DYNAMICAL SYSTEMS, TRANSFER OPERATORS

and FUNCTIONAL ANALYSIS

Brigitte Vallée, Laboratoire GREYC
(CNRS et Université de Caen)

Séminaire CALIN, LIPN, 5 octobre 2010

Dynamical analysis of a Euclidean Algorithm.

Dynamical analysis of a Euclidean Algorithm.

A Euclidean Algorithm

\Downarrow
Arithmetic properties of the division
\Downarrow

Dynamical analysis of a Euclidean Algorithm.
A Euclidean Algorithm
\Downarrow
Arithmetic properties of the division
\Downarrow

Dynamical analysis of a Euclidean Algorithm.

A Euclidean Algorithm
\Downarrow
Arithmetic properties of the division
\Downarrow

Analytical properties of the generating function \Downarrow
Probabilistic analysis of the Euclidean Algorithm

The (standard) Euclid Algorithm: the grand father of all the algorithms.
On the input (u, v), it computes the gcd of u and v, together with the Continued Fraction Expansion of u / v.

The (standard) Euclid Algorithm: the grand father of all the algorithms.
On the input (u, v), it computes the gcd of u and v, together with the Continued Fraction Expansion of u / v.

$$
\begin{gathered}
u_{0}:=v ; u_{1}:=u ; u_{0} \geq u_{1} \\
\left\{\begin{array}{ccccc}
u_{0} & = & m_{1} u_{1} & +u_{2} & 0<u_{2}<u_{1} \\
u_{1} & = & m_{2} u_{2} & +u_{3} & 0<u_{3}<u_{2} \\
\ldots & = & \cdots & + & \\
u_{p-2} & = & m_{p-1} u_{p-1} & +u_{p} & 0<u_{p}<u_{p-1} \\
u_{p-1} & = & m_{p} u_{p} & + & 0
\end{array}\right. \\
\left\{\begin{array}{lll}
u_{p+1}=0
\end{array}\right\}
\end{gathered}
$$

u_{p} is the gcd of u and v, the m_{i} 's are the digits. p is the depth.

The (standard) Euclid Algorithm: the grand father of all the algorithms.
On the input (u, v), it computes the gcd of u and v, together with the Continued Fraction Expansion of u / v.

$$
\left.\begin{array}{c}
u_{0}:=v ; u_{1}:=u ; u_{0} \geq u_{1} \\
\left\{\begin{array}{ccccc}
u_{0} & = & m_{1} u_{1} & +u_{2} & 0<u_{2}<u_{1} \\
u_{1} & = & m_{2} u_{2} & +u_{3} & 0<u_{3}<u_{2} \\
\ldots & = & \cdots & + & \\
u_{p-2} & = & m_{p-1} u_{p-1} & +u_{p} & 0<u_{p}<u_{p-1} \\
u_{p-1} & = & m_{p} u_{p} & + & 0
\end{array}\right\}
\end{array}\right\}
$$

u_{p} is the gcd of u and v, the m_{i} 's are the digits. p is the depth.

$$
\text { CFE of } \frac{u}{v}: \quad \frac{u}{v}=\frac{1}{m_{1}+\frac{1}{m_{2}+\frac{1}{\ddots}+\frac{1}{m_{p}}}},
$$

The underlying Euclidean dynamical system (I).

The trace of the execution of the Euclid Algorithm on $\left(u_{1}, u_{0}\right)$ is:

$$
\left(u_{1}, u_{0}\right) \rightarrow\left(u_{2}, u_{1}\right) \rightarrow\left(u_{3}, u_{2}\right) \rightarrow \ldots \rightarrow\left(u_{p-1}, u_{p}\right) \rightarrow\left(u_{p+1}, u_{p}\right)=\left(0, u_{p}\right)
$$

The underlying Euclidean dynamical system (I).

The trace of the execution of the Euclid Algorithm on $\left(u_{1}, u_{0}\right)$ is:
$\left(u_{1}, u_{0}\right) \rightarrow\left(u_{2}, u_{1}\right) \rightarrow\left(u_{3}, u_{2}\right) \rightarrow \ldots \rightarrow\left(u_{p-1}, u_{p}\right) \rightarrow\left(u_{p+1}, u_{p}\right)=\left(0, u_{p}\right)$
Replace the integer pair $\left(u_{i}, u_{i-1}\right)$ by the rational $x_{i}:=\frac{u_{i}}{u_{i-1}}$.
The division $u_{i-1}=m_{i} u_{i}+u_{i+1}$ is then written as

$$
\begin{gathered}
x_{i+1}=\frac{1}{x_{i}}-\left\lfloor\frac{1}{x_{i}}\right\rfloor \quad \text { or } \quad x_{i+1}=T\left(x_{i}\right), \quad \text { where } \\
T:[0,1] \longrightarrow[0,1], \quad T(x):=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor \quad \text { for } x \neq 0, \quad T(0)=0
\end{gathered}
$$

