slow down at reconstruction?

- Free boundary does not correspond to the broadcast process for the hard-core model.
 - it does for colorings.

- There exist boundary conditions with a slow down at reconstruction.
Reconstruction threshold and mixing of the Glauber dynamics?

- **Reconstruction threshold:** $\omega_r \approx \frac{\ln \Delta + \ln \ln \Delta}{\Delta}$

 [Bhatnagar-Sly-Tetali ’10],[Brightwell-Winkler ’04]

- **Rapid mixing for free boundary:** For the complete tree on n vertices, $T_{mix} = O(n \log n)$ for all λ [Martinelli-Sinclair-Weitz ’04]

So, no slow down at reconstruction?

- Free boundary does not correspond to the broadcast process for the hard-core model.
 - it does for colorings.
- There exist boundary conditions with a slow down at reconstruction.
Reconstruction threshold and mixing of the Glauber dynamics?

- **Reconstruction threshold:** \(\omega_r \approx \frac{\ln \Delta + \ln \ln \Delta}{\Delta} \)
 [Bhatnagar-Sly-Tetali ’10], [Brightwell-Winkler ’04]

- **Rapid mixing for free boundary:** For the complete tree on \(n \) vertices, \(T_{\text{mix}} = O(n \log n) \) for all \(\lambda \)
 [Martinelli-Sinclair-Weitz ’04]

So, no slow down at reconstruction?

- Free boundary does not correspond to the broadcast process for the hard-core model.
 - it does for colorings.

- There exist boundary conditions with a slow down at reconstruction.
Reconstruction threshold and mixing of the Glauber dynamics?

- **Reconstruction threshold**: \[\omega_r \approx \frac{\ln \Delta + \ln \ln \Delta}{\Delta} \]

 [Bhatnagar-Sly-Tetali ’10],[Brightwell-Winkler ’04]

- **Rapid mixing for free boundary**: For the complete tree on \(n \) vertices, \(T_{\text{mix}} = O(n \log n) \) for all \(\lambda \)
 [Martinelli-Sinclair-Weitz ’04]

So, no slow down at reconstruction?

- Free boundary does not correspond to the broadcast process for the hard-core model.

 ▶ it does for colorings.

- There exist boundary conditions with a slow down at reconstruction.
Results for hard-core model:

Theorem

For the Glauber dynamics on the hard-core model with activity \(\lambda = \omega (1 + \omega)^\Delta \) on the complete \(\Delta \)-tree with \(n \) vertices:

1. **For all** \(\omega \leq \ln \Delta / \Delta \): \(\Omega(n) \leq T_{rel} \leq O^*(n) \).
2. **For all** \(\delta > 0 \) and \(\omega = (1 + \delta) \ln \Delta / \Delta \):

 1. For every boundary condition,

 \[T_{rel} \leq O^*(n^{1+\delta}). \]
 2. Exists a sequence of boundary conditions with \(h \to \infty \) such that,

 \[T_{rel} \geq \Omega^*(n^{1+\delta/2}). \]
Current and Future Work

- Similar analysis of other CSPs (spin systems).
 - e.g. k-SAT

- Analysis of more general graphs.
- Poisson tree closely related to sparse random graph $G(n, d/n)$.
 - For constant d, k, $k \geq \text{poly}(d)$, $T_{\text{mix}}(\text{Col}) = \text{poly}(n)$ whp. [Mossel-Sly ’08]
 - Open: Prove “rapid mixing” down to $d/\ln d$ colors.

- Explore more general relation between reconstruction and ”local algorithms”