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The material of this talk

1.− Background

2.− Graph decompositions. First results

3.− The bipartite framework



Background



Objects: graphs

Labelled Graph= labelled vertices+edges.
Unlabelled Graph= labelled one up to permutation of labels.
Simple Graph= NO multiples edges, NO loops.
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Question: How many graphs with n vertices are in the family?



The counting series

Strategy: Encapsulate these numbers → Counting series

I Labelled framework: exponential generating functions

A(x) =
∑
a∈A

x|a|

|a|!
=

∑
n≥0

|An|
n!

xn

I Unlabelled framework: cycle index sums

ZA(s1, s2, . . .) =
∑
n≥0

1

n!

∑
(σ,g)∈Sn×An

σ·g=g

sc11 sc22 · · · s
cn
n ,

Ã(x) = ZA(x, x
2, x3, . . .) =

∑
n≥0

|Ãn|xn.



The symbolic method

COMBINATORIAL RELATIONS between CLASSES

↕⇕↕

EQUATIONS between GENERATING FUNCTIONS

Class Labelled setting Unlabelled setting

C = A ∪ B C(x) = A(x) +B(x) C̃(x) = Ã(x) + B̃(x)

C = A× B C(x) = A(x) ·B(x) C̃(x) = Ã(x) · B̃(x)

C = Set(B) C(x) = exp(B(x)) C̃(x) = exp
(∑

i≥1
1
i B̃(xi)

)
C = A ◦ B C(x) = A(B(x)) C̃(x) = ZA(B̃(x), B̃(x2), . . .)



Singularity analysis on generating functions

GFs: analytic functions in a neighbourhood of the origin.

The smallest singularity of A(z) determines the asymptotics
of the coefficients of A(z).

I POSITION: exponential growth ρ.

I NATURE: subexponential growth

I Transfer Theorems: Let α /∈ {0,−1,−2, . . .}. If

A(z) = a · (1− z/ρ)−α + o((1− z/ρ)−α)

then

an = [zn]A(z) ∼ a

Γ(α)
· nα−1 · ρ−n(1 + o(1))



Our starting point

Asymptotic enumeration and limit laws of planar
graphs (Giménez, Noy)

g1 · n−7/2 · γn1 · n! · (1 + o(1))

Asymptotic enumeration and limit laws of
series-parallel graphs (Bodirsky, Giménez, Kang, Noy)

g2 · n−5/2 · γn2 · n! · (1 + o(1))
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�

THE SUBEXPONENTIAL TERM GIVES THE
“PHYSICS” OF THE GRAPHS

⇕

GENERAL FRAMEWORK TO UNDERSTAND THIS
EXPONENT



Graph decompositions.
First results



General graphs from connected graphs

Let C be a family of connected graphs.

G : graphs such that their connected components are in C.

G = Set(C) =⇒ G(x, y) = exp(C(x, y))



General graphs from connected graphs

Let C be a family of connected graphs.

G : graphs such that their connected components are in C.

G = Set(C) =⇒ G(x) = exp(C(x))



Connected graphs from 2-connected graphs

Let B be a family of 2-connected graphs.

C : connected graphs with blocks in B.

In other words, a vertex-rooted connected graph is a tree of
2-connected blocks.

Co = v × Set(Bo(v ← Co)) =⇒ xC ′(x) = x expB′(xC ′(x))



Connected graphs from 2-connected graphs

Let B be a family of 2-connected graphs.

C : connected graphs with blocks in B.

In other words, a vertex-rooted connected graph is a tree of
2-connected blocks.

C• = v × SET(Bo(v ← C•)) =⇒ xC ′(x) = x expB′(xC ′(x))



Connected graphs from 2-connected graphs

A vertex-rooted connected graph is a tree of rooted blocks.

C• = v × Set(B′(v ← C•)) =⇒ C•(x) = x expB′(C•(x))



2-connected graphs from 3-connected graphs

Decomposition in 3-connected components is slightly harder.

Let T be a family of 3-connected graphs: T (x, z).

We define B as those 2-connected graphs such that can be
obtained from series, parallel, and T -compositions.

D(x, y) = (1 + y) exp

(
xD2

1 + xD
+

1

2x2
∂T

∂z
(x,D)

)
− 1

∂B

∂y
(x, y) =

x2

2

(
1 +D(x, y)

1 + y

)
D is the GF for networks (essentially edge-rooted 2-connected
graphs without the edge root).



A set of equations


1

2x2D

∂T

∂z
(x,D)− log

(
1 +D

1 + y

)
+

xD2

1 + xD
= 0

∂B

∂y
(x, y) =

x2

2

(
1 +D(x, y)

1 + y

)
 C•(x) = x exp

(
B′(C•(x))

)
G(x) = exp(C(x))



Examples of families & excluded minors (I)

I Series-parallel graphs

I Excluded minors:
I T : None.
I T (x, z) = 0.

I Planar graphs

I Excluded minors:
I T : 3-connected planar graphs.
I T (x, z): The number of labelled 2-connected planar graphs

(Bender, Gao, Wormald, 2002)



Examples of families & excluded minors (II)

I W4-free

I Excluded minors:

I T :
I T (x, z) = 1

4!x
4z6.

I K−
5 -free

I Excluded minors:

I T : , . . .
I T (x, z) = 70

6! x
6z9 − 1

2x
(
log(1− xz2) + 2xz2 + x2z4

)
.



Examples of families & excluded minors (III)

I K3,3-free (Gerke, Giménez, Noy, Weibl, 2006)

I Excluded minors:

I 3-connected components: , 3-connected planar graphs.
I T (x, z) = . . . .

I If G = Ex(M) and all the excluded minorsM are
3-connected, then G can be expressed in terms of its
3-connected graphs.



RESULT: asymptotic enumeration

If either ∂T
∂z (x, z)

I has no singularity, or

I the singularity type is (1− z/z0)
α with α < 1,

then the situation is alike to the series-parallel case:

D(x) ∼ d · (1− x/x0)
1/2

B(x) ∼ b · (1− x/x0)
3/2

C(x) ∼ c · (1− x/ρ)3/2

G(x) ∼ g · (1− x/ρ)3/2

dn ∼ d · n−3/2 · x−n
0 · n!

bn ∼ b · n−5/2 · x−n
0 · n!

cn ∼ c · n−5/2 · ρ−n · n!
gn ∼ g · n−5/2 · ρ−n · n!



RESULT: asymptotic enumeration (II)

If ∂T
∂z (x, z) has singularity type (1− z/z0)

3/2, then 3 different
situations may happen.

Case 1 (Planar case)
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RESULT: asymptotic enumeration (II)

If ∂T
∂z (x, z) has singularity type (1− z/z0)

3/2, then 3 different
situations may happen.

Case 3 (Mixed case)

D(x) ∼ d · (1− x/x0)
3/2

B(x) ∼ b · (1− x/x0)
5/2

C(x) ∼ c · (1− x/ρ)3/2

G(x) ∼ g · (1− x/ρ)3/2

dn ∼ d · n−5/2 · x−n
0 · n!

bn ∼ b · n−7/2 · x−n
0 · n!

cn ∼ c · n−5/2 · ρ−n · n!
gn ∼ g · n−5/2 · ρ−n · n!



2 different pictures

Series-parallel-like situation Planar-like situation



The bipartite framework



A key example: Trees
We count rooted trees

⇒

T = • × Set(T )→ T (x) = xeT (x)

To forget the root, we just integrate: (xU ′(x) = T (x))

∫ x

0

T (s)

s
ds =

{
T (s) = u

T ′(s) ds = du

}
=

∫ T (x)

T (0)
1−u du = T (x)−1

2
T (x)2

Question: can we interpret this formula combinatorially?



The dissymmetry theorem
Let T a class of unrooted trees ⇒ canonical root (their centers).

Dissymmetry Theorem for trees:

T ∪ T•→• ≃ T•−• ∪ T•,
For trees:

T•→• → T (x)2; T•−• →
1

2
T (x)2; T• → T (x).

Dissymmetry Theorem ≡ Combinatorial Integration.



Returning to the equations

∂B

∂y
(x, y) =

x2

2

(
1 +D(x, y)

1 + y

)
↔ 2(1 + y)

∂B

∂y
(x, y) =

x2

2
(1 +D(x, y))

⇓

B(x, y) =
x2

2

∫ y

0

(
1 +D(x, s)

1 + s

)
ds

Amazingly, an EXACT formula exists!

B(x, y) = T (x,D(x, y))− 1

2
xD(x, y) +

1

2
log(1 + xD(x, y)) +

x2

2

(
D(x, y) +

1

2
D(x, y)2 + (1 +D(x, y)) log

(
1 + y

1 +D(x, y)

))
.

Is there a “tree-like” argument to explain this formula?



The complete grammar for graphs

A Grammar for Decomposing a Family of Graphs into 3-connected Components; (Chapuy, Fusy, Kang, Shoilekova)

This system is obtained ap-
plying the dissymmetry
theorem for trees in an
ingenious way.

The key step is the one
which translates combina-
torially the integration!



Bipartite Graphs: the strategy (I)

Can we apply the same decomposition for bipartite graphs?

1-sums are easy!

The 2-connected components are also bipartite



Bipartite graphs: the strategy (II)

For 2-sums we have problems

We need to study something more general Ising Model.



Bipartite graphs: the strategy (III)
PROBLEM: going from 3-connected level to 2-connected level.

Networks in the general case:
D(x, y) = y + S(x, y) + P (x, y) +H(x, y)
S(x, y) = D(x, y)x (D(x, y)− S(x, y))
P (x, y) = (1 + y) (exp(S(x, y) +H(x, y))− 1− S(x, y)−H(x, y))
H(x, y) = 2

x2Ty(x,D(x, y)).

Networks in the Ising model: S◦−• = xD◦−•
x(D2

◦−◦−D2
◦−•)+2D◦−◦

(1+x(D◦−◦+D◦−•))(1+x(D◦−◦−D◦−•))

S◦−◦ = x
D2

◦−◦+D2
◦−•+D3

◦−◦−xD◦−◦D
2
◦−•

(1+x(D◦−◦+D◦−•))(1+x(D◦−◦−D◦−•))

and

2(1 + y◦−•)
∂

∂y◦−•
B(x, y◦−•, y◦−◦) + 2(1 + y◦−◦)

∂

∂y◦−◦
B(x, y◦−•, y◦−◦) =

x2(1 +D◦−◦ +D◦−•)

We do not have any choice: Combinatorial Integration!



The Program (Coming soon!)
One needs to rephrase the grammar for graphs including the
colours.

Once we have this (+ Singularity analysis), we can:

i.- Study SP-graphs.

ii.- Study families of graphs defined by “easy” 3-connected
components.

ii.- Study limit laws for several parameters

What we CANNOT do (for the moment!):

STUDY GENERAL
PLANAR BIPARTITE PLANAR GRAPHS

⇕
OBTAIN GF FOR 3-CONNECTED MAPS
(BERNARDI & BOUSQUET-MÉLOU)



Merci
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