The underlying Euclidean dynamical system (I).
The trace of the execution of the Euclid Algorithm on $\left(u_{1}, u_{0}\right)$ is:
$\left(u_{1}, u_{0}\right) \rightarrow\left(u_{2}, u_{1}\right) \rightarrow\left(u_{3}, u_{2}\right) \rightarrow \ldots \rightarrow\left(u_{p-1}, u_{p}\right) \rightarrow\left(u_{p+1}, u_{p}\right)=\left(0, u_{p}\right)$
Replace the integer pair $\left(u_{i}, u_{i-1}\right)$ by the rational $x_{i}:=\frac{u_{i}}{u_{i-1}}$.
The division $u_{i-1}=m_{i} u_{i}+u_{i+1}$ is then written as

$$
\begin{gathered}
x_{i+1}=\frac{1}{x_{i}}-\left\lfloor\frac{1}{x_{i}}\right\rfloor \quad \text { or } \quad x_{i+1}=T\left(x_{i}\right), \quad \text { where } \\
T:[0,1] \longrightarrow[0,1], \quad T(x):=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor \quad \text { for } x \neq 0, \quad T(0)=0
\end{gathered}
$$

An execution of the Euclidean Algorithm $\left(x, T(x), T^{2}(x), \ldots, 0\right)$
$=$ A rational trajectory of the Dynamical System $([0,1], T)$

$$
=\text { a trajectory that reaches } 0
$$

The dynamical system is a continuous extension of the algorithm.

$$
\begin{gathered}
T(x):=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor \\
\left.T_{[m]}:\right] \frac{1}{m+1}, \frac{1}{m}[\longrightarrow] 0,1[, \\
T_{[m]}(x):=\frac{1}{x}-m \\
\left.h_{[m]}:\right] 0,1[\longrightarrow] \frac{1}{m+1}, \frac{1}{m}[\\
h_{[m]}(x):=\frac{1}{m+x}
\end{gathered}
$$

The Euclidean dynamical system (II).
A dynamical system with a denumerable system of branches $\left(T_{[m]}\right)_{m \geq 1}$,

$$
\left.T_{[m]}:\right] \frac{1}{m+1}, \frac{1}{m}[\longrightarrow] 0,1\left[, \quad T_{[m]}(x):=\frac{1}{x}-m\right.
$$

The set \mathcal{H} of the inverse branches of T is

$$
\mathcal{H}:=\left\{h_{[m]}:\right] 0,1[\longrightarrow] \frac{1}{m+1}, \frac{1}{m}\left[; \quad h_{[m]}(x):=\frac{1}{m+x}\right\}
$$

The Euclidean dynamical system (II).
A dynamical system with a denumerable system of branches $\left(T_{[m]}\right)_{m \geq 1}$,

$$
\left.T_{[m]}:\right] \frac{1}{m+1}, \frac{1}{m}[\longrightarrow] 0,1\left[, \quad T_{[m]}(x):=\frac{1}{x}-m\right.
$$

The set \mathcal{H} of the inverse branches of T is

$$
\mathcal{H}:=\left\{h_{[m]}:\right] 0,1[\longrightarrow] \frac{1}{m+1}, \frac{1}{m}\left[; \quad h_{[m]}(x):=\frac{1}{m+x}\right\}
$$

The set \mathcal{H} builds one step of the CF's.
The set \mathcal{H}^{n} of the inverse branches of T^{n} builds CF's of depth n. The set $\mathcal{H}^{\star}:=\bigcup \mathcal{H}^{n}$ builds all the (finite) CF's.

$$
\frac{u}{v}=\frac{1}{m_{1}+\frac{1}{m_{2}+\frac{1}{\ddots+\frac{1}{m_{p}}}}}=h_{\left[m_{1}\right]} \circ h_{\left[m_{2}\right]} \circ \ldots \circ h_{\left[m_{p}\right]}(0)
$$

The transfer operator (1).

Density Transformer:
For a density f on $[0,1], \mathbf{H}[f]$ is the density on $[0,1]$ after one iteration of the shift

$$
\mathbf{H}[f](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| f \circ h(x)=\sum_{m \in \mathbb{N}} \frac{1}{(m+x)^{2}} f\left(\frac{1}{m+x}\right) .
$$

The transfer operator (1).

Density Transformer:
For a density f on $[0,1], \mathbf{H}[f]$ is the density on $[0,1]$
after one iteration of the shift

$$
\mathbf{H}[f](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| f \circ h(x)=\sum_{m \in \mathbb{N}} \frac{1}{(m+x)^{2}} f\left(\frac{1}{m+x}\right) .
$$

Transfer operator (Ruelle):

$$
\mathbf{H}_{s}[f](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right|^{s} f \circ h(x) .
$$

The transfer operator (1).

Density Transformer:
For a density f on $[0,1], \mathbf{H}[f]$ is the density on $[0,1]$ after one iteration of the shift

$$
\mathbf{H}[f](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| f \circ h(x)=\sum_{m \in \mathbb{N}} \frac{1}{(m+x)^{2}} f\left(\frac{1}{m+x}\right) .
$$

Transfer operator (Ruelle):

$$
\mathbf{H}_{s}[f](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right|^{s} f \circ h(x) .
$$

The k-th iterate satisfies:

$$
\mathbf{H}_{s}^{k}[f](x)=\sum_{h \in \mathcal{H}^{k}}\left|h^{\prime}(x)\right|^{s} f \circ h(x)
$$

The density transformer \mathbf{H} expresses the new density f_{1} as a function of the old density f_{0}, as $f_{1}=\mathbf{H}\left[f_{0}\right]$. It involves the set \mathcal{H}

$$
\mathbf{H}: \quad \mathbf{H}[f](x):=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| \cdot f \circ h(x)
$$

The density transformer \mathbf{H} expresses the new density f_{1} as a function of the old density f_{0}, as $f_{1}=\mathbf{H}\left[f_{0}\right]$. It involves the set \mathcal{H}

$$
\mathbf{H}: \quad \mathbf{H}[f](x):=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| \cdot f \circ h(x)
$$

With a cost $c: \mathcal{H} \rightarrow \mathbf{R}^{+}$extended to \mathcal{H}^{\star} by additivity, it gives rise to the weighted transfer operator

$$
\mathbf{H}_{s, w}: \quad \quad \mathbf{H}_{s, w}[f](x):=\sum_{h \in \mathcal{H}} \exp [w c(h)] \cdot\left|h^{\prime}(x)\right|^{s} \cdot f \circ h(x)
$$

The density transformer \mathbf{H} expresses the new density f_{1} as a function of the old density f_{0}, as $f_{1}=\mathbf{H}\left[f_{0}\right]$. It involves the set \mathcal{H}

$$
\mathbf{H}: \quad \mathbf{H}[f](x):=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| \cdot f \circ h(x)
$$

With a cost $c: \mathcal{H} \rightarrow \mathbf{R}^{+}$extended to \mathcal{H}^{\star} by additivity, it gives rise to the weighted transfer operator

$$
\begin{aligned}
& \mathbf{H}_{s, w}: \quad \mathbf{H}_{s, w}[f](x):=\sum_{h \in \mathcal{H}} \exp [w c(h)] \cdot\left|h^{\prime}(x)\right|^{s} \cdot f \circ h(x) \\
& \left\{\begin{array}{c}
\text { Multiplicative properties of the derivative } \\
\text { Additive properties of the cost }
\end{array}\right\} \Longrightarrow \\
& \mathbf{H}_{s, w}^{n}[f](x):=\sum_{h \in \mathcal{H}^{n}} \exp [w c(h)] \cdot\left|h^{\prime}(x)\right|^{s} \cdot f \circ h(x)
\end{aligned}
$$

The n-th iterate of $\mathbf{H}_{s, w}$ generates the CFs of depth n.

The density transformer \mathbf{H} expresses the new density f_{1} as a function of the old density f_{0}, as $f_{1}=\mathbf{H}\left[f_{0}\right]$. It involves the set \mathcal{H}

$$
\mathbf{H}: \quad \mathbf{H}[f](x):=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| \cdot f \circ h(x)
$$

With a cost $c: \mathcal{H} \rightarrow \mathbf{R}^{+}$extended to \mathcal{H}^{\star} by additivity, it gives rise to the weighted transfer operator

$$
\begin{aligned}
& \mathbf{H}_{s, w}: \quad \mathbf{H}_{s, w}[f](x):=\sum_{h \in \mathcal{H}} \exp [w c(h)] \cdot\left|h^{\prime}(x)\right|^{s} \cdot f \circ h(x) \\
& \left\{\begin{array}{c}
\text { Multiplicative properties of the derivative } \\
\text { Additive properties of the cost }
\end{array}\right\} \Longrightarrow \\
& \mathbf{H}_{s, w}^{n}[f](x):=\sum_{h \in \mathcal{H}^{n}} \exp [w c(h)] \cdot\left|h^{\prime}(x)\right|^{s} \cdot f \circ h(x)
\end{aligned}
$$

The n-th iterate of $\mathbf{H}_{s, w}$ generates the CFs of depth n.
The quasi inverse $\left(I-\mathbf{H}_{s, w}\right)^{-1}=\sum_{n \geq 0} \mathbf{H}_{s, w}^{n}$ generates all the finite CFs.

Properties of the dynamical system: the Good Class

$$
M_{h}:=\sup \left\{\left|h^{\prime}(x)\right|, \quad x \in X\right\}
$$

Properties of the dynamical system: the Good Class

$$
M_{h}:=\sup \left\{\left|h^{\prime}(x)\right|, \quad x \in X\right\}
$$

(1) Uniform contraction.

$$
\begin{gathered}
\forall h \in \mathcal{H}, \quad M_{h} \leq 1 \\
\exists \rho<1, n_{0} \geq 1 \quad M_{h} \leq \rho \quad \forall h \in \mathcal{H}^{n_{0}}
\end{gathered}
$$

Properties of the dynamical system: the Good Class

$$
M_{h}:=\sup \left\{\left|h^{\prime}(x)\right|, \quad x \in X\right\}
$$

(1) Uniform contraction.

$$
\begin{gathered}
\forall h \in \mathcal{H}, \quad M_{h} \leq 1 \\
\exists \rho<1, n_{0} \geq 1 \quad M_{h} \leq \rho \quad \forall h \in \mathcal{H}^{n_{0}}
\end{gathered}
$$

(2) Bounded distortion.

$$
\exists K>0, \forall h \in \mathcal{H}, \forall x \in X, \quad\left|h^{\prime \prime}(x)\right| \leq K\left|h^{\prime}(x)\right|
$$

Properties of the dynamical system: the Good Class

$$
M_{h}:=\sup \left\{\left|h^{\prime}(x)\right|, \quad x \in X\right\}
$$

(1) Uniform contraction.

$$
\begin{gathered}
\forall h \in \mathcal{H}, \quad M_{h} \leq 1 \\
\exists \rho<1, n_{0} \geq 1 \quad M_{h} \leq \rho \quad \forall h \in \mathcal{H}^{n_{0}}
\end{gathered}
$$

(2) Bounded distortion.

$$
\exists K>0, \forall h \in \mathcal{H}, \forall x \in X, \quad\left|h^{\prime \prime}(x)\right| \leq K\left|h^{\prime}(x)\right|
$$

(3) Convergence on the left of $\Re s=1$.

$$
\exists \sigma_{0}<1, \forall \sigma>\sigma_{0}, \quad \sum_{h \in \mathcal{H}} M_{h}^{\sigma}<\infty
$$

Properties of the cost

A cost $c: \mathcal{H} \rightarrow \mathbf{R}^{+}$first defined on \mathcal{H}, then extended to \mathcal{H}^{\star} by additivity $c(h \circ k):=c(h)+c(k)$.

A cost is of moderate growth if $c(h)=O\left(\left|\log M_{h}\right|\right)$

What is needed on the operator $\mathbf{H}_{s, w}$ for the analysis of the algorithm?
For the average case, only properties on $\left(I-\mathbf{H}_{s}\right)^{-1}$ near $\Re s=1$

For the distributional analysis,

$$
\text { properties on }\left(I-\mathbf{H}_{s, w}\right)^{-1} \text { on the left of } \Re s=1 .
$$

Quasi-Compactness

For an operator \mathbf{L},

- the spectrum $\operatorname{Sp}(\mathbf{L}):=\{\lambda \in \mathbb{C} ; \quad L-\lambda I$ non inversible $\}$
- the spectral radius $R(\mathbf{L}):=\sup \{|\lambda|, \quad \lambda \in \operatorname{Sp}(\mathbf{L})\}$

Quasi-Compactness

For an operator \mathbf{L},

- the spectrum $\operatorname{Sp}(\mathbf{L}):=\{\lambda \in \mathbb{C} ; \quad L-\lambda I$ non inversible $\}$
- the spectral radius $R(\mathbf{L}):=\sup \{|\lambda|, \quad \lambda \in \operatorname{Sp}(\mathbf{L})\}$
- the essential spectral radius $R_{e}(\mathbf{L})=$ the smallest $r>0$ s.t any $\lambda \in \operatorname{Sp}(\mathbf{L})$ with $|\lambda|>r$ is an isolated eigenvalue of finite multiplicity.
- For compact operators, the essential radius equals 0 .

Quasi-Compactness

For an operator \mathbf{L},

- the spectrum $\operatorname{Sp}(\mathbf{L}):=\{\lambda \in \mathbb{C} ; \quad L-\lambda I$ non inversible $\}$
- the spectral radius $R(\mathbf{L}):=\sup \{|\lambda|, \quad \lambda \in \operatorname{Sp}(\mathbf{L})\}$
- the essential spectral radius $R_{e}(\mathbf{L})=$ the smallest $r>0$ s.t any $\lambda \in \operatorname{Sp}(\mathbf{L})$ with $|\lambda|>r$ is an isolated eigenvalue of finite multiplicity.
- For compact operators, the essential radius equals 0 .
- \mathbf{L} is quasi-compact if the inequality $R_{e}(\mathbf{L})<R(\mathbf{L})$ holds.

Then, outside the closed disk of radius $R_{e}(\mathbf{L})$, the spectrum of the operator consists of isolated eigenvalues of finite multiplicity.

Conditions that are sufficient for quasi-compactness
A theorem, due to Hennion:

Conditions that are sufficient for quasi-compactness
A theorem, due to Hennion:
Suppose that the Banach space \mathcal{F}

- is endowed with two norms, a weak norm |.| and a strong norm ||.||,
- and the unit ball of $(\mathcal{F}, \| .| |)$ is precompact in $(\mathcal{F},||$.$) .$

Conditions that are sufficient for quasi-compactness

A theorem, due to Hennion:
Suppose that the Banach space \mathcal{F}

- is endowed with two norms, a weak norm |.| and a strong norm ||.||,
- and the unit ball of $(\mathcal{F},\|\cdot\|)$ is precompact in $(\mathcal{F},||$.$) .$

If \mathbf{L} is a bounded operator on $(\mathcal{F}, \| .| |)$ for which there exist two sequences $\left\{r_{n} \geq 0\right\}$ and $\left\{t_{n} \geq 0\right\}$ s.t.

$$
\left\|\mathbf{L}^{n}[f]\right\| \leq r_{n} \cdot\|f\|+t_{n} \cdot|f| \quad \forall n \geq 1, \forall f \in \mathcal{F},
$$

Conditions that are sufficient for quasi-compactness
A theorem, due to Hennion:
Suppose that the Banach space \mathcal{F}

- is endowed with two norms, a weak norm |.| and a strong norm ||.||,
- and the unit ball of $(\mathcal{F},\|\cdot\|)$ is precompact in $(\mathcal{F},||$.$) .$

If \mathbf{L} is a bounded operator on $(\mathcal{F},\|\|$.$) for which there exist two sequences$ $\left\{r_{n} \geq 0\right\}$ and $\left\{t_{n} \geq 0\right\}$ s.t.

$$
\left\|\mathbf{L}^{n}[f]\right\| \leq r_{n} \cdot\|f\|+t_{n} \cdot|f| \quad \forall n \geq 1, \forall f \in \mathcal{F}
$$

Then: $\quad R_{e}(\mathbf{L}) \leq r:=\lim _{n \rightarrow \infty} \inf \left(r_{n}\right)^{1 / n}$.
If $R(\mathbf{L})>r$, then the operator \mathbf{L} is quasi-compact on $(\mathcal{F},\|\|$.$) .$

Conditions that are sufficient for quasi-compactness
A theorem, due to Hennion:
Suppose that the Banach space \mathcal{F}

- is endowed with two norms, a weak norm |.| and a strong norm ||.||,
- and the unit ball of $(\mathcal{F},\|\cdot\|)$ is precompact in $(\mathcal{F},||$.$) .$

If \mathbf{L} is a bounded operator on $(\mathcal{F},\|\|$.$) for which there exist two sequences$ $\left\{r_{n} \geq 0\right\}$ and $\left\{t_{n} \geq 0\right\}$ s.t.

$$
\left\|\mathbf{L}^{n}[f]\right\| \leq r_{n} \cdot\|f\|+t_{n} \cdot|f| \quad \forall n \geq 1, \forall f \in \mathcal{F}
$$

Then: $\quad R_{e}(\mathbf{L}) \leq r:=\lim _{n \rightarrow \infty} \inf \left(r_{n}\right)^{1 / n}$.
If $R(\mathbf{L})>r$, then the operator \mathbf{L} is quasi-compact on $(\mathcal{F},\|\|$.$) .$
For systems of the Good Class, $\mathcal{F}:=\mathcal{C}^{1}(X)$,

- the weak norm is the sup-norm $\|f\|_{0}:=\sup |f(t)|$,
- the strong norm is the norm $\left|\left|f \|_{1}:=\sup \right| f(t)\right|+\sup \left|f^{\prime}(t)\right|$.
- the density transformer satisfies the hypotheses of Hennion's Theorem.

Main Analytical Properties of $\mathbf{H}_{s, w}$ for a dynamical system of the Good Class and a digit-cost c of moderate growth.

Main Analytical Properties of $\mathbf{H}_{s, w}$ for a dynamical system of the Good Class and a digit-cost c of moderate growth.
$\mathbf{H}_{s, w}$ acts on $\mathcal{C}^{1}(\mathcal{I})$ for $\Re s>\sigma_{0}$ and $\Re w$ small enough
The map $(s, w) \mapsto \mathbf{H}_{s, w}$ is analytic near the reference point $(1,0)$

Main Analytical Properties of $\mathbf{H}_{s, w}$ for a dynamical system of the Good Class and a digit-cost c of moderate growth.
$\mathbf{H}_{s, w}$ acts on $\mathcal{C}^{1}(\mathcal{I})$ for $\Re s>\sigma_{0}$ and $\Re w$ small enough
The map $(s, w) \mapsto \mathbf{H}_{s, w}$ is analytic near the reference point $(1,0)$
For s and w real, the operator is quasi-compact. Thus:
Property UDE : Unique dominant eigenvalue $\lambda(s, w)$,
Property $S G$: Existence of a spectral gap.

Main Analytical Properties of $\mathbf{H}_{s, w}$ for a dynamical system of the Good Class and a digit-cost c of moderate growth.
$\mathbf{H}_{s, w}$ acts on $\mathcal{C}^{1}(\mathcal{I})$ for $\Re s>\sigma_{0}$ and $\Re w$ small enough
The map $(s, w) \mapsto \mathbf{H}_{s, w}$ is analytic near the reference point $(1,0)$
For s and w real, the operator is quasi-compact. Thus:
Property UDE : Unique dominant eigenvalue $\lambda(s, w)$,
Property $S G$: Existence of a spectral gap.
With perturbation theory, this remains true for (s, w) near $(1,0)$, $(s, w) \mapsto \lambda(s, w)$ is analytic.

Main Analytical Properties of $\mathbf{H}_{s, w}$ for a dynamical system of the Good Class and a digit-cost c of moderate growth.
$\mathbf{H}_{s, w}$ acts on $\mathcal{C}^{1}(\mathcal{I})$ for $\Re s>\sigma_{0}$ and $\Re w$ small enough
The map $(s, w) \mapsto \mathbf{H}_{s, w}$ is analytic near the reference point $(1,0)$
For s and w real, the operator is quasi-compact. Thus:
Property UDE : Unique dominant eigenvalue $\lambda(s, w)$,
Property SG: Existence of a spectral gap.
With perturbation theory, this remains true for (s, w) near $(1,0)$, $(s, w) \mapsto \lambda(s, w)$ is analytic.

A spectral decomposition

$$
\mathbf{H}_{s, w}=\lambda(s, w) \cdot \mathbf{P}_{s, w}+\mathbf{N}_{s, w}
$$

$\mathbf{P}_{s, w}$ is the projector on the dominant eigensubspace.
$\mathbf{N}_{s, w}$ is the operator relative to the remainder of the spectrum, whose spectral radius $\rho_{s, w}$ satisfies $\rho_{s, w} \leq \theta \lambda(s, w)$ with $\theta<1$.

Main Analytical Properties of $\mathbf{H}_{s, w}$ for a dynamical system of the Good Class and a digit-cost c of moderate growth.
$\mathbf{H}_{s, w}$ acts on $\mathcal{C}^{1}(\mathcal{I})$ for $\Re s>\sigma_{0}$ and $\Re w$ small enough
The map $(s, w) \mapsto \mathbf{H}_{s, w}$ is analytic near the reference point $(1,0)$
For s and w real, the operator is quasi-compact. Thus:
Property UDE : Unique dominant eigenvalue $\lambda(s, w)$,
Property $S G$: Existence of a spectral gap.
With perturbation theory, this remains true for (s, w) near $(1,0)$, $(s, w) \mapsto \lambda(s, w)$ is analytic.

A spectral decomposition

$$
\mathbf{H}_{s, w}=\lambda(s, w) \cdot \mathbf{P}_{s, w}+\mathbf{N}_{s, w} .
$$

$\mathbf{P}_{s, w}$ is the projector on the dominant eigensubspace.
$\mathbf{N}_{s, w}$ is the operator relative to the remainder of the spectrum, whose spectral radius $\rho_{s, w}$ satisfies $\rho_{s, w} \leq \theta \lambda(s, w)$ with $\theta<1$.
......which extends to all $n \geq 1$,

$$
\mathbf{H}_{s, w}^{n}=\lambda^{n}(s, w) \cdot \mathbf{P}_{s, w}+\mathbf{N}_{s, w}^{n} .
$$

Then, a Quasi-Power Property

$$
\mathbf{H}_{s, w}^{n}[f]=\lambda^{n}(s, w) \cdot \mathbf{P}_{s, w}[f] \cdot\left[1+O\left(\theta^{n}\right)\right]
$$

Then, a Quasi-Power Property

$$
\mathbf{H}_{s, w}^{n}[f]=\lambda^{n}(s, w) \cdot \mathbf{P}_{s, w}[f] \cdot\left[1+O\left(\theta^{n}\right)\right]
$$

and, a decomposition for the quasi-inverse

$$
\left(I-\mathbf{H}_{s, w}\right)^{-1}=\lambda(s, w) \frac{\mathbf{P}_{s, w}}{1-\lambda(s, w)}+\left(I-\mathbf{N}_{s, w}\right)^{-1}
$$

Then, a Quasi-Power Property

$$
\mathbf{H}_{s, w}^{n}[f]=\lambda^{n}(s, w) \cdot \mathbf{P}_{s, w}[f] \cdot\left[1+O\left(\theta^{n}\right)\right]
$$

and, a decomposition for the quasi-inverse

$$
\left(I-\mathbf{H}_{s, w}\right)^{-1}=\lambda(s, w) \frac{\mathbf{P}_{s, w}}{1-\lambda(s, w)}+\left(I-\mathbf{N}_{s, w}\right)^{-1}
$$

Since $\mathbf{H}_{1,0}$ is a density transformer, one has

$$
\lambda(1,0)=1, \quad \mathbf{P}_{1,0}[f](x)=\Psi(x) \cdot \int_{I} f(t) d t
$$

Then, a Quasi-Power Property

$$
\mathbf{H}_{s, w}^{n}[f]=\lambda^{n}(s, w) \cdot \mathbf{P}_{s, w}[f] \cdot\left[1+O\left(\theta^{n}\right)\right]
$$

and, a decomposition for the quasi-inverse

$$
\left(I-\mathbf{H}_{s, w}\right)^{-1}=\lambda(s, w) \frac{\mathbf{P}_{s, w}}{1-\lambda(s, w)}+\left(I-\mathbf{N}_{s, w}\right)^{-1}
$$

Since $\mathbf{H}_{1,0}$ is a density transformer, one has

$$
\lambda(1,0)=1, \quad \mathbf{P}_{1,0}[f](x)=\Psi(x) \cdot \int_{I} f(t) d t
$$

"Dominant" (polar) singularities of $\left(I-\mathbf{H}_{s, w}\right)^{-1}$ near the point $(1,0)$: along a curve $s=\sigma(w)$ on which the dominant eigenvalue satisfies

$$
\lambda(\sigma(w), w)=1
$$

Another important condition: the Aperiodicity condition:
On the line $\Re s=1,1 \notin \mathrm{SpH}_{s}$.

The triple $U D E+S G+$ Aperiodicity entails good properties for $\left(I-\mathbf{H}_{s}\right)^{-1}$, sufficient for applying Tauberian Theorems
$s=1$ is the only pole on the line $\Re s=1$

Half-plane of convergence $\Re s>1$

No hypothesis needed on the half-plane $\Re s<1$.

Property $U S(s, w)$: Uniformity on Vertical Strips

There exist $\alpha>0, \beta>0$ such that,
on the vertical strip $\mathcal{S}:=\{s ;|\Re(s)-1|<\alpha\}$, and uniformly when $w \in \mathcal{W}:=\{w ; \mid \Re w]<\beta\}$,

Property $U S(s, w)$: Uniformity on Vertical Strips

There exist $\alpha>0, \beta>0$ such that, on the vertical strip $\mathcal{S}:=\{s ;|\Re(s)-1|<\alpha\}$, and uniformly when $w \in \mathcal{W}:=\{w ; \mid \Re w]<\beta\}$,
(i) [Strong aperiodicity] $s \mapsto\left(I-\mathbf{H}_{s, w}\right)^{-1}$ has a unique pole inside \mathcal{S}; it is located at $s=\sigma(w)$ defined by $\lambda(\sigma(w), w)=1$.

