Perfect sampling using dynamic programming Séminaire Équipe CALIN

Christelle Rovetta

Équipe AMIB(io), Laboratoire LIX - Inria Saclay - LRI - RNALand

$$
{ }^{17} \text { th April } 2018
$$

What is Athena doing?

State space

$$
z_{z}^{z}
$$

State space

State space

\square

Markov chain

- Arithmetic mean $\widehat{\pi}$

Markov chain

- Arithmetic mean $\widehat{\pi}$
- Stationary distribution π (solution of $\pi P=\pi$)

Sample the stationary distribution

- State space: $|\mathcal{S}|<\infty$
- Ergodic Markov chain $\left(X_{n}\right)_{n \in Z}$ on \mathcal{S}
- Stationary distribution π

- Sample a random object according π
- Very large S

Markov Chain Monte Carlo (MCMC)

Markov chain convergence theorem
For all initial distributions $X_{n} \sim \pi$ when $n \rightarrow \infty$
Simulate the Markov chain

- $\left(U_{n}\right)_{n \in Z}$ an i.i.d sequence of random variables

$$
\left\{\begin{array}{l}
X_{0}=x \in \mathcal{S} \\
X_{n+1}=\operatorname{update}\left(X_{n}, U_{n+1}\right)
\end{array}\right.
$$

Markov Chain Monte Carlo (MCMC)

Markov chain convergence theorem
For all initial distributions $X_{n} \sim \pi$ when $n \rightarrow \infty$
Simulate the Markov chain

- $\left(U_{n}\right)_{n \in Z}$ an i.i.d sequence of random variables

$$
\left\{\begin{array}{l}
x_{0}=x \in \mathcal{S} \\
x_{n+1}=\operatorname{update}\left(X_{n}, U_{n+1}\right)
\end{array}\right.
$$

- How to detect the stopping criterion?

Perfect sampling algorithm

- Perfect sampling algorithm [Propp - Wilson, 1996]
- Produces $y \sim \pi$
- Stopping criterion automatically detected
- Uses coupling from the past

Perfect sampling algorithm

- Perfect sampling algorithm [Propp - Wilson, 1996]
- Produces $y \sim \pi$
- Stopping criterion automatically detected
- Uses coupling from the past

Perfect sampling algorithm

- Perfect sampling algorithm [Propp - Wilson, 1996]
- Produces $y \sim \pi$
- Stopping criterion automatically detected
- Uses coupling from the past

Perfect sampling algorithm

- Perfect sampling algorithm [Propp - Wilson, 1996]
- Produces $y \sim \pi$
- Stopping criterion automatically detected
- Uses coupling from the past
- Starts from all states, complexity at least in $O(|\mathcal{S}|)$

Perfect sampling algorithm

- Perfect sampling algorithm [Propp - Wilson, 1996]
- Produces $y \sim \pi$
- Stopping criterion automatically detected
- Uses coupling from the past
- Starts from all states, complexity at least in $O(|\mathcal{S}|)$
- Find strategies (monotone chains, envelopes,...)

Queueing networks

- Introduced by Erlang in 1917 to describe the Copenhagen telephone exchange
- Queues are everywhere in computing systems
- Analyze various kinds of system performance (average waiting time, expected number of customers waiting, ...)

- Usually modeled by an ergodic Markov chain
- Computer simulation

Closed queueing network

Customers are not allowed leave the network

- $K=5$ queues, $M=4$ customers
- State: $\mathbf{x}=(2,0,1,1,0)$
- Sample π

Product form

- Gordon-Newell networks

Gordon-Newell theorem

$$
\pi_{\mathbf{x}}=\frac{1}{G(K, M)} \prod_{k \in \mathcal{Q}} \rho_{k}^{x_{k}} \quad \text { with } \quad G(K, M)=\sum_{\mathbf{x} \in \mathcal{S}} \prod_{k \in \mathcal{Q}} \rho_{k}^{x_{k}} .
$$

