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The basic set-up

Consider a formal power series

f(x, y) =
∞∑

n=0

αn xn yn(n−1)/2

normalized to α0 = α1 = 1, or more generally

f(x, y) =
∞∑

n=0

an(y) xn

where

(a) a0(0) = a1(0) = 1;

(b) an(0) = 0 for n ≥ 2; and

(c) an(y) = O(yνn) with lim
n→∞

νn = ∞.

Examples:

• The “partial theta function”

Θ0(x, y) =
∞∑

n=0

xn yn(n−1)/2

• The “deformed exponential function” studied in Lecture #1:

F (x, y) =
∞∑

n=0

xn

n!
yn(n−1)/2

• More generally, consider

R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1)

which reduces to Θ0 when q = 0, and to F when q = 1.
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The leading root x0(y)

• Start from a formal power series

f(x, y) =
∞∑

n=0

an(y) xn

where

(a) a0(0) = a1(0) = 1

(b) an(0) = 0 for n ≥ 2

(c) an(y) = O(yνn) with lim
n→∞

νn = ∞

and coefficients lie in a commutative ring-with-identity-element R.

• By (c), each power of y is multiplied by only finitely many

powers of x.

• That is, f is a formal power series in y whose coefficients are

polynomials in x, i.e. f ∈ R[x][[y]].

• Hence, for any formal power series X(y) with coefficients in R

[not necessarily with zero constant term], the composition f(X(y), y)

makes sense as a formal power series in y.

• Not hard to see (by the implicit function theorem for formal

power series or by a direct inductive argument) that there exists a

unique formal power series x0(y) ∈ R[[y]] satisfying f(x0(y), y) = 0.

• We call x0(y) the leading root of f .

• Since x0(y) has constant term −1, we will write x0(y) = −ξ0(y)

where ξ0(y) = 1 + O(y).
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How to compute ξ0(y)?

1. Elementary method: Insert ξ0(y) = 1 +
∞∑

n=1
bny

n into

f(−ξ0(y), y) = 0 and solve term-by-term.

2. Method based on the explicit implicit function formula.

3. Method based on the exponential formula and expansion of log f(x, y).

• Methods #2 and #3 are computationally very efficient.

• Can they also be used to give proofs?
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Tools I: The explicit implicit function formula

• See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59

• (Almost trivial) generalization of Lagrange inversion formula

• Comes in analytic-function and formal-power-series versions

• Recall Lagrange inversion: If f(x) =
∑∞

n=1 anx
n with a1 6= 0

(as either analytic function or formal power series), then

f−1(y) =
∞∑

m=1

ym

m
[ζm−1]

(
ζ

f(ζ)

)m

where [ζn]g(ζ) denotes the coefficient of ζn in the power series g(ζ).

More generally, if h(x) =
∑∞

n=0 bnx
n, we have

h(f−1(y)) = h(0) +

∞∑

m=1

ym

m
[ζm−1] h′(ζ)

(
ζ

f(ζ)

)m

• Rewrite this in terms of g(x) = x/f(x): then f(x) = y becomes

x = g(x)y, and its solution x = ϕ(y) = f−1(y) is given by the

power series

ϕ(y) =
∞∑

m=1

ym

m
[ζm−1]g(ζ)m

and

h(ϕ(y)) = h(0) +

∞∑

m=1

ym

m
[ζm−1]h′(ζ)g(ζ)m

• There is also an alternate form

h(ϕ(y)) = h(0) +
∞∑

m=1

ym [ζm]h(ζ)
[
g(ζ)m − ζg′(ζ)g(ζ)m−1

]
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The explicit implicit function formula, continued

• Generalize x = g(x)y to x = G(x, y), where

– G(0, 0) = 0 and |(∂G/∂x)(0, 0)| < 1 (analytic-function version)

– G(0, 0) = 0 and (∂G/∂x)(0, 0) = 0 (formal-power-series version)

• Then there is a unique ϕ(y) with zero constant term satisfying

ϕ(y) = G(ϕ(y), y), and it is given by

ϕ(y) =
∞∑

m=1

1

m
[ζm−1]G(ζ, y)m

=
∞∑

m=1

[ζm−1]
[
G(ζ, y)m − ζ

∂G(ζ, y)

∂ζ
G(ζ, y)m−1

]

More generally, for any H(x, y) we have

H(ϕ(y), y) = H(0, y) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, y)

∂ζ
G(ζ, y)m

= H(0, y) +

∞∑

m=1

[ζm]H(ζ, y)
[
G(ζ, y)m − ζ

∂G(ζ, y)

∂ζ
G(ζ, y)m−1

]

• First versions are slightly more convenient but require R to

contain the rationals as a subring.

• Proof imitates standard proof of the Lagrange inversion formula:

the variables y simply “go for the ride”.

• Alternate interpretation: Solving fixed-point problem for the

family of maps x 7→ G(x, y) parametrized by y. Variables y

again “go for the ride”.
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A possible extension [open problem]

• Conditions on G and ϕ in the explicit implicit function formula

seem natural:

– If G(x, y) is a formal power series, it ordinarily makes sense

to substitute x = ϕ(y) only when ϕ(y) is a formal power

series with zero constant term .

– Then a solution to the fixed-point equation ϕ(y) = G(ϕ(y), y)

with ϕ(y) having zero constant term can exist only if G(0, 0) = 0.

• But there is one important case where these conditions can be

weakened: namely, if G(x, y) belongs to R[x][[y]], i.e. if the

coefficient of each power of y is a polynomial in x.

– In this case it makes sense to substitute for x an arbitrary

formal power series ϕ(y), not necessarily with zero constant

term .

– The result G(ϕ(y), y) is a well-defined formal power series in y.

– What can be said about existence and uniqueness of solutions to

ϕ(y) = G(ϕ(y), y)?

– And is there an explicit “Lagrange-like” formula for ϕ(y)?

– I suspect that the answer is yes, but I haven’t worked out

the details.

– And it looks like this may be useful in our application.
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Application to leading root of f(x, y)

• Start from a formal power series f(x, y) =
∑∞

n=0 an(y) xn satisfying

properties (a)–(c) above.

• Write out f(−ξ0(y), y) = 0 and add ξ0(y) to both sides:

ξ0(y) = a0(y) − [a1(y) − 1]ξ0(y) +
∞∑

n=2

an(y) (−ξ0(y))n

• Insert ξ0(y) = 1+ϕ(y) where ϕ(y) has zero constant term. Then

ϕ(y) = G(ϕ(y), y) where

G(z, y) =
∞∑

n=0

(−1)n ân(y) (1 + z)n

and

ân(y) =

{
an(y) − 1 for n = 0, 1

an(y) for n ≥ 2

And ϕ(y) is the unique formal power series with zero constant

term satisfying this fixed-point equation.

• Since this G satisfies G(0, 0) = 0 and (∂G/∂z)(0, 0) = 0 [indeed

it satisfies the stronger condition G(z, 0) = 0], we can apply the

explicit implicit function formula to obtain an explicit formula

for ξ0(y):

ξ0(y) = 1 +
∞∑

m=1

1

m
[ζm−1]

(
∞∑

n=0

(−1)n ân(y) (1 + ζ)n

)m

More generally, for any formal power series H(z, y), we have

H(ξ0(y) − 1, y)

= H(0, y) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, y)

∂ζ

(
∞∑

n=0

(−1)n ân(y) (1 + ζ)n

)m
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Application to leading root of f(x, y), continued

• In particular, by taking H(z, y) = (1 + z)β we can obtain an

explicit formula for an arbitrary power of ξ0(y):

ξ0(y)β = 1 +

∞∑

m=1

β

m

∑

n1,...,nm≥0

(
β − 1 +

∑
ni

m − 1

) m∏

i=1

(−1)niâni
(y)

• Important special case: a0(y) = a1(y) = 1 and an(y) = αn yλn

(n ≥ 2) where λn ≥ 1 and lim
n→∞

λn = ∞. Then

[yN ]
ξ0(y)β − 1

β
=

∞∑

m=1

1

m

∑

n1, . . . , nm ≥ 2
m∑

i=1

λni
= N

(−1)
∑

ni

(
β − 1 +

∑
ni

m − 1

) m∏

i=1

αni

• Can this formula be used for proofs of nonnegativity???

• Empirically I know that the RHS is ≥ 0 when λn = n(n−1)/2:

– For β ≥ −2 with αn = 1 (partial theta function)

– For β ≥ −1 with αn = 1/n! (deformed exponential function)

– For β ≥ −1 with αn = (1 − q)n/(q; q)n and q > −1

• And I can prove this (by a different method!) for the partial

theta function.

• How can we see these facts from this formula???

[open combinatorial problem]
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Tools II: Variants of the exponential formula

• Let R be a commutative ring containing the rationals.

• Let A(x) =
∑∞

n=0 an xn be a formal power series (with coefficients

in R) satisfying a0 = 1.

• Now consider C(x) = log A(x) =
∑∞

n=1 cn xn.

• It is well known (and easy to prove) that

an =
n∑

k=1

k

n
ck an−k for n ≥ 1

This allows {an} to be calculated given {cn}, or vice versa.

• Sometimes useful to introduce c̃n = ncn, which are the coefficients

in
x A′(x)

A(x)
=

∞∑

n=1

c̃n xn

• See Scott–Sokal, arXiv:0803.1477 for generalizations to A(x)λ

and applications to the multivariate Tutte polynomial

• Now specialize to R = R0[[y]] and A(x, y) =
∑∞

n=0 an(y) xn

where a0(y) = 1

• Assume further that a1(0) = 1 and an(0) = 0 for n ≥ 2

[conditions (a) and (b) for our f(x, y)]

• Then
x A′(x, y)

A(x, y)
=

∞∑

n=1

c̃n(y) xn

where ′ denotes ∂/∂x and c̃n(y) has constant term (−1)n−1.
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Application to leading root of f(x, y)

• Start from a formal power series f(x, y) = 1 + x +
∞∑

n=2
an(y) xn

satisfying

an(y) = O(yα(n−1)) for n ≥ 2

for some real α > 0. [This is a bit stronger than (a)–(c).]

• Define {c̃n(y)}∞n=1 by

x f ′(x, y)

f(x, y)
=

∞∑

n=1

c̃n(y) xn

where ′ denotes ∂/∂x.

• Theorem: We have

c̃n(y) = (−1)n−1 ξ0(y)−n + O(yαn)

or equivalently

ξ0(y) = [(−1)n−1c̃n(y)]−1/n + O(yαn)

• This theorem provides an extraordinarily efficient method for

computing the series ξ0(y):

– Compute the c̃n(y) inductively using the recursion

c̃n = nan −
n−1∑
k=1

c̃k an−k

– Take the power −1/n to extract ξ0(y) through order y⌈αn⌉−1

• This abstracts the recursive method shown in Lecture #1 for the

special case F (x, y) =
∞∑

n=0

xn

n!
yn(n−1)/2 .
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Proof of Theorem (via complex analysis)

• Use complex-analysis argument to prove Theorem when R = C

and f is a polynomial.

• Infer general validity by some abstract nonsense.

Lemma. Fix a real number α > 0, and let P (x, y) = 1 + x +∑N
n=2 an(y)xn where the {an(y)}N

n=2 are polynomials with complex

coefficients satisfying an(y) = O(yα(n−1)). Then there exist numbers

ρ > 0 and γ > 0 such that P ( · , y) has precisely one root in the disc

|x| < γ|y|−α whenever |y| ≤ ρ.

Idea of proof: Apply Rouché’s theorem to f(x) = x and g(x) =

1 +
∑N

n=2 an(y)xn on the circle |x| = γ|y|−α.

Proof of Theorem when R = C and f is a polynomial:

Write

P (x, y) =

k(y)∏

i=1

(
1 −

x

Xi(y)

)

with k(y) ≤ N . Therefore

x P ′(x, y)

P (x, y)
=

k(y)∑

i=1

−x/Xi(y)

1 − x/Xi(y)

and hence

c̃n(y) = −

k(y)∑

i=1

Xi(y)−n .

Now, for small enough |y|, one of the roots is given by the convergent

series −ξ0(y) and is smaller than γ|y|−α in magnitude, while the
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other roots have magnitude ≥ γ|y|−α by the Lemma. We therefore

have ∣∣c̃n(y) − (−1)n−1ξ0(y)−n
∣∣ ≤ (N − 1)γ−n|y|αn

for small enough |y|, as claimed. �

Proof of Theorem in general case: Write

an(y) =
∞∑

m=⌈α(n−1)⌉

anm ym

Work in the ring R = Z[a] where a = {anm}n≥2, m≥⌈α(n−1)⌉ are

treated as indeterminates. Then the claim of the Theorem amounts

to a series of identities between polynomials in a with integer coeffi-

cients. We have verified these identities when evaluated on collections

a of complex numbers of which only finitely many are nonzero; and

this is enough to prove them as identities in Z[a]. �

There is also a direct formal-power-series proof (due to Ira Gessel)

at least in the case α = 1. I don’t know whether it extends to

arbitrary real α > 0.
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Computational use of Theorem

• Can compute ξ0(y) through order yN−1 by computing c̃N(y)

• Do this by computing c̃n(y) for 1 ≤ n ≤ N using recursion

• Observe that all c̃n(y) can be truncated to order yN−1

[no need to keep the full polynomial of degree n(n − 1)/2]

• For F , have done N = 900

[N = 400 takes a minute, N = 900 takes less than 6 hours;

but N = 900 needs 24 GB memory!]

• For Θ0, have done N = 7000

[N = 500 takes a minute, N = 1500 takes less than an hour;

N = 7000 took 11 days and 21 GB memory]

• For R̃, have done N = 350

[N = 50 takes a minute, N = 100 takes less than an hour;

N = 350 took a month and 10 GB memory]
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Some positivity properties of formal power series

• Consider formal power series with real coefficients

f(y) = 1 +
∞∑

m=1

am ym

• For α ∈ R, define the class Sα to consist of those f for which

f(y)α − 1

α
=

∞∑

m=1

bm(α) ym

has all nonnegative coefficients (with a suitable limit when α = 0).

• In other words:

– For α > 0 (resp. α = 0), the class Sα consists of those f for

which fα (resp. log f) has all nonnegative coefficients.

– For α < 0, the class Sα consists of those f for which fα has

all nonpositive coefficients after the constant term 1.

• Containment relations among the classes Sα are given by the

following fairly easy result:

Proposition (Scott–A.D.S., unpublished):

Let α, β ∈ R. Then Sα ⊆ Sβ if and only if either

(a) α ≤ 0 and β ≥ α, or

(b) α > 0 and β ∈ {α, 2α, 3α, . . .}.

Moreover, the containment is strict whenever α 6= β.
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Application to deformed exponential function F

As shown last week, it seems that ξ0(y) ∈ S1:

ξ0(y) = 1 + 1
2
y + 1

2
y2 + 11

24
y3 + 11

24
y4 + 7

16
y5 + 7

16
y6

+ 493
1152y

7 + 163
384y

8 + 323
768y

9 + 1603
3840y

10 + 57283
138240y

11

+ 170921
414720y

12 + 340171
829440y

13 + 22565
55296y

14

+ . . . + terms through order y899

and indeed that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − 1
2
y − 1

4
y2 − 1

12
y3 − 1

16
y4 − 1

48
y5 − 7

288
y6

− 1
96y

7 − 7
768y

8 − 49
6912y

9 − 113
23040y

10 − 17
4608y

11

− 293
92160

y12 − 737
276480

y13 − 3107
1658880

y14

− . . . − terms through order y899

But I have no proof of either of these conjectures!!!

• Note that ξ0(y) is analytic on 0 ≤ y < 1 and diverges as y ↑ 1

like 1/[e(1 − y)].

• It follows that ξ0(y) /∈ Sα for α < −1.
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Application to partial theta function Θ0

It seems that ξ0(y) ∈ S1:

ξ0(y) = 1 + y + 2y2 + 4y3 + 9y4 + 21y5 + 52y6 + 133y7 + 351y8

+948y9 + 2610y10 + . . . + terms through order y6999

and indeed that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − y − y2 − y3 − 2y4 − 4y5 − 10y6 − 25y7 − 66y8

−178y9 − 490y10 − . . . − terms through order y6999

and indeed that ξ0(y) ∈ S−2:

ξ0(y)−2 = 1 − 2y − y2 − y4 − 2y5 − 7y6 − 18y7 − 50y8

−138y9 − 386y10 − . . . − terms through order y6999

Here I do have a proof of these properties.

Coming 2 weeks from today!

• Note that

ξ0(y)α − 1

α
= y +

α + 3

2
y2 +

(α + 2)(α + 7)

6
y3 + O(y4)

• So ξ0(y) /∈ Sα for α < −2.
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Application to R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q) · · · (1 + q + . . . + qn−1)

• Can use explicit implicit function formula to prove that

ξ0(y; q) = 1 +

∞∑

n=1

Pn(q)

Qn(q)
yn

where

Qn(q) =
∞∏

k=2

(1 + q + . . . + qk−1)⌊n/(k

2)⌋

and Pn(q) is a self-inversive polynomial in q with integer coefficients.

• Empirically Pn(q) has two interesting positivity properties:

(a) Pn(q) has all nonnegative coefficients. Indeed, all the

coefficients are strictly positive except [q1] P5(q) = 0.

(b) Pn(q) > 0 for q > −1.

• Empirically ξ0(y; q) ∈ S−1 for all q > −1:

2
3

4

5

6

7

q

Α

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0
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Can any of this be proven???

• It seems that R̃(x, y, q) is the right unification of Θ0 and F .

• But thus far my proofs are only for q = 0 (i.e. Θ0).

Coming 2 weeks from today!

• Can anything be generalized to q 6= 0???

• Open problem: For q = 0, prove ξ0(y) ∈ S1 or S−1 or S−2

directly from the explicit implicit function formula .

• If this works, it might be generalizable to q 6= 0.
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