Bipartite subfamilies of planar graphs

Juanjo Rué

Instituto de Ciencias Matemáticas, Madrid

Journée-séminaire de Combinatoire CALIN, Paris Nord

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

The material of this talk

1.- Background
2.- Graph decompositions. First results
3.- The bipartite framework

Background

Objects: graphs

Labelled Graph= labelled vertices+edges.
Unlabelled Graph= labelled one up to permutation of labels. Simple Graph= NO multiples edges, NO loops.

Question: How many graphs with n vertices are in the family?

The counting series

Strategy: Encapsulate these numbers \rightarrow Counting series

- Labelled framework: exponential generating functions

$$
A(x)=\sum_{a \in \mathcal{A}} \frac{x^{|a|}}{|a|!}=\sum_{n \geq 0} \frac{\left|\mathcal{A}_{n}\right|}{n!} x^{n}
$$

- Unlabelled framework: cycle index sums

$$
\begin{gathered}
Z_{\mathcal{A}}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!} \sum_{\substack{(\sigma, g) \in \mathfrak{S}_{n} \times \mathcal{A}_{n} \\
\sigma \cdot g=g}} s_{1}^{c_{1}} s_{2}^{c_{2}} \cdots s_{n}^{c_{n}}, \\
\widetilde{A}(x)=Z_{\mathcal{A}}\left(x, x^{2}, x^{3}, \ldots\right)=\sum_{n \geq 0}\left|\widetilde{\mathcal{A}}_{n}\right| x^{n} .
\end{gathered}
$$

The symbolic method

COMBINATORIAL RELATIONS between CLASSES

$\downarrow \downarrow$

EQUATIONS between GENERATING FUNCTIONS

Class	Labelled setting	Unlabelled setting
$\mathcal{C}=\mathcal{A} \cup \mathcal{B}$	$C(x)=A(x)+B(x)$	$\widetilde{C}(x)=\widetilde{A}(x)+\widetilde{B}(x)$
$\mathcal{C}=\mathcal{A} \times \mathcal{B}$	$C(x)=A(x) \cdot B(x)$	$\widetilde{C}(x)=\widetilde{A}(x) \cdot \widetilde{B}(x)$
$\mathcal{C}=\operatorname{Set}(\mathcal{B})$	$C(x)=\exp (B(x))$	$\widetilde{C}(x)=\exp \left(\sum_{i \geq 1} \frac{1}{i} \widetilde{B}\left(x^{i}\right)\right)$
$\mathcal{C}=\mathcal{A} \circ \mathcal{B}$	$C(x)=A(B(x))$	$\widetilde{C}(x)=Z_{\mathcal{A}}\left(\widetilde{B}(x), \widetilde{B}\left(x^{2}\right), \ldots\right)$

Singularity analysis on generating functions

GFs: analytic functions in a neighbourhood of the origin.
The smallest singularity of $A(z)$ determines the asymptotics of the coefficients of $A(z)$.

- POSITION: exponential growth ρ.
- NATURE: subexponential growth
- Transfer Theorems: Let $\alpha \notin\{0,-1,-2, \ldots\}$. If

$$
A(z)=a \cdot(1-z / \rho)^{-\alpha}+o\left((1-z / \rho)^{-\alpha}\right)
$$

then

$$
a_{n}=\left[z^{n}\right] A(z) \sim \frac{a}{\Gamma(\alpha)} \cdot n^{\alpha-1} \cdot \rho^{-n}(1+o(1))
$$

Our starting point

Asymptotic enumeration and limit laws of planar graphs (Giménez, Noy)

$$
g_{1} \cdot n^{-7 / 2} \cdot \gamma_{1}^{n} \cdot n!\cdot(1+o(1))
$$

Asymptotic enumeration and limit laws of series-parallel graphs (Bodirsky, Giménez, Kang, Noy)

$$
g_{2} \cdot n^{-5 / 2} \cdot \gamma_{2}^{n} \cdot n!\cdot(1+o(1))
$$

Our starting point

$$
\begin{aligned}
& g_{1} \cdot n^{-7 / 2} \cdot \gamma_{1}^{n} \cdot n!\cdot(1+o(1)) \\
& g_{2} \cdot n^{-5 / 2} \cdot \gamma_{2}^{n} \cdot n!\cdot(1+o(1))
\end{aligned}
$$

Our starting point

$$
\begin{gathered}
g_{1} \cdot n^{-7 / 2} \cdot \gamma_{1}^{n} \cdot n!\cdot(1+o(1)) \\
g_{2} \cdot n^{-5 / 2} \cdot \gamma_{2}^{n} \cdot n!\cdot(1+o(1)) \\
\downarrow \downarrow
\end{gathered}
$$

THE SUBEXPONENTIAL TERM GIVES THE "PHYSICS" OF THE GRAPHS

$$
\Uparrow
$$

GENERAL FRAMEWORK TO UNDERSTAND THIS EXPONENT

Graph decompositions. First results

General graphs from connected graphs

Let \mathcal{C} be a family of connected graphs.
\mathcal{G} : graphs such that their connected components are in \mathcal{C}.

General graphs from connected graphs

Let \mathcal{C} be a family of connected graphs.
\mathcal{G} : graphs such that their connected components are in \mathcal{C}.

$$
\mathcal{G}=\operatorname{Set}(\mathcal{C}) \Longrightarrow G(x)=\exp (C(x))
$$

Connected graphs from 2-connected graphs

Let \mathcal{B} be a family of 2 -connected graphs.

$\mathcal{C}:$ connected graphs with blocks in \mathcal{B}.

Connected graphs from 2-connected graphs

Let \mathcal{B} be a family of 2-connected graphs.

$\mathcal{C}:$ connected graphs with blocks in \mathcal{B}.

Connected graphs from 2-connected graphs

A vertex-rooted connected graph is a tree of rooted blocks.

$$
\mathcal{C}^{\bullet}=v \times \operatorname{Set}\left(\mathcal{B}^{\prime}\left(v \leftarrow \mathcal{C}^{\bullet}\right)\right) \Longrightarrow C^{\bullet}(x)=x \exp B^{\prime}\left(C^{\bullet}(x)\right)
$$

2-connected graphs from 3-connected graphs

Decomposition in 3-connected components is slightly harder.
Let \mathcal{T} be a family of 3-connected graphs: $T(x, z)$.
We define \mathcal{B} as those 2-connected graphs such that can be obtained from series, parallel, and \mathcal{T}-compositions.

$$
\begin{gathered}
D(x, y)=(1+y) \exp \left(\frac{x D^{2}}{1+x D}+\frac{1}{2 x^{2}} \frac{\partial T}{\partial z}(x, D)\right)-1 \\
\frac{\partial B}{\partial y}(x, y)=\frac{x^{2}}{2}\left(\frac{1+D(x, y)}{1+y}\right)
\end{gathered}
$$

D is the GF for networks (essentially edge-rooted 2-connected graphs without the edge root).

A set of equations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{1}{2 x^{2} D} \frac{\partial T}{\partial z}(x, D)-\log \left(\frac{1+D}{1+y}\right)+\frac{x D^{2}}{1+x D}=0 \\
\frac{\partial B}{\partial y}(x, y)=\frac{x^{2}}{2}\left(\frac{1+D(x, y)}{1+y}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
C^{\bullet}(x)=x \exp \left(B^{\prime}\left(C^{\bullet}(x)\right)\right) \\
G(x)=\exp (C(x))
\end{array}\right.
\end{aligned}
$$

Examples of families \& excluded minors (I)

- Series-parallel graphs
- Excluded minors:

- \mathcal{T} : None.
- $T(x, z)=0$.
- Planar graphs
- Excluded minors:

- T: 3-connected planar graphs.
- T(x,z): The number of labelled 2-connected planar graphs (Bender, Gao, Wormald, 2002)

Examples of families \& excluded minors (II)

- W_{4}-free
- Excluded minors:

- $\mathcal{T}:{ }_{0}$
- $T(x, z)=\frac{1}{4!} x^{4} z^{6}$.
- K_{5}^{-}-free
- Excluded minors:
- \mathcal{T} :

- $T(x, z)=\frac{70}{6!} x^{6} z^{9}-\frac{1}{2} x\left(\log \left(1-x z^{2}\right)+2 x z^{2}+x^{2} z^{4}\right)$.

Examples of families \& excluded minors (III)

- $K_{3,3}$-free (Gerke, Giménez, Noy, Weibl, 2006)
- Excluded minors:
- 3-connected components:
 3-connected planar graphs.
- $T(x, z)=\ldots$.
- If $\mathcal{G}=\operatorname{Ex}(\mathcal{M})$ and all the excluded minors \mathcal{M} are 3 -connected, then \mathcal{G} can be expressed in terms of its 3 -connected graphs.

RESULT: asymptotic enumeration

If either $\frac{\partial T}{\partial z}(x, z)$

- has no singularity, or
- the singularity type is $\left(1-z / z_{0}\right)^{\alpha}$ with $\alpha<1$,
then the situation is alike to the series-parallel case:

$$
\begin{array}{ll}
D(x) \sim d \cdot\left(1-x / x_{0}\right)^{1 / 2} & d_{n} \sim d \cdot n^{-3 / 2} \cdot x_{0}^{-n} \cdot n! \\
B(x) \sim b \cdot\left(1-x / x_{0}\right)^{3 / 2} & b_{n} \sim b \cdot n^{-5 / 2} \cdot x_{0}^{-n} \cdot n! \\
C(x) \sim c \cdot(1-x / \rho)^{3 / 2} & c_{n} \sim c \cdot n^{-5 / 2} \cdot \rho^{-n} \cdot n! \\
G(x) \sim g \cdot(1-x / \rho)^{3 / 2} & g_{n} \sim g \cdot n^{-5 / 2} \cdot \rho^{-n} \cdot n!
\end{array}
$$

RESULT: asymptotic enumeration (II)

If $\frac{\partial T}{\partial z}(x, z)$ has singularity type $\left(1-z / z_{0}\right)^{3 / 2}$, then 3 different situations may happen.

Case 1 (Planar case)

$$
\begin{array}{ll}
D(x) \sim d \cdot\left(1-x / x_{0}\right)^{3 / 2} & d_{n} \sim d \cdot n^{-5 / 2} \cdot x_{0}^{-n} \cdot n! \\
B(x) \sim b \cdot\left(1-x / x_{0}\right)^{5 / 2} & b_{n} \sim b \cdot n^{-7 / 2} \cdot x_{0}^{-n} \cdot n! \\
C(x) \sim c \cdot(1-x / \rho)^{5 / 2} & c_{n} \sim c \cdot n^{-7 / 2} \cdot \rho^{-n} \cdot n! \\
G(x) \sim g \cdot(1-x / \rho)^{5 / 2} & g_{n} \sim g \cdot n^{-7 / 2} \cdot \rho^{-n} \cdot n!
\end{array}
$$

RESULT: asymptotic enumeration (II)

If $\frac{\partial T}{\partial z}(x, z)$ has singularity type $\left(1-z / z_{0}\right)^{3 / 2}$, then 3 different situations may happen.

Case 2 (Series-parallel case)

$$
\begin{array}{ll}
D(x) \sim d \cdot\left(1-x / x_{0}\right)^{1 / 2} & d_{n} \sim d \cdot n^{-3 / 2} \cdot x_{0}^{-n} \cdot n! \\
B(x) \sim b \cdot\left(1-x / x_{0}\right)^{3 / 2} & b_{n} \sim b \cdot n^{-5 / 2} \cdot x_{0}^{-n} \cdot n! \\
C(x) \sim c \cdot(1-x / \rho)^{3 / 2} & c_{n} \sim c \cdot n^{-5 / 2} \cdot \rho^{-n} \cdot n! \\
G(x) \sim g \cdot(1-x / \rho)^{3 / 2} & g_{n} \sim g \cdot n^{-5 / 2} \cdot \rho^{-n} \cdot n!
\end{array}
$$

RESULT: asymptotic enumeration (II)

If $\frac{\partial T}{\partial z}(x, z)$ has singularity type $\left(1-z / z_{0}\right)^{3 / 2}$, then 3 different situations may happen.

Case 3 (Mixed case)

$$
\begin{array}{ll}
D(x) \sim d \cdot\left(1-x / x_{0}\right)^{3 / 2} & d_{n} \sim d \cdot n^{-5 / 2} \cdot x_{0}^{-n} \cdot n! \\
B(x) \sim b \cdot\left(1-x / x_{0}\right)^{5 / 2} & b_{n} \sim b \cdot n^{-7 / 2} \cdot x_{0}^{-n} \cdot n! \\
C(x) \sim c \cdot(1-x / \rho)^{3 / 2} & c_{n} \sim c \cdot n^{-5 / 2} \cdot \rho^{-n} \cdot n! \\
G(x) \sim g \cdot(1-x / \rho)^{3 / 2} & g_{n} \sim g \cdot n^{-5 / 2} \cdot \rho^{-n} \cdot n!
\end{array}
$$

2 different pictures

Series-parallel-like situation

Planar-like situation

The bipartite framework

A key example: Trees

We count rooted trees

$$
\mathcal{T}=\bullet \times \operatorname{Set}(\mathcal{T}) \rightarrow T(x)=x e^{T(x)}
$$

To forget the root, we just integrate: $\left(x U^{\prime}(x)=T(x)\right)$

$$
\int_{0}^{x} \frac{T(s)}{s} d s=\left\{\begin{array}{c}
T(s)=u \\
T^{\prime}(s) d s=d u
\end{array}\right\}=\int_{T(0)}^{T(x)} 1-u d u=T(x)-\frac{1}{2} T(x)^{2}
$$

Question: can we interpret this formula combinatorially?

The dissymmetry theorem

Let \mathcal{T} a class of unrooted trees \Rightarrow canonical root (their centers).

Dissymmetry Theorem for trees:

$$
\mathcal{T} \cup \mathcal{T}_{\bullet \rightarrow \bullet} \simeq \mathcal{T}_{\bullet-\bullet} \cup \mathcal{T}_{\bullet}
$$

For trees:

$$
\mathcal{T}_{\bullet \rightarrow \bullet} \rightarrow T(x)^{2} ; \mathcal{T}_{\bullet \bullet \bullet} \rightarrow \frac{1}{2} T(x)^{2} ; \mathcal{T}_{\bullet} \rightarrow T(x)
$$

Dissymmetry Theorem \equiv Combinatorial Integration.

Returning to the equations

$$
\begin{gathered}
\frac{\partial B}{\partial y}(x, y)=\frac{x^{2}}{2}\left(\frac{1+D(x, y)}{1+y}\right) \leftrightarrow 2(1+y) \frac{\partial B}{\partial y}(x, y)=\frac{x^{2}}{2}(1+D(x, y)) \\
\Downarrow \\
B(x, y)=\frac{x^{2}}{2} \int_{0}^{y}\left(\frac{1+D(x, s)}{1+s}\right) d s
\end{gathered}
$$

Amazingly, an EXACT formula exists!

$$
\begin{aligned}
B(x, y)= & T(x, D(x, y))-\frac{1}{2} x D(x, y)+\frac{1}{2} \log (1+x D(x, y))+ \\
& \frac{x^{2}}{2}\left(D(x, y)+\frac{1}{2} D(x, y)^{2}+(1+D(x, y)) \log \left(\frac{1+y}{1+D(x, y)}\right)\right) .
\end{aligned}
$$

Is there a "tree-like" argument to explain this formula?

The complete grammar for graphs

A Grammar for Decomposing a Family of Graphs into 3-connected Components; (Chapuy, Fusy, Kang, Shoilekova)

```
(1). General from Connected (folklore).
\mathcal{G}=\operatorname{Set}(\mp@subsup{\mathcal{G}}{1}{})
(2). Connected from 2-Connected (Bergeron, Labelle, Leroux).
    \mp@subsup{\mathcal{G}}{1}{}=\mathcal{C}=\mp@subsup{\mathcal{C}}{v}{}+\mp@subsup{\mathcal{C}}{if}{}-\mp@subsup{\mathcal{C}}{Dv}{}\mathrm{ [dissymmetry theorem]}
    C
    C'}=\operatorname{Set}(\mp@subsup{\mathcal{G}}{2}{\prime}\mp@subsup{O}{v}{}\mp@subsup{\mathcal{C}}{}{\prime}
    \mathcal{C}
    詯 
(3). 2-Connected from 3-Connected.
(i) Networks
    D}=c+S+\mathcal{P}+\mathcal{H
    S=(D-S)*v*\mathcal{D}
    \mathcal{P}={\begin{array}{l}{\mp@subsup{\mathrm{Set }}{>2}{}(\mathcal{D}-\mathcal{P}),}\\{(*\mp@subsup{\mathcal{S}}{2}{\prime}}\end{array}\quad[Multi-odges allowod]
```



```
    H}=\vec{\mp@subsup{\mathcal{G}}{3}{}}\mp@subsup{O}{\varepsilon}{}\mathcal{D
(ii) Unrooted 2-Connected
```



```
    B}=\mp@subsup{\mathcal{B}}{n}{}+\mp@subsup{\mathcal{B}}{M}{}+\mp@subsup{\mathcal{B}}{T}{}-\mp@subsup{\mathcal{B}}{\mp@subsup{R}{-M}{}}{M}-\mp@subsup{\mathcal{B}}{n-T}{}-\mp@subsup{B}{M-T}{}-\mp@subsup{B}{T-T}{
    \mp@subsup{B}{R}{}=\mathcal{R}\mp@subsup{o}{c}{}(\mathcal{D}-S)
    \mathcal{B}
```



```
    BT}=\mp@subsup{\mathcal{G}}{3}{}\mp@subsup{O}{e}{}\mathcal{D
\mp@subsup{\mathcal{B}}{n-M}{}=(\mp@subsup{v}{}{2}*S*\mathcal{P})/\bullet\leftrightharpoons\bullet,\quad|\textrm{U}\mathrm{ p to pole exchange, denoted by /}\bullet\leftrightharpoons\bullet]
\mp@subsup{B}{R-T}{\prime}}=(\mp@subsup{v}{}{2}*S*\mathcal{H})/\bullet\leftrightharpoons
\mp@subsup{\mathcal{B}}{M-T}{}=(v\mp@subsup{v}{}{2}*\mathcal{P}*\mathcal{H})/\bullet与\bullet
\mp@subsup{\mathcal{B}}{T-T}{T}=(\mp@subsup{v}{}{2}*\mathcal{H}*\mathcal{H})/\bullet\leftrightharpoons
\mp@subsup{\mathcal{B}}{T-T}{\prime}=(\mp@subsup{v}{}{2}*\mathcal{H}*\mathcal{H})/(\bullet\leftrightharpoons\bullet,H\leftrightharpoonsH).\quad [Up to pole and component exchange]
(iii) Vertex-pointed 2-Connected
    G. G}=\mp@subsup{\epsilon}{}{\prime}+\mp@subsup{B}{}{\prime},\quad\mp@subsup{\epsilon}{}{\prime}={\begin{array}{l}{\mp@subsup{\ell}{1}{\prime}+\mp@subsup{\ell}{2}{\prime}=v*(c+\mp@subsup{\operatorname{Set}}{2}{}(c))\quad\mathrm{ [Multi-cdges allowed]}}
    G.g}=\mp@subsup{\epsilon}{2}{\prime}+\mp@subsup{B}{}{\prime},\quad\mp@subsup{\epsilon}{}{\prime}={\begin{array}{l}{\mp@subsup{\ell}{1}{\prime}+\mp@subsup{\ell}{2}{}=v*(c+\mp@subsup{\textrm{Sct}}{2}{}(\tau))}\\{\ell=v*c}\end{array}\quad\mathrm{ [No multi-edges]
    B
    \mp@subsup{\nu}{R}{}}=\mp@subsup{\mathcal{R}}{}{\prime}\mp@subsup{O}{e}{}(\mathcal{D}-S
    VM
    \mp@subsup{V}{M}{}={\begin{array}{c}{v*c*Set\geq2(\mathcal{D}-\mathcal{P}-c)+v*Set\geq3(\mathcal{D}-\mathcal{P}-c), [No multi-cdges]}\end{array}]
    \mp@subsup{v}{T}{}}=\mp@subsup{\mathcal{G}}{3}{}\mp@subsup{O}{e}{}\mathcal{D
\mp@subsup{V}{R-M}{}=v*S*\mathcal{P}
\mp@subsup{\nu}{R-T}{\prime}=v*S*\mathcal{H}
V
l}\begin{array}{l}{\mp@subsup{V}{M-T}{}=v*\mathcal{P}*\mathcal{H}}\\{\mp@subsup{V}{T-T}{}=v*\mathcal{H}*\mathcal{H}}
l
```

This system is obtained applying the dissymmetry theorem for trees in an ingenious way.

The key step is the one which translates combinatorially the integration!

Bipartite Graphs: the strategy (I)

Can we apply the same decomposition for bipartite graphs?

1-sums are easy!

The 2-connected components are also bipartite

Bipartite graphs: the strategy (II)

For 2-sums we have problems

We need to study something more general Ising Model.

Bipartite graphs: the strategy (III)

PROBLEM: going from 3-connected level to 2 -connected level.
Networks in the general case:

$$
\left\{\begin{array}{l}
D(x, y)=y+S(x, y)+P(x, y)+H(x, y) \\
S(x, y)=D(x, y) x(D(x, y)-S(x, y)) \\
P(x, y)=(1+y)(\exp (S(x, y)+H(x, y))-1-S(x, y)-H(x, y)) \\
H(x, y)=\frac{2}{x^{2}} T_{y}(x, D(x, y))
\end{array}\right.
$$

Networks in the Ising model:

$$
\left\{\begin{array}{l}
S_{\circ-\bullet}=x D_{\circ-\bullet} \frac{x\left(D_{\circ-\circ}^{2}-D_{\circ-\bullet}^{2}\right)+2 D_{\circ-\circ}}{\left(1+x\left(D_{\left.\left.\circ-\circ+D_{\circ-\bullet}\right)\right)\left(1+x\left(D_{\circ-\circ-} D_{\circ-\bullet}\right)\right)}\right.\right.} \\
S_{\circ-\circ}=x \frac{D_{\circ-\circ}^{2}+D_{\circ-\bullet}^{2}+D_{\circ-\circ}^{3}-x D_{\circ-\circ} D_{\circ-\bullet}^{2}}{\left(1+x\left(D_{\circ-\circ}+D_{\circ-\bullet}\right)\right)\left(1+x\left(D_{\circ-\circ}-D_{\circ-\bullet}\right)\right)}
\end{array}\right.
$$

and

$$
\begin{array}{r}
2\left(1+y_{\circ-\bullet}\right) \frac{\partial}{\partial y_{\circ-\bullet} B\left(x, y_{\circ-\bullet}, y_{\circ-\circ}\right)+2\left(1+y_{\circ-\circ}\right) \frac{\partial}{\partial y_{\circ-\circ}} B\left(x, y_{\circ-\bullet}, y_{\circ-\circ}\right)=} \\
x^{2}\left(1+D_{\circ-\circ}+D_{\circ-\bullet}\right)
\end{array}
$$

We do not have any choice: Combinatorial Integration!

The Program (Coming soon!)

One needs to rephrase the grammar for graphs including the colours.

Once we have this (+ Singularity analysis), we can:
i.- Study SP-graphs.
ii.- Study families of graphs defined by "easy" 3-connected components.
ii.- Study limit laws for several parameters

What we CANNOT do (for the moment!):

STUDY GENERAL
 PLANAR BIPARTITE PLANAR GRAPHS

§
OBTAIN GF FOR 3-CONNECTED MAPS
(BERNARDI \& BOUSQUET-MÉLOU)

Merci

Bipartite subfamilies of planar graphs

Juanjo Rué

Instituto de Ciencias Matemáticas, Madrid

Journée-séminaire de Combinatoire CALIN, Paris Nord

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