- $G(K, M)$: normalization constant (partition function)
- Compute $G(K, M)$ in $O(K M)$, dynamic programming [Buzen '73]

Introduction

Perfect Sampling For Closed Queueing Networks

Generic diagrams

Application 1: A Boltzmann Sampler

Application 2: RNA folding kinetic

Conclusion

Closed queueing network (monoclass)

- K queues ./ $M / 1$ (exponential service rate)
- Finite capacity C_{k} in each queue
- Blocking policy: Repetitive service - random destination
- Strongly connected network

Example

- $K=5$ queues, $M=3$ customers, capacity $C=(2,1,3,1,2)$
- $\mathbf{x}=(1,0,1,1,0)$

State space

- K queues, M customers, capacity $C=\left(C_{1}, \ldots, C_{K}\right)$
- State space:

$$
\mathcal{S}=\left\{\mathbf{x} \in \mathbb{N}^{K} \mid \sum_{k=1}^{K} x_{k}=M, \forall k 0 \leq x_{k} \leq C_{k}\right\}
$$

- Number of states $(M \gg K)$:

$$
|\mathcal{S}| \leq\binom{ M+K-1}{M}=\binom{M+K-1}{K-1} \text { in } O\left(M^{K-1}\right)
$$

Transition

- Transition on a state:

$$
\begin{gathered}
t_{i, j}(\mathbf{x})= \begin{cases}\mathbf{x}-e_{i}+e_{j} & \text { if } x_{i}>0 \text { and } x_{j}<C_{j}, \\
\mathbf{x} & \text { otherwise }\left(x_{i}=0 \text { or } x_{j}=C_{j}\right),\end{cases} \\
\text { where } e_{i} \in\{0,1\}^{K} \quad e_{i}(k)= \begin{cases}1 & \text { if } i=k, \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

- Transition on a set of states:

$$
t(S):=\bigcup_{\mathbf{x} \in S} t(\mathbf{x})
$$

Markov chain modeling

- $\left(U_{n}\right)_{n \in Z}:=\left(i_{n}, j_{n}\right)_{n \in Z}$ an i.i.d sequence of random variables
- System described by an ergodic Markov chain:

$$
\left\{\begin{array}{l}
x_{0} \in \mathcal{S} \\
x_{n+1}=t_{U_{n+1}}\left(X_{n}\right)
\end{array}\right.
$$

- Unique stationary distribution π that is unknown
- GOAL: sample π with the perfect sampling algorithm

Perfect sampling algorithm

Perfect Sampling with States (PSS)

1. $n \leftarrow 1$
2. $t \leftarrow t_{U_{-1}}$
3. While $|t(\mathcal{S})| \neq 1$
4. $n \leftarrow 2 n$
5. $t \leftarrow t_{U_{-1}} \circ \ldots \circ t_{U_{-n}}$
6. Return $t(\mathcal{S})$

- PROBLEM: $|\mathcal{S}|$ in $O\left(M^{K-1}\right)$
- Find a strategy !

A new stategy

Difficulty to adapt known stategies

- Fixed number of customers $\left(\sum_{k=1}^{K} x_{k}=M\right)$
- No lattice structure

More structured representation of the state space

- Reduce complexity: $O\left(M^{K-1}\right)$ to $O\left(K M^{2}\right)$
- Represent states as paths in a graph
- Realize transitions directly on the graph

Diagram

- State:

$$
\text { - } x=(0,0,2,0,1)
$$

- Diagram
- 5 queues, 3 customers, capacity $\mathbf{C}=(2,1,3,1,2)$
- $\sum_{k=1}^{5} x_{k}=3$
- $\forall k 0 \leq x_{k} \leq C_{k}$

Diagram

- State:

$$
\text { - } x=(0,0,2,0,1)
$$

- Diagram

Customers \triangle Queues

Diagram

- State:

$$
\text { - } x=(0,0,2,0,1)
$$

- 5 queues, 3 customers, capacity $\mathbf{C}=(2,1,3,1,2)$
- $\sum_{k=1}^{5} x_{k}=3$
- $\forall k 0 \leq x_{k} \leq C_{k}$
- Diagram

Diagram

- State:

$$
\begin{aligned}
& \text { - } x=(0,0,2,0,1) \\
& \text { - } y=(1,0,1,1,0)
\end{aligned}
$$

- Diagram

Diagram

- A diagram is a graph that encode a set of states
- A diagram is complete if it encodes all the states
- Number of arcs in a diagram: $O\left(K M^{2}\right)$

Example

$$
\begin{array}{ll}
K=5 \text { queues } & 5 \text { columns of arcs } \\
M=3 \text { customers } & 4 \text { rows } \\
C=(2,1,3,1,2) & 0 \leq \mid \text { slopes } \mid \leq 3
\end{array}
$$

States to Diagram: function ϕ

S
(0, 0, 2, 0, 1)
(1, 0, 1, 1, 0)

Diagram $\phi(S)$

Diagram to states: function ψ

Diagram D

$\psi(D)$
(0, 0, 2, 0, 1)
(1, 0, 1, 1, 0)
(0, 0, 2, 1, 0)
(1, 0, 1, 0, 1)

Transformation function

Transformation function

- Galois connexion

Transition on a diagram

- Transition on a diagram:

$$
T_{i, j}=\phi \circ t_{i, j} \circ \psi
$$

- Good properties for perfect sampling
- Preserves inclusion

$$
S \subseteq \psi(D) \Longrightarrow t_{i, j}(S) \subseteq \psi\left(T_{i, j}(D)\right)
$$

- Preserves coupling

$$
|\psi(D)|=1 \Longrightarrow\left|\psi\left(T_{i, j}(D)\right)\right|=1
$$

- Efficient algorithm to compute transitions $T_{i, j}$ in $O\left(K M^{2}\right)$

Transition on a set of states

- Parameters: $K=5$ queues, $M=3$ customers, capacity $C=(2,1,3,1,2)$.
$S=\{(0,1,1,0,0),(0,1,1,1,0),(0,1,0,0,2),(1,0,1,1,0)\} \subseteq \mathcal{S}$
- Transition $t_{4,2}(S)$?

Transition $t_{4,2}$ on S

$$
\begin{array}{ccc}
t_{4,2}(\mathbf{x})=\mathbf{x} & t_{4,2}(x) \neq \mathbf{x} & t_{4,2}(\mathbf{x}) \\
x_{4}=0 \text { OR } x_{2}=c_{2} & x_{4}>0 \text { AND } x_{2}<c_{2}
\end{array}
$$

01100	\bullet		01100
01110	\bullet	01110	
01002	\bullet		01002
10110		\bullet	11100

Transition $t_{4,2}$ on S

$$
\begin{array}{ccc}
\mathbf{x} & t_{4,2}(\mathbf{x})=\mathbf{x} & t_{4,2}(x) \neq \mathbf{x} \\
x_{4}=0 \text { OR } x_{2}=c_{2} & x_{4,2}(\mathbf{x}) \\
& >0 \text { AND } x_{2}<c_{2}
\end{array}
$$

01100	\bullet		01100
01110	\bullet	01110	
01002	\bullet		01002
10110		\bullet	11100

- $t_{4,2}(S)=\{(0,1,1,0,0),(0,1,1,1,0),(0,1,0,0,2),(1,1,1,0,0)\}$

Compute $T_{4,2}(D)$ on D

Compute $T_{4,2}(D)$ on D

- Complexity in $O\left(K M^{2}\right)$ compared to $O\left(M^{K-1}\right)$ (transition on a set of states)

Perfect sampling algorithm

Perfect Sampling with States (PSS)

1. $n \leftarrow 1$
2. $t \leftarrow t_{U_{-1}}$
3. While $|t(\mathcal{S})| \neq 1$
4. $n \leftarrow 2 n$
5. $t \leftarrow t_{U_{-1}} \circ \ldots \circ t_{U_{-n}}$
6. Return $t(\mathcal{S})$

