Example I 00000000000 Example II 0000000000 Example III Counterex

イロト イポト イヨト イヨト

Some applications of the method of moments in the analysis of algorithms

Alois Panholzer

Institute of Discrete Mathematics and Geometry Vienna University of Technology Alois.Panholzer@tuwien.ac.at

Universite de Paris-Nord, 16.2.2010

Example I 00000000000 Example II 00000000000 Example III 00000000000000000 Counterexample

Outline

The Method of Moments

Example I Total displacement in linear probing hashing

Example II

Subtree varieties in recursive trees

Example III

Total costs of $\operatorname{Union-Find}$ -algorithms

Counterexample

Example I

Example II 00000000000 Example III

Counterexample

The Method of Moments

Example I 00000000000 Example II 00000000000 Example III

Counterexample

The Method of Moments

Motivation

Average-case analysis of algorithms

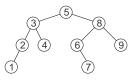
```
procedure
Quicksort(A:array)
end
```

E.g., Quicksort

input string: random permutation of size *n*

- number of comparisons to sort elements
- number of recursive calls to sort elements

Analysis of average behaviour of parameters in random structures



E.g., **random binary search tree** of size *n*

- number of leaves in tree
- depth of *j*-th smallest node in tree

(a)

Example I 0000000000 Example II 00000000000 Counterexample

The Method of Moments Motivation

Average-case analysis:

 X_n : parameter (i.e., random variable) under consideration for random size-*n* instance

- Expectation (= mean value) $\mathbb{E}(X_n)$
- Concentration results, Variance $\mathbb{V}(X_n)$
- Limiting distribution results

$$X_n \xrightarrow{(d)} X, \qquad X_n$$
 converges in distribution to r.v. X

Tail estimates ("bounds on rare events")

- 32

Example I 0000000000 Example II 00000000000 interexample

The Method of Moments

Showing limiting distribution results

Basis: Theorem of Fréchet and Shohat (Second central limit theorem) If

(*i*) all positive *r*-th integer moments of X_n converge to the *r*-th moments of a r.v. X:

$$\mathbb{E}(X_n^r) o \mathbb{E}(X^r), \quad ext{for all } r \geq 1$$

(*ii*) the distribution of X is uniquely defined by its moments then $X_n \xrightarrow{(d)} X$, i.e., X_n converges in distribution to X

Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.

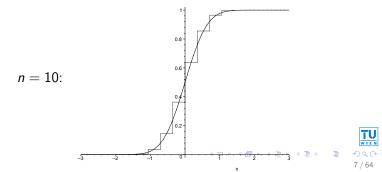
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



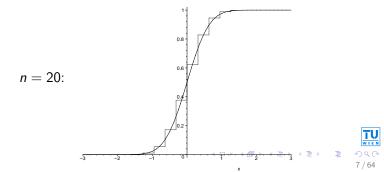
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



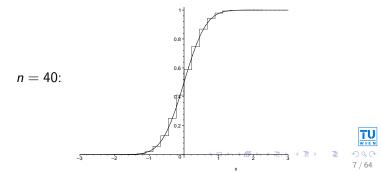
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



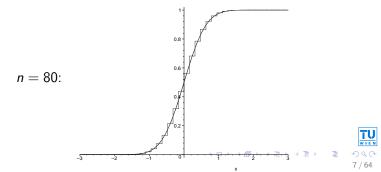
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



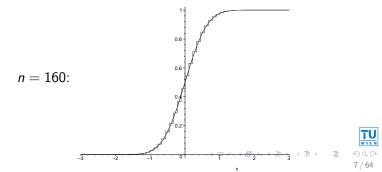
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



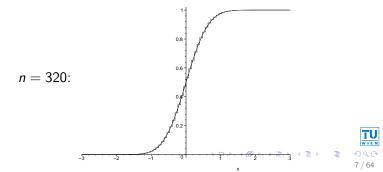
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



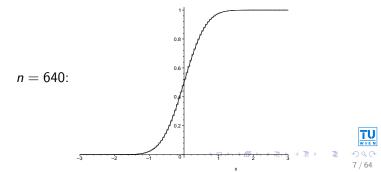
Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

This means: the distribution function $F_n(x) = \mathbb{P}\{X_n \le x\}$ of X_n converges **pointwise** for every $x \in \mathbb{R}$ to the distribution function $F(x) = \mathbb{P}\{X \le x\}$ of X.



Example I 00000000000 Example II 00000000000 Example III

Counterexample

The Method of Moments

Showing limiting distribution results

Point (ii) is satisfied under **growth conditions** of moments $\mathbb{E}(X^r)$

Carleman criterion: If

$$\sum_{r\geq 1}\frac{1}{\sqrt[2r]{\mathbb{E}(X^{2r})}}=\infty,$$

then X is uniquely defined by its sequence of moments.

Example I 00000000000 Example II 00000000000 Example III C

<ロ> <同> <同> < 回> < 三>

Counterexample

9/64

The Method of Moments

Applications in average-case analysis

Analysis of Algorithms and random structures:

- Often: one obtains distributional recurrences for parameters of interest
- In many cases: difficult to treat distributional recurrences directly
- But: recurrences for moments usually simpler

Example II 00000000000 Example III Counte

The Method of Moments

Applications in average-case analysis

A "typical situation":

- Recurrences for $\mathbb{E}(X_n^r)$ are linear
- They differ only in the inhomogeneous part
- ► Inhomogeneous part contains lower moments E(X¹_n),..., E(X^{r-1}_n)

If method applicable:

one can pump out successively all moments (at least asymptotically)

Example I

Example II 00000000000 Example III

Counterexample

Example I: Total displacement in linear probing hashing

Example II 00000000000 イロン イヨン イヨン イヨン 三日

Counterexample

Total displacement in linear probing hashing Problem description

Linear probing hashing

- Table of length m
- Hash function h maps keys to $[1 \dots m]$ of table addresses
- Sequences of $n \le m$ elements entