

# Some applications of the method of moments in the analysis of algorithms 

Alois Panholzer<br>Institute of Discrete Mathematics and Geometry<br>Vienna University of Technology<br>Alois.Panholzer@tuwien.ac.at

Universite de Paris-Nord, 16.2.2010

## Outline

The Method of Moments

Example I
Total displacement in linear probing hashing
Example II
Subtree varieties in recursive trees

Example III
Total costs of Union-Find-algorithms

Counterexample

## The Method of Moments

## The Method of Moments

Motivation
Average-case analysis of algorithms
procedure
Quicksort(A:array)
end

## E.g., Quicksort

input string: random
permutation of size $n$

- number of comparisons to sort elements
- number of recursive calls to sort elements

Analysis of average behaviour of parameters in random structures

E.g., random binary search tree of size $n$

- number of leaves in tree
- depth of $j$-th smallest node in tree


## The Method of Moments

## Motivation

Average-case analysis:
$X_{n}$ : parameter (i.e., random variable) under consideration for random size- $n$ instance

- Expectation (= mean value) $\mathbb{E}\left(X_{n}\right)$
- Concentration results, Variance $\mathbb{V}\left(X_{n}\right)$
- Limiting distribution results

$$
X_{n} \xrightarrow{(d)} X, \quad X_{n} \text { converges in distribution to r.v. } X
$$

- Tail estimates ("bounds on rare events")


## The Method of Moments

Showing limiting distribution results

Basis: Theorem of Fréchet and Shohat
(Second central limit theorem)
If
(i) all positive $r$-th integer moments of $X_{n}$ converge to the $r$-th moments of a r.v. $X$ :

$$
\mathbb{E}\left(X_{n}^{r}\right) \rightarrow \mathbb{E}\left(X^{r}\right), \quad \text { for all } r \geq 1
$$

(ii) the distribution of $X$ is uniquely defined by its moments then $\quad X_{n} \xrightarrow{(d)} X, \quad$ i.e., $X_{n}$ converges in distribution to $X$

## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=10
$$



## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=20:
$$



## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=40:
$$



## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=80:
$$



## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=160
$$



## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=320
$$



## The Method of Moments

Showing limiting distribution results
This means: the distribution function $F_{n}(x)=\mathbb{P}\left\{X_{n} \leq x\right\}$ of $X_{n}$ converges pointwise for every $x \in \mathbb{R}$ to the distribution function $F(x)=\mathbb{P}\{X \leq x\}$ of $X$.

Consider $X_{n}=\sum_{i=1}^{n} Y_{n, i}, Y_{n, i}$ independent identically distr. as $Y$, $\mathbb{P}\{Y=1\}=\mathbb{P}\{Y=-1\}=\frac{1}{2}$.

$$
n=640
$$



## The Method of Moments

Showing limiting distribution results

Point (ii) is satisfied under growth conditions of moments $\mathbb{E}\left(X^{r}\right)$
Carleman criterion:
If

$$
\sum_{r \geq 1} \frac{1}{\sqrt[2 r]{\mathbb{E}\left(X^{2 r}\right)}}=\infty
$$

then $X$ is uniquely defined by its sequence of moments.

## The Method of Moments

Applications in average-case analysis

Analysis of Algorithms and random structures:

- Often: one obtains distributional recurrences for parameters of interest
- In many cases: difficult to treat distributional recurrences directly
- But: recurrences for moments usually simpler


## The Method of Moments

Applications in average-case analysis

A "typical situation":

- Recurrences for $\mathbb{E}\left(X_{n}^{r}\right)$ are linear
- They differ only in the inhomogeneous part
- Inhomogeneous part contains lower moments $\mathbb{E}\left(X_{n}^{1}\right), \ldots, \mathbb{E}\left(X_{n}^{r-1}\right)$

If method applicable:
one can pump out successively all moments (at least asymptotically)

## Example I: Total displacement in linear probing hashing

## Total displacement in linear probing hashing

Problem description

## Linear probing hashing

- Table of length $m$
- Hash function $h$ maps keys to [ $1 \ldots m$ ] of table addresses
- Sequences of $n \leq m$ elements entering sequentially into table
- Each element $x$ is placed at first unoccupied location starting from $h(x)$ in cyclic order:

$$
h(x), h(x)+1, \ldots, m, 1,2, \ldots, h(x)-1
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
A \ldots h(A)=3
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7 \\
& F \ldots h(F)=12
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7 \\
& F \ldots h(F)=12 \\
& G \ldots h(G)=9
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7 \\
& F \ldots h(F)=12 \\
& G \ldots h(G)=9
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7 \\
& F \ldots h(F)=12 \\
& G \ldots h(G)=9 \\
& H \ldots h(H)=4
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7 \\
& F \ldots h(F)=12 \\
& G \ldots h(G)=9 \\
& H \ldots h(H)=4
\end{aligned}
$$

Total displacement in linear probing hashing
Problem description
Example of constructing a hash table:


$$
\begin{aligned}
& A \ldots h(A)=3 \\
& B \ldots h(B)=9 \\
& C \ldots h(C)=4 \\
& D \ldots h(D)=3 \\
& E \ldots h(E)=7 \\
& F \ldots h(F)=12 \\
& G \ldots h(G)=9 \\
& H \ldots h(H)=4
\end{aligned}
$$

## Total displacement in linear probing hashing

Problem description
Displacement $d(x)$ of element $x$ placed at location $y$ :
circular distance between $h(x)$ and $y$ :

$$
d(x):=\left\{\begin{array}{l}
y-h(x), \quad \text { if } h(x) \leq y \\
m+h(x)-y, \quad \text { otherwise }
\end{array}\right.
$$

$\Rightarrow$ Costs of inserting $x$ and searching $x$ in table
Total displacement of sequence of $n$ hashed values:
sum of the individual displacements
$\Rightarrow$ Construction costs of the table

## Total displacement in linear probing hashing

Problem description

Assumption:
all $m^{n}$ hash sequences are equally likely
$D_{m, n}$ : Random variable counting the total displacement of a table of length $m$ with $n$ keys hashed

- Full table: $n=m$
- Almost full table: $n=m-1$
- Sparse tables: $n=\alpha m$, load factor $0<\alpha<1$


## Total displacement in linear probing hashing

## Results

Theorem [Flajolet, Poblete and Viola, 1998]:
Result for almost full tables: the scaled random variable $\left(\frac{2}{n}\right)^{\frac{3}{2}} D_{n, n-1}$ converges in distribution to an Airy distributed random variable:

$$
\left(\frac{2}{n}\right)^{\frac{3}{2}} D_{n, n-1} \xrightarrow{(d)} D,
$$

where $D$ is determined by its moments:

$$
\mathbb{E}\left(D^{r}\right)=\frac{2 \sqrt{\pi}}{\Gamma((3 r-1) / 2)} C_{r},
$$

and the constants $C_{r}$ satisfy the following recurrence:

$$
2 C_{r}=(3 r-4) r C_{r-1}+\sum_{j=1}^{r-1}\binom{r}{j} C_{j} C_{r-j}, \text { for } r \geq 1, \quad C_{0}=-1 .
$$

## Total displacement in linear probing hashing

Proof idea

## Basic decomposition of almost full tables:

- Table length $n+1$ with $n$ elements inserted
- Before last element is inserted: Two empty cells at position $k+1$ and $n+1$
- Assumption (circular symmetry): free cell remains at $n+1$ $\Rightarrow$ last element to be inserted has any address in $[1 \ldots k+1]$
$\Rightarrow$ displacement is any value $\in\{0,1, \ldots, k\}$.



## Total displacement in linear probing hashing

## Proof idea

Decomposition leads to recursive description:
$F_{n, k}$ : number of ways of creating an almost full table with $n$ elements and total displacement $k$
Generating function: $F_{n}(q):=\sum_{k \geq 0} F_{n, k} q^{k}$
Recurrence:

$$
F_{n}(q)=\sum_{k=0}^{n-1}\binom{n-1}{k} F_{k}(q)\left(1+q+\cdots+q^{k}\right) F_{n-1-k}(q)
$$

Bivariate generating function: $F(z, q):=\sum_{n \geq 0} F_{n}(q) \frac{z^{n}}{n!}$
Functional equation:

$$
\frac{\partial}{\partial z} F(z, q)=F(z, q) \cdot \frac{F(z, q)-q F(q z, q)}{1-q}
$$

## Total displacement in linear probing hashing

Proof idea
Pumping out all moments:
Generating function of $r$-th factorial moments:

$$
f_{r}(z):=\left.\frac{\partial^{r}}{\partial q^{r}} F(z, q)\right|_{q=1}
$$

$f_{r}(z)$ satisfy following linear differential equation:

$$
f_{r}^{\prime}(z)(1-T(z))-f_{r}(z) \frac{T(z)(2-T(z))}{z(1-T(z))}=R_{r}(z)
$$

where the inhomogeneous part $R_{r}(z)$ contains the functions $f_{0}(z), f_{1}(z), \ldots, f_{r-1}(z)$ and $T(z)$ is the tree function:
$T(z)=z e^{T(z)}$

Total displacement in linear probing hashing
Proof idea
General solution:

$$
f_{r}(z)=\frac{e^{T(z)}}{1-T(z)} \int_{0}^{z} R_{r}(u) e^{-T(u)} d u
$$

Asymptotic behaviour around dominant singularity $z=e^{-1}$ :

$$
z f_{r}(z) \sim \frac{C_{r}}{(2(1-e z))^{3 r / 2-1 / 2}}
$$

where constants $C_{r}$ satisfy the following recurrence:

$$
2 C_{r}=(3 r-4) r C_{r-1}+\sum_{j=1}^{r-1}\binom{r}{j} C_{j} C_{r-j}, \text { for } r \geq 1, \quad C_{0}=-1 .
$$

## Total displacement in linear probing hashing

Proof idea

Singularity analysis of generating functions [Flajolet and Odlyzko, 1990]:
$\Rightarrow$ asymptotic equivalent of the $r$-th factorial and ordinary moments:

$$
\left(\frac{2}{n}\right)^{\frac{3}{2}} \mathbb{E}\left(D_{n, n-1}^{r}\right) \rightarrow \frac{2 \sqrt{\pi}}{\Gamma((3 r-1) / 2)} C_{r}
$$

## Total displacement in linear probing hashing

Airy distribution

Airy distribution appears in various contexts:

- Number of inversions in trees
- Path length in trees
- Area under directed lattice paths
- Counting problems for polygon models
- Number of connected graphs with $n$ vertices and $k$ edges
- Additive parameters in context-free grammars
"Similar" functional equations are occurring


# Example II: Subtree varieties in recursive trees 

$\overline{\text { WIEN }}$

## Subtree varieties in recursive trees

Problem description

Subtree varieties in rooted trees:

- Given: family $\mathcal{T}$ of rooted trees
- Consider: random rooted tree $T$ of size $n$ of family $\mathcal{T}$
- Question: how many subtrees of $T$ have size $k=k(n)$ ?


## Subtree varieties in recursive trees

Problem description
Typical situation for random tree of size $n$


## Subtree varieties in recursive trees

Problem description
Typical situation for random tree of size $n$

many subtrees of fixed size: size 1 ( $=$ leaves)

## Subtree varieties in recursive trees

Problem description
Typical situation for random tree of size $n$

many subtrees of fixed size: size 2

## Subtree varieties in recursive trees

Problem description
Typical situation for random tree of size $n$

many subtrees of fixed size: size 3

## Subtree varieties in recursive trees

Problem description
Typical situation for random tree of size $n$

few subtrees of "large" size: size $n / 3$

## Subtree varieties in recursive trees

Problem description
Typical situation for random tree of size $n$

few subtrees of "large" size: size $n / 2$

## Subtree varieties in recursive trees

Recursive trees

Recursive trees:
important tree family with many applications

- models spread of epidemics
- model for pyramid schemes
- model for the family trees of preserved copies of ancient texts
- related to the Bolthausen-Sznitman coalescence model


## Subtree varieties in recursive trees

Recursive trees
Combinatorial description of a recursive tree:

- non-plane labelled rooted tree
- size- $n$ tree labelled with labels $1,2, \ldots, n$
- labels along path from root to arbitrary node $v$ are increasing sequence

Random recursive trees:
all $(n-1)$ ! recursive trees of size $n$ appear with equal probability


## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$
(1)


## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees
Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees
Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- Step 1: start with root labelled by 1
- Step $j$ : node with label $j$ is attached to any previous node with equal probability $1 /(j-1)$



## Subtree varieties in recursive trees

Results
$X_{n, k}$ : number of subtrees of size $k$ in random recursive tree of size $n$
Theorem [Feng, Mahmoud and Pan, 2006+]:
there are three phases for behaviour of $X_{n, k}$ depending on the growth of $k=k(n)$

- subcritical case: $k / \sqrt{n} \rightarrow 0$
- critical case: $k / \sqrt{n} \rightarrow c>0$
- supercritical case: $k / \sqrt{n} \rightarrow \infty$


## Subtree varieties in recursive trees

Results

- subcritical case: $k / \sqrt{n} \rightarrow 0$ :
normalized r. v. asympt. Gaussian distributed

$$
\frac{X_{n, k}-\frac{n}{k(k+1)}}{\sqrt{\frac{\left(2 k^{2}-1\right) n}{k(k+1)^{2}(2 k+1)}}} \stackrel{(d)}{\longrightarrow} \mathcal{N}(0,1)
$$

- critical case: $k / \sqrt{n} \rightarrow c>0$ :
$X_{n, k}$ asymp. Poisson-distributed

$$
X_{n, k} \xrightarrow{(d)} \text { Poisson }\left(\frac{1}{c^{2}}\right)
$$

- supercritical case: $k / \sqrt{n} \rightarrow \infty$ :
$X_{n, k}$ asymp. denenerate

$$
X_{n, k} \xrightarrow{(d)} X, \text { with } \mathbb{P}\{X=0\}=1
$$

## Subtree varieties in recursive trees

Proof idea

Decomposition of recursive trees according root degree:

$$
\begin{aligned}
\mathcal{T} & =(1) \times(\{\epsilon\} \dot{\cup} \mathcal{T} \dot{\cup} 1 / 2!\cdot \mathcal{T} * \mathcal{T} \dot{\cup} 1 / 3!\cdot \mathcal{T} * \mathcal{T} * \mathcal{T} \dot{\cup} \cdots) \\
& =(1) \times \exp (\mathcal{T})
\end{aligned}
$$

Generating functions: $M_{k}(z, v):=\sum_{n \geq 1} \sum_{m \geq 0} \mathbb{P}\left\{X_{n, k}=m\right\} \frac{z^{n}}{n!} v^{m}$
Differential equation:

$$
\frac{\partial}{\partial z} M_{k}(z, v)=\exp \left(M_{k}(z, v)\right)+(v-1) z^{k-1}
$$

## Subtree varieties in recursive trees

Proof idea

## Explicit solution of generating function:

$$
M_{k}(z, v)=\frac{(v-1) z^{k}}{k}+\log \left(\frac{1}{1-\int_{0}^{z} e^{\frac{(v-1) t^{k}}{k}} d t}\right)
$$

Exact solution for factorial moments:

$$
\begin{aligned}
\mathbb{E}\left(X_{n, k}^{r}\right)= & \frac{\llbracket n \geq k r+1 \rrbracket n}{k^{r}} \sum_{\ell=1}^{r} \frac{\binom{n-k r-1}{\ell-1}}{\ell} \times \\
& \times \sum_{\substack{j_{1}+\cdots+j_{\ell}=r \\
j_{q} \geq 1,1 \leq q \leq \ell}}\binom{r}{j_{1}, \ldots, j_{\ell}} \frac{1}{\prod_{i=1}^{\ell}\left(j_{i} k+1\right)}
\end{aligned}
$$

## Subtree varieties in recursive trees

Proof idea
Critical case: $\Rightarrow$ Asymptotically Poisson distribed

$$
n / k^{2} \rightarrow \lambda \quad \rightarrow \quad \mathbb{E}\left(X_{n, k}^{r}\right) \rightarrow \lambda^{r}
$$

Subcritical case: $\Rightarrow$ Dealing with cancellations
Normalized r.v. $\tilde{X}_{n, k}:=\frac{X_{n, k}-\mathbb{E}\left(X_{n, k}\right)}{\mathbb{V}\left(X_{n, k}\right)}$
$\Rightarrow$ Asymptotically Gaussian distributed

$$
\begin{aligned}
& \mathbb{E}\left(\left(\frac{\tilde{X}_{n, k}}{\sqrt{\nu(k) n}}\right)^{2 d}\right) \rightarrow \frac{(2 d)!}{d!2^{d}}, \quad \text { for } d \geq 0, \\
& \mathbb{E}\left(\left(\frac{\tilde{X}_{n, k}}{\sqrt{\nu(k) n}}\right)^{2 d+1}\right) \rightarrow 0, \quad \text { for } d \geq 0
\end{aligned}
$$

## Subtree varieties in recursive trees

Remarks
Application of method of moments to asympt. Gaussian r.v.:

- heavy cancellations $\Rightarrow$ high computational effort
- method usually only "last weapon"


## Subtree varieties in recursive trees

## Remarks

Application of method of moments to asympt. Gaussian r.v.:

- heavy cancellations $\Rightarrow$ high computational effort
- method usually only "last weapon"

One might try first:

- analytic methods (saddle point method, continuity theorem of Levy, quasi-power theorem)
- central limit theorems for sums of independent or weakly dependent r.v.
- Stein's method
- contraction method
- martingale description


## Example III: Total costs of Union-Find-algorithms

## Total costs in Union-Find-algorithms

Problem description

Union-Find-problem

- Maintaining representation of equivalence classes (= partitions of a finite set)
- Two basic operations:
- Union: merge two different equivalence classes $s$ and $t$ into a single equivalence class
- Find: find equivalence class that contains a given element $x$

Problem arises naturally in applications in computer science (e.g., minimum-cost spanning tree algorithms)

## Total costs in Union-Find-algorithms

Problem description

Data structure for Union-Find problem, Aho et al [1974]:

- consider partition $P(S)$ of finite set $S$
- for every element $x \in S$ : store in $R[x]$ name of the equivalence class containing $x$
- for every equivalence class $s \in P(S)$ :
- store in $N[s]$ the number of elements of $s$
- store in $L[s]$ the elements of $s$ in a linked list


## Total costs in Union-Find-algorithms

Problem description

Basic algorithm for operation Union, Yao [1976]:

## "Quick Find Weighted" (QFW):

if we merge different equivalence classes $s$ and $t$ then we update the class with less elements:

- if $N[s] \leq N[t]:$
set $R[x]:=t$ for all $x$ in $L[s]$
append $L[s]$ to $L[t]$, set $N[t]:=N[t]+N[s]$ call new equivalence class $t$
- otherwise set $R[x]:=s$ for all $x$ in $L[t]$ append $L[t]$ to $L[s]$ set $N[s]:=N[s]+N[t]$ call new equivalence class $s$


## Total costs in Union-Find-algorithms

Problem description

## Cost of Union-operation:

- Costs when merging equivalence classes $s$ and $t$ : measured by number of updated elements, i.e., the number of allocations $R[x]:=s$ or $R[x]:=t$
- QFW: cost of merging step is given by minimum of the class sizes $\min (N[s], N[t])$


## Total costs in Union-Find-algorithms

Problem description

Basic model for sequences of UniON-operations, Yao [1976]:
Random spanning tree model:

- deal with set $S$ of size $n$
- at the beginning all elements $x \in S$ are forming equivalence class $\{x\}$
- $n$ equivalence classes will be merged into larger and larger classes by carrying out Union-operations according following Merging rule


## Total costs in Union-Find-algorithms

## Problem description

Merging rule:

- choose at random a spanning tree of complete graph with vertex set $S$
- choose a random ordering of the edges of this spanning tree by enumerating it from 1 to $n-1$
- leads to sequence of edges $e_{1}=\left(x_{1}, y_{1}\right), e_{2}=\left(x_{2}, y_{2}\right), \ldots$, $e_{n-1}=\left(x_{n-1}, y_{n-1}\right)$, with $x_{i}, y_{i} \in S$
- gives then sequence of Union-operations
$\operatorname{Union}\left(R\left[x_{1}\right], R\left[y_{1}\right]\right), \operatorname{Union}\left(R\left[x_{2}\right], R\left[y_{2}\right]\right), \ldots, \operatorname{Union}\left(R\left[x_{n-1}\right], R\left[y_{n-1}\right]\right)$
$\Rightarrow \Rightarrow$ all $n^{n-2}(n-1)$ ! possible sequence of Union-operations of that kind are equally likely


## Total costs in Union-Find-algorithms

## Problem description

Total cost of algorithm QFW:
Average performance of QFW described by total costs:

- sum of cost of every merging step when merging the elements of a set $S$ of size $n$
- at beginning all elements are in different equivalence classes
- merge all elements into one equivalence class (containing all elements of $S$ )
- carrying out sequence of $n-1$ UniON-operations according to merging rules under random spanning tree model
- $\Rightarrow X_{n}$ : random variable depending only on size $n$ of set $S$


## Total costs in Union-Find-algorithms

Problem description
Example of algorithm QFW:


## Total costs in Union-Find-algorithms

Problem description
Example of algorithm QFW:

$\operatorname{Union}(\{c\},\{e\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{a\},\{b\}) \Rightarrow$ Cost $=1$


## Total costs in Union-Find-algorithms

Problem description
Example of algorithm QFW:


$$
\begin{aligned}
& \operatorname{Union}(\{c\},\{e\}) \Rightarrow \text { Cost }=1 \\
& \operatorname{Union}(\{a\},\{b\}) \Rightarrow \text { Cost }=1 \\
& \operatorname{Union}(\{c\},\{d\}) \Rightarrow \text { Cost }=1
\end{aligned}
$$

## Total costs in Union-Find-algorithms

Problem description
Example of algorithm QFW:


$$
\begin{aligned}
& \operatorname{Union}(\{c\},\{e\}) \Rightarrow \text { Cost }=1 \\
& \operatorname{Union}(\{a\},\{b\}) \Rightarrow \text { Cost }=1 \\
& \text { Union }(\{c\},\{d\}) \Rightarrow \text { Cost }=1 \\
& \operatorname{Union}(\{b\},\{c\}) \Rightarrow \text { Cost }=2
\end{aligned}
$$

## Total costs in Union-Find-algorithms

Problem description
Example of algorithm QFW:

$\operatorname{Union}(\{c\},\{e\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{a\},\{b\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{c\},\{d\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{b\},\{c\}) \Rightarrow$ Cost $=2$
$\operatorname{Union}(\{b\},\{b\}) \Rightarrow$ Cost $=1$

## Total costs in Union-Find-algorithms

Problem description
Example of algorithm QFW:

$\operatorname{Union}(\{c\},\{e\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{a\},\{b\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{c\},\{d\}) \Rightarrow$ Cost $=1$
$\operatorname{Union}(\{b\},\{c\}) \Rightarrow$ Cost $=2$
$\operatorname{Union}(\{b\},\{b\}) \Rightarrow$ Cost $=1$
Total costs $=6$

## Total costs in Union-Find-algorithms

## Results

Theorem [Kuba and Pan, 2007]: The expectation $\mathbb{E}\left(X_{n}\right)$ of the total costs of the Union-Find-algorithm under the random spanning tree model has for $n \rightarrow \infty$ the following asymptotic expansion:

$$
\mathbb{E}\left(X_{n}\right)=\frac{1}{\pi} n \log n+C n+\mathcal{O}\left(n^{\frac{3}{4}}\right),
$$

where the constant $C \approx 0.6315$ is given as follows:

$$
C=\frac{\gamma+2 \log 2}{\pi}+\sum_{n \geq 0} \frac{1}{n+1}\left[e^{-(n+1)}\left(R_{n+2}-R_{n+1}-\sum_{k=0}^{n} \frac{(k+1)^{k+1}}{(k+2)!} R_{n-k}\right)-\frac{1}{\pi}\right],
$$

with

$$
R_{n}=\sum_{k=1}^{n-1} \frac{k^{k}(n-k)^{n-k-1}}{k!(n-k)!} \min (k, n-k) .
$$

## Total costs in Union-Find-algorithms

## Results

Theorem [Kuba and Pan, 2007]: The suitably shifted and scaled r.v. $X_{n}$ converges in distribution to a r.v. $X$, which can be characterized by its $r$-th integer moments:

$$
\frac{X_{n}-\frac{1}{\pi} n \log n-C n}{n} \xrightarrow{(d)} X, \quad \text { with } \quad \mathbb{E}\left(X^{r}\right)=m_{r}
$$

where $m_{r}$ is given recursively as follows:

$$
m_{r}=\frac{\Gamma(r-1)}{2 \sqrt{\pi} \Gamma\left(r-\frac{1}{2}\right)} \sum_{\substack{r_{1}+r_{2}+r_{3}=r \\ r_{2}, r_{3}<r}}\binom{r}{r_{1}, r_{2}, r_{3}} m_{r_{2}} m_{r_{3}} r_{r_{1}, r_{2}, r_{3}}, \quad \text { for } r \geq 2,
$$

with initial values $m_{0}=1$ and $m_{1}=0$ and
$I_{r_{1}, r_{2}, r_{3}}=\int_{0}^{1}\left(\frac{1}{\pi}(x \log x+(1-x) \log (1-x))+\min (x, 1-x)\right)^{r_{1}} x^{r_{2}-\frac{1}{2}}(1-x)^{r_{3}-\frac{3}{2}} d x$.

## Total costs in Union-Find-algorithms <br> Proof idea

The reverse process: destroying a tree

- Start with a random spanning tree of size $n$
- Remove successively edges at random from remaining edges
- In every step split a connected component into two parts
- Cost of a cut is the size of the smaller part after the splitting step
- Stop when all nodes are isolated


## Total costs in Union-Find-algorithms

Proof idea
Example of destroying a tree:


## Total costs in UniON-Find-algorithms

Proof idea

## Example of destroying a tree:


$\bar{W}$ IEN

## Total costs in Union-Find-algorithms

Proof idea

## Example of destroying a tree:



Cost $=1$
Cost $=2$
$f$


## Total costs in Union-Find-algorithms

Proof idea

## Example of destroying a tree:



## Total costs in Union-Find-algorithms

Proof idea

## Example of destroying a tree:



## Total costs in Union-Find-algorithms

Proof idea
Example of destroying a tree:


## Total costs in Union-Find-algorithms

Proof idea

Recursive description of total costs $X_{n}$ :
Distributional recurrence for rooted trees:

$$
X_{n} \stackrel{(d)}{=} X_{S_{n}}+X_{n-S_{n}}^{*}+t_{n, S_{n}}
$$

$S_{n}$ : size of subtree containing root after removing random edge of randomly chosen labeled rooted tree of size $n$
Toll function: $t_{n, k}=\min (k, n-k)$
$S_{n}$ is distributed as follows:

$$
\mathbb{P}\left\{S_{n}=k\right\}=\frac{k T_{k} T_{n-k}}{(n-1) T_{n}},
$$

with $T_{n}:=\frac{n^{n-1}}{n!}$

## Total costs in Union-Find-algorithms

Proof idea

Recurrence for $r$-th moments of $X_{n}$
Linear recurrence for $\mu_{n}^{[r]}:=\mathbb{E}\left(X_{n}^{r}\right)$ :

$$
(n-1) T_{n} \mu_{n}^{[r]}=\sum_{k=1}^{n-1} k T_{k} T_{n-k}\left(\mu_{k}^{[r]}+\mu_{n-k}^{[r]}\right)+R_{n}^{[r]},
$$

where the inhomogeneous part $R_{n}^{[r]}$ depends on the lower order moments $\mu_{n}^{[1]}, \ldots, \mu_{n}^{[r-1]}$

## Total costs in Union-Find-algorithms

Proof idea
Generating functions treatment
Linear differential equation:

$$
z(1-T(z)) C_{r}^{\prime}(z)-\left(1+z T^{\prime}(z)\right) C_{r}(z)=R_{r}(z),
$$

where the inhomogeneous part depends on the g.f.
$C_{1}(z), \ldots, C_{r}(z)$ for lower moments
Solution:

$$
C_{r}(z)=\frac{T(z)}{1-T(z)} \int_{0}^{z} \frac{R_{r}(t)}{t T(t)} d t
$$

Asymptotic equivalents of $r$-th moments:
"pumped out" inductively

## Total costs in Union-Find-algorithms

Remark

Problems of similar "nature":

- Quicksort: number of comparisons
- Pathlengths in search tree models
- Wiener-index of certain tree models

Limiting distribution characterized by "complicated" moment's sequence

## Counterexample

## Counterexample

Cutting down recursive trees

Cutting down procedure for rooted trees:

INPUT: tree $T$

$$
\begin{aligned}
& \text { steps } \leftarrow 0 \\
& \text { while }|T|>1 \text { do } \\
& \quad \text { cut off an edge } e \text { of } T
\end{aligned}
$$

$T \leftarrow$ subtree containing the root steps $\leftarrow$ steps +1

OUTPUT: steps

Remove edges until root is isolated

## Counterexample

Cutting down recursive trees
An example of cutting a tree:


$\bigcirc$

Size-11 tree destroyed in 5 steps.

## Counterexample

Cutting down recursive trees

How many steps are done, until root is isolated?
Probability model:

- Randomized cutting down procedure:

Edges in tree chosen at random in each step.

- Random tree model for certain tree families.
R. v. $X_{n}$ counts steps done to destroy size- $n$ tree.


## Counterexample

Cutting down recursive trees

Why are the number of cuts to destroy the tree of interest?

- Strong connections to coalescent models $\Rightarrow$ theoretical physics, mathematical biology
- Cayley-trees: additive Marcus-Lushnikov process
- Recursive trees: Bolthausen-Sznitman coalescent
- $X_{n}$ for recursive trees: number of collision events in the coalescent model until there is just a single block


## Counterexample

Cutting down recursive trees
Apply cutting-down procedure to recursive trees:

- non-plane labelled rooted tree
- size- $n$ tree labelled with labels $1,2, \ldots, n$
- labels along path from root to arbitrary node $v$ are increasing sequence

Random recursive trees:
all $(n-1)$ ! recursive trees of size $n$ appear with equal probability


## Counterexample

Cutting down recursive trees
Idea: apply recursive approach:

$$
\mathbb{P}\left\{X_{n}=m\right\}=\sum_{k=1}^{n-1} p_{n, k} \mathbb{P}\left\{X_{k}=m-1\right\}
$$

$p_{n, k}$ : Probability, that subtree containing root has size $k$, if we cut off random edge in random size- $n$ tree.

## Counterexample

Cutting down recursive trees
Idea: apply recursive approach:

$$
\mathbb{P}\left\{X_{n}=m\right\}=\sum_{k=1}^{n-1} p_{n, k} \mathbb{P}\left\{X_{k}=m-1\right\}
$$

$p_{n, k}$ : Probability, that subtree containing root has size $k$, if we cut off random edge in random size- $n$ tree.

## Attention:

- approach only applicable if randomness is preserved by cutting off random edge
- satisfied, e.g, by recursive trees, Cayley-trees, planted plane trees, $d$-ary trees
- not satisfied, e.g., by Motzkin-trees, binary search trees


## Counterexample

Cutting down recursive trees
Cutting off random edge:
Planted plane trees: randomness preserved
Motzkin trees: randomness not preserved


## Counterexample

Cutting down recursive trees

Computations for recursive trees:
Splitting probability: size- $n$ tree $\longrightarrow$ size- $k$ tree:

$$
p_{n, k}=\frac{n}{(n-1)(n-k)(n-k+1)}
$$

Recurrence:

$$
\mathbb{P}\left\{X_{n}=m\right\}=\sum_{k=1}^{n-1} \frac{n}{(n-1)(n-k)(n-k+1)} \mathbb{P}\left\{X_{k}=m-1\right\}
$$

## Counterexample

Cutting down recursive trees

Computations for recursive trees:
Proper generating function:

$$
M(z, v)=\sum_{n \geq 1} \sum_{0 \leq m \leq n} \mathbb{P}\left\{X_{n}=m\right\} \frac{z^{n}}{n} v^{m}
$$

Differential equation:

$$
\frac{\partial}{\partial z} M(z, v)=\frac{1}{z-v\left(z-(1-z) \log \left(\frac{1}{1-z}\right)\right)} M(z, v)
$$

## Counterexample

Cutting down recursive trees
Computations for recursive trees:

## Solution of DE:

$$
M(z, v)=z e^{\left.\left.\int_{t=0}^{t} \frac{v\left(t-(1-t) \log \left(\frac{1}{1}-t\right)\right.}{t\left(t-v\left(t-(1-t) \log \left(\frac{1}{1-t}\right)\right.\right.}\right)\right)} d t .
$$

Try method of moments:

## Counterexample

Cutting down recursive trees
Computations for recursive trees:

## Solution of DE:

$$
M(z, v)=z e^{\int_{t=0}^{z} \frac{v\left(t-(1-t) \log \left(\frac{1}{1-t}\right)\right)}{t\left(t-v\left(t-(1-t) \log \left(\frac{1}{1-t}\right)\right)\right)}} d t
$$

Try method of moments:
$r$-th moments:
$\mathbb{E}\left(X_{n}^{r}\right)=\frac{n^{r}}{\log ^{r} n}+\frac{n^{r}}{\log ^{r+1} n}\left((r+1) H_{r}-r \gamma\right)+\mathcal{O}\left(\frac{n^{r}}{\log ^{r+2} n}\right)$.
Scaling does not lead to a limiting distribution!

## Counterexample

Cutting down recursive trees

Computations for recursive trees:
$r$-th centered moments:

$$
\mathbb{E}\left(\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right)^{r}\right) \sim \frac{(-1)^{r}}{(r-1) r} \frac{n^{r}}{\log ^{r+1} n}, r \geq 2 .
$$

Also centering and scaling does not lead to a limiting distribution!

## Counterexample

Cutting down recursive trees

Computations for recursive trees:
$r$-th centered moments:

$$
\mathbb{E}\left(\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right)^{r}\right) \sim \frac{(-1)^{r}}{(r-1) r} \frac{n^{r}}{\log ^{r+1} n}, r \geq 2 .
$$

Also centering and scaling does not lead to a limiting distribution!
Method of moments not applicable!

## Counterexample

Cutting down recursive trees

Theorem (Drmota, Iksanov, Möhle and Rösler, 2009)
The random variable

$$
Y_{n}=\frac{X_{n}-\frac{n}{\log n}-\frac{n \log \log n}{(\log n)^{2}}}{\frac{n}{(\log n)^{2}}}
$$

converges in distribution to a stable random variable $Y$ with characteristic function

$$
\phi_{Y}(\lambda)=\mathbb{E}\left(e^{i \lambda Y}\right)=e^{i \lambda \log |\lambda|-\frac{\pi}{2}|\lambda|} .
$$

The moments of the limiting distribution $Y$ do not exist!