Perfect Sampling with Diagram (PSD)

1. $n \leftarrow 1$
2. $T \leftarrow T_{U_{-1}}$
3. While $|\psi(T(\mathcal{D}))| \neq 1$
4. $n \leftarrow 2 n$
5. $T \leftarrow T_{U_{-1}} \circ \ldots \circ T_{U_{-n}}$
6. Return $\psi(T(\mathcal{D}))$

Perfect sampling with diagram

Theorem
Algorithm PSD terminates in finite expected time and produces an exact sample from the stationary distribution.

Sketch of proof

- $\psi(\mathcal{D})=\mathcal{S}$
- Transitions preserve inclusions and coupling
- There exists a finite sequence of transitions

$$
T=T_{i_{\rho}, j_{\rho}} \circ \cdots \circ T_{i_{1}, j_{1}} \text { such that }|\psi(T(\mathcal{D}))|=1
$$

Contributions: perfect sampling of closed queueing networks

- Multiclass networks [QEST, '15]

- Monoclass with synchronization

- Implementation:
- Monoclass: Clones, Matlab Toolbox [Best Tool Paper Award at ValueTools'14]
- Multiclass: MClones, package Python [ROADEF '16]

Introduction

Perfect Sampling For Closed Queueing Networks

Generic diagrams
Memoryless
Examples
Algorithms

Application 1: A Boltzmann Sampler

Application 2: RNA folding kinetic

Conclusion

Motivations

First motivations:

- Generalize the diagrams notations (monoclass and multiclass)
- Define generic algorithms $(\psi,|\psi(D)|)$
- Diagrams can be used in a more general context than closed queueing networks
- Link with dynamic programming

Diagram

$$
S=\{x, y\}
$$

States represent paths that have the following properties:

- Starting at the same node
- Ending at the same node
- Prefix (and suffix) factorization

Memoryless sequence

Definition

Let \mathcal{E} (discrete) and \mathcal{G} be two spaces and $\mathcal{E}_{k} \subseteq \mathcal{E}$. $\left(f^{(k)}\right)_{k \in \mathbb{N}}$ is memoryless if:
i) function $f^{(0)}$ is constant
ii) $\forall k>0$,

$$
f^{(k)}: \mathcal{E}_{1} \times \ldots \times \mathcal{E}_{k} \rightarrow \quad \mathcal{G}
$$

$$
\left(x_{1}, \ldots, x_{k}\right) \quad \mapsto \quad f^{(k-1)}\left(x_{1}, \ldots, x_{k-1}\right) \oplus_{k} x_{k}
$$

Memoryless space

Definition

Let $\left(f^{(k)}\right)_{k \in \mathbb{N}}$ a memoryless sequence, the memoryless space associated to parameters $K \in \mathbb{N}$ and $M \in \mathcal{G}$:

$$
\Omega(K, M):=f^{(K)^{-1}}(\{M\})
$$

- $f^{(K)}(\mathrm{x})=M$ (ending at the same node)
- A diagram encodes a set of state $S \subseteq \Omega(K, M)$

Monoclass closed queueing network

- Memoryless sequence:

$$
\begin{array}{cc}
f_{\text {sum }}^{(0)}=0 & \\
f_{\text {sum }}^{(k)}:\left\{0, \ldots, C_{1}\right\} \times \ldots \times\left\{0, \ldots, C_{k}\right\} & \rightarrow
\end{array}
$$

- Diagram $K=5, M=3, C=(2,1,3,1,2)$

Partitions of integer [Application 1]

- Partition of $5: x=(1,0,0,1,0), y=(3,1,0,0,0), \ldots$
- $5=1 \times 1+1 \times 4=3 \times 1+1 \times 2=\ldots$
- Diagram representation $O\left(K^{2} \log (K)\right)$

Partitions of integer [Application 1]