Property $U S(s, w)$: Uniformity on Vertical Strips

There exist $\alpha>0, \beta>0$ such that, on the vertical strip $\mathcal{S}:=\{s ;|\Re(s)-1|<\alpha\}$, and uniformly when $w \in \mathcal{W}:=\{w ; \mid \Re w]<\beta\}$,
(i) [Strong aperiodicity] $s \mapsto\left(I-\mathbf{H}_{s, w}\right)^{-1}$ has a unique pole inside \mathcal{S};
it is located at $s=\sigma(w)$ defined by $\lambda(\sigma(w), w)=1$.
(ii) [Uniform polynomial estimates] For any $\gamma>0$, there exists $\xi>0$ s.t,

$$
\left(I-\mathbf{H}_{s, w}\right)^{-1}[1]=O\left(|\Im s|^{\xi}\right) \quad \forall s \in \mathcal{S}, \quad|t|>\gamma, \quad w \in \mathcal{W}
$$

Property $U S(s, w)$: Uniformity on Vertical Strips

There exist $\alpha>0, \beta>0$ such that, on the vertical strip $\mathcal{S}:=\{s ;|\Re(s)-1|<\alpha\}$, and uniformly when $w \in \mathcal{W}:=\{w ; \mid \Re w]<\beta\}$,
(i) [Strong aperiodicity] $s \mapsto\left(I-\mathbf{H}_{s, w}\right)^{-1}$ has a unique pole inside \mathcal{S};
it is located at $s=\sigma(w)$ defined by $\lambda(\sigma(w), w)=1$.
(ii) [Uniform polynomial estimates] For any $\gamma>0$, there exists $\xi>0$ s.t,

$$
\left(I-\mathbf{H}_{s, w}\right)^{-1}[1]=O\left(|\Im s|^{\xi}\right) \quad \forall s \in \mathcal{S}, \quad|t|>\gamma, \quad w \in \mathcal{W}
$$

With the Property US, it is easy to deform the contour of the Perron Formula and use Cauchy's Theorem ...

Near $w=0$, the function σ is defined by $\lambda(\sigma(w), w)=1$
$s=\sigma(w)$ is the only pole on the strip $|\Re s-1| \leq \alpha$

Uniform polynomial estimates needed on the left domain $1-\alpha \leq \Re s \leq 1,|\Im s| \geq \gamma$.

Expansion
near the pole $s=\sigma(w)$
$\left(I-\mathbf{H}_{s, w}\right)^{-1} \sim \frac{a}{s-\sigma(w)}$
Half-plane of
convergence $\Re s>\sigma(w)$

Property $U S(s)$ is not always true

Item (i) is always false for Dynamical Systems with affine branches.
Example: Location of poles of $\left(I-\mathbf{H}_{s}\right)^{-1}$ near $\Re s=1$
in the case of affine branches of slopes $1 / p$ and $1 / q$ with $p+q=1$.
Two main cases

$$
\text { If } \frac{\log p}{\log q} \in \mathbf{Q}
$$

Regularly spaced poles on $\Re s=1$

Three main facts.
(a) There exist various conditions, (introduced by Dolgopyat), the Conditions UNI that express that "the dynamical system is quite different from a system with piecewise affine branches"
(b) For a good Dynamical system
[complete, strongly expansive, with bounded distortion], Conditions UNI imply the Uniform Property $U S(s, w)$.
(c) Conditions UNI are true in the Euclid context.

Dolgopyat (98) proves the Item (b) but

- only for Dynamical Systems with a finite number of branches
- He considers only the $U S(s)$ Property

Baladi-Vallée adapt his arguments to generalize this result:

For a Dynamical System with a denumerable number of branches (possibly infinite), Conditions UNI [Strong or Weak] imply $U S(s, w)$.

Precisions about the UNI Conditions

Distance $\Delta . \quad \Delta(h, k):=\inf _{x \in \mathcal{I}} \Psi_{h, k}^{\prime}(x), \quad$ with $\quad \Psi_{h, k}(x):=\log \frac{\left.\mid h^{\prime}(x)\right]}{\left|k^{\prime}(x)\right|}$
Contraction ratio $\rho . \quad \rho:=\lim \sup \left(\left\{\max \left|h^{\prime}(x)\right| ; h \in \mathcal{H}^{n}, x \in \mathcal{I}\right\}\right)^{1 / n}$.
Probability Pr_{n} on $\mathcal{H}^{n} \times \mathcal{H}^{n}$. $\operatorname{Pr}_{n}(h, k):=|h(\mathcal{I})| \cdot|k(\mathcal{I})|$

For a system \mathcal{C}^{2}-conjugated with a piecewise-affine system :
For any $\hat{\rho}$ with $\rho<\hat{\rho}<1$, for any $n, \quad \operatorname{Pr}_{n}\left[\Delta<\hat{\rho}^{n}\right]=1$

Strong Condition UNI.
For any $\hat{\rho}$ with $\rho<\hat{\rho}<1$, for any $n, \quad \operatorname{Pr}_{n}\left[\Delta<\hat{\rho}^{n}\right] \ll \hat{\rho}^{n}$
Weak Condition UNI.
$\exists D>0, \exists n_{0} \geq 1, \forall n \geq n_{0}, \quad \operatorname{Pr}_{n}[\Delta \leq D]<1$.