- Partition of $5: x=(1,0,0,1,0), y=(3,1,0,0,0), \ldots$
- $5=1 \times 1+1 \times 4=3 \times 1+1 \times 2=\ldots$
- Memoryless sequence: $f_{\text {part }}^{(0)}=0$

$$
\begin{array}{ccccc}
f_{\text {part }}^{(k)}: & \mathbb{N}^{k} & \rightarrow & \mathbb{N} \\
& \left(x_{1}, \ldots, x_{k-1}, x_{k}\right) & \mapsto & f_{\text {part }}^{(k-1)}\left(x_{1}, \ldots, x_{k-1}\right)+k * x_{k}
\end{array}
$$

- Diagram representation $O\left(K^{2} \log (K)\right)$

Partitions of integer [Application 1]

- Partition of $5: x=(1,0,0,1,0), y=(3,1,0,0,0), \ldots$
- $5=1 \times 1+1 \times 4=3 \times 1+1 \times 2=\ldots$
- Memoryless sequence: $f_{\text {part }}^{(0)}=0$

$$
\begin{array}{cccc}
f_{\text {part }}^{(k)}: & \mathbb{N}^{k} & \rightarrow & \mathbb{N} \\
& \left(x_{1}, \ldots, x_{k-1}, x_{k}\right) & \mapsto & f_{\text {part }}^{(k-1)}\left(x_{1}, \ldots, x_{k-1}\right)+k * x_{k}
\end{array}
$$

- Complete diagram $K=M=5$

- Diagram representation $O\left(K^{2} \log (K)\right)$

Simulation of a Markov Chain [Application 2]

- Update function (Markov Chain)

$$
\left\{\begin{array}{l}
X_{0}=s_{0} \\
X_{n}=\operatorname{update}\left(X_{n-1}, U_{n}\right) \quad \text { for } 1 \leq n
\end{array}\right.
$$

Simulation of a Markov Chain [Application 2]

- Update function (Markov Chain)

$$
\left\{\begin{array}{l}
X_{0}=s_{0} \\
X_{n}=\operatorname{update}\left(X_{n-1}, U_{n}\right) \quad \text { for } 1 \leq n
\end{array}\right.
$$

- Sequence without memory

$$
f_{m c}^{(k)}(\mathbf{u})= \begin{cases}s_{0} & \text { if } k=0 \\ \operatorname{update}\left(f_{m c}^{(k-1)}(\mathbf{u}), u_{k}\right) & \text { otherwise }\end{cases}
$$

Simulation of a Markov Chain [Application 2]

Example

- $K=5, M=0$
- Diagram

Algorithms

Dynamic programming algorithms:

- StatesToDiagram transforms a set of states into a diagram (ϕ)
- DiagramToStates transforms a diagram into a set of states (ψ) [Application 2]

- CardStates computes the number of states represented by a diagram
- RandState samples a state according a product form [Application 1]

DiagramToStates

DiagramToStates

DiagramToStates

RandState

- Weights $w_{k}: \mathcal{E}_{k} \rightarrow \mathbb{R}^{+}$(given)
- RandState produces $\mathrm{x} \in \psi(D)$ according to:

$$
p_{\mathbf{x}}=\frac{1}{W} \prod_{k=1}^{K} w_{k}\left(x_{k}\right) \quad W=\sum_{\mathbf{x} \in \psi(D)} \prod_{k=1}^{K} w_{k}\left(x_{k}\right)
$$

- 2 steps:
- Assign weights: arcs and nodes
- Random walk on the diagram

RandState: arcs weight

RandState: arcs weight

RandState: nodes weight

$$
w_{\mathcal{N}}(k, m)=\sum_{a=\left((k, m),\left(k+1, m^{\prime}\right)\right)} w_{A}(a) w_{\mathcal{N}}\left(k+1, m^{\prime}\right)
$$

RandState: nodes weight

RandState: random walk

- Probability: $\frac{13}{27} \frac{7}{13} \frac{7}{7} \frac{6}{3} \frac{2}{1}=\frac{4}{27}$

Using RandState

- RandState produces $\mathbf{x} \in \psi(D)$ according to:

$$
p_{\mathbf{x}}=\frac{1}{W} \prod_{k=1}^{K} w_{k}\left(x_{k}\right) \quad W=\sum_{\mathbf{x} \in \psi(D)} \prod_{k=1}^{K} w_{k}\left(x_{k}\right)
$$

- Complexity: assign weights $O(A)$, random walk $O(K)$
- Sample states for a Gordon-Newell networks
- Uniform generation

$$
\forall k, w_{k}\left(x_{k}\right)=1 \Longrightarrow p_{\mathrm{x}}=\frac{1}{|\psi(D)|}
$$

- [Application 1]

DiagramS

- Package Python, 2 mains classes:

- Using DiagramS
- Define \mathcal{E}, \oplus and $0_{\mathcal{G}}$ in MLS

$$
m / s=M L S(r a n g e(4), \text { lambda } x, y: x+y, 0)
$$

- Define parameter K and M in Diagram

$$
D=\operatorname{Diagram}(5,3, \mathrm{~m} / \mathrm{s})
$$

Introduction

Perfect Sampling For Closed Queueing Networks

Generic diagrams

Application 1: A Boltzmann Sampler
Background
Multiset fixed size

Application 2: RNA folding kinetic

Conclusion

Boltzmann Sampling

- Random generation of combinatorial objects
- Introduced in 2004 by Duchon, Flajolet, Louchard and Schaeffer
- Based on Analytic Combinatorics
- Draws uniformly random objects of size n
- Without enumerating
- Size of object is random
- Statistic control of the size of the objects

Combinatorial class

Combinatorial class ($\mathcal{A},|$.$|)$

- Set of objects \mathcal{A}
- Size function $||:. \mathcal{A} \rightarrow \mathbb{N}$
- a_{n} : number of objects of size $n, \forall n \in \mathbb{N}, a_{n}<\infty$

Example

Words of $\{0,1\}^{*}$:

- $\mathcal{W}=\{\varepsilon, 0,1,00,01,000,001, \ldots\}$
- |. | gives the length of the word $(|0010|=4)$

Generating function

Generating function associated to $(\mathcal{A},|\cdot|)$:

$$
A(z)=\sum_{\alpha \in \mathcal{A}} z^{|\alpha|}=\sum_{n \in \mathbb{N}} a_{n} z^{n}
$$

Example
Words of $\{0,1\}^{*}$:

- $\mathcal{W}=\{\mathcal{E}, 0,1,00,01,000,001, \ldots\}$
- |. | gives the length of the word $(|0010|=4)$
- Generating function:

$$
W(z)=\sum_{w \in \mathcal{W}} z^{|w|}=\sum_{n \in \mathbb{N}} 2^{n} z^{n}=\frac{1}{1-2 z}
$$

Symbolic method

Construct classes from simpler classes using basics constructions

- Atomic classes
- $(\mathcal{E},||):. \mathcal{E}=\{\epsilon\},|\epsilon|=0$
- (z,|.|): $z=\{\zeta\},|\zeta|=1$
- Disjoint union

$$
\mathcal{A}=\mathcal{B} \cup \mathcal{C} \Longrightarrow A(z)=B(z)+C(z)
$$

- Cartesian product

$$
\mathcal{A}=\mathcal{B} \times \mathcal{C} \Longrightarrow A(z)=B(z) C(z)
$$

Boltzmann sampler

Definition

A Boltzmann generator $\Gamma[\mathcal{A}](x)$ of parameter x for $(\mathcal{A},|\cdot|)$ is a probabilistic algorithm that produces $\alpha \in \mathcal{A}$ w.p. $\mathbb{P}_{x}(\alpha)=\frac{x^{|\alpha|}}{A(x)}$.

- Uniform generator for objects of same size
- Parameter $x \in] 0, R_{A}[$, control the size

$$
\mathbb{P}_{x}(N=n)=\frac{a_{n} x^{n}}{A(x)}
$$

Boltzmann sampler - Union

- $\mathcal{C}:=\mathcal{A} \cup \mathcal{B}$
- Generating function: $C(z)=A(z)+B(z)$
- $\operatorname{Ber}(p)$ return a r.v distributed according a Bernoulli law
$\Gamma[\mathcal{A} \cup \mathcal{B}](x)$

1. $k \leftarrow \operatorname{Ber}\left(\frac{A(x)}{C(x)}\right)$
2. If $k==1$
3. Return $\Gamma[\mathcal{A}](x)$
4. Else
5. Return $\lceil[\mathcal{B}](x)$

- $\mathbb{P}_{\mathbf{x}}(\gamma)=\frac{x^{|\gamma|}}{C(x)}$

Multiset fixed size

Network K=5, M=9

Multiset size 9

- $\mathcal{B}=\{1,2,3,4,5\}, M=9$

Multiset fixed size

(1)
(2)2

- Multiset of fixed size: $\mathcal{A}=\operatorname{mset}_{M}(\mathcal{B})$
- Generating function [Flajolet et al. '07] uses partitions of M

$$
A_{M}(z)=\sum_{\mathbf{p} \in \mathcal{P}_{E}(M)} A_{\mathbf{p}}(z), A_{\mathbf{p}}=\prod_{i=1}^{M} \frac{B\left(z^{i}\right)^{p_{i}}}{i^{p_{i}} p_{i}!}, \mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{M}\right)
$$

Multiset fixed size

- Multiset of fixed size: $\mathcal{A}=\operatorname{mset}_{M}(\mathcal{B})$
- Generating function [Flajolet et al. '07] uses partitions of M

$$
A_{M}(z)=\sum_{\mathbf{p} \in \mathcal{P}_{E}(M)} A_{\mathbf{p}}(z), A_{\mathbf{p}}=\prod_{i=1}^{M} \frac{B\left(z^{i}\right)^{p_{i}}}{i p_{i} p_{i}!}, \mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{M}\right)
$$

- RandState can be used on a complete diagram of partitions to compute $\Gamma_{\text {mset }_{M}}[\mathcal{B}](x)\left(O\left(M^{2} \log (M)\right)\right.$ to assign weight)

Introduction

Perfect Sampling For Closed Queueing Networks
 Generic diagrams
 Application 1: A Boltzmann Sampler

Application 2: RNA folding kinetic

Problem: RNA folding kinetic

- 2 secondary structures of RNA: s_{A} and s_{B}

UUCUUAUCAAGAGAAGCAGAGGGAC

- GOAL: Estimate the distribution of the hitting time $D_{A \rightarrow B}$
- Set of all secondary structure huge

Model and Diagram

- $\left(Y_{n}\right)_{n \in \mathbb{N}}$ an ergodic Markov Chain where $Y_{0}=s_{A}$
- Paths of size $N: p=\left(y_{0}, y_{1}, \ldots, y_{N-1}, y_{N}\right) \in \Omega^{N}$ s.t. $y_{0}=s_{A}$ and $y_{N}=s_{B}(N$ fixed $)$

- Goal: estimate $D_{A \rightarrow B}(N)$
- Use DiagramToStates to extract the paths
- Compute the distribution from the set of paths

Nodes and path selection

- Huge number of paths
- Select the "good nodes"
- Each node as at most d successors
- There are at most m nodes in a column

281
(directs) paths

Introduction

Perfect Sampling For Closed Queueing Networks

Generic diagrams

Application 1: A Boltzmann Sampler

Application 2: RNA folding kinetic

Conclusion

Conclusion

Results (inspired by dynamic programming):

- Perfect sampling for closed queueing network
- Diagram data structure
- 2 examples of applications

Perspectives:

- Perfect sampling using dynamic programming: other networks, other systems ?
- Diagram:
- Generalized: E discrete set, continuous ?
- Parallel computing
- DiagramS
- RNA folding kinetic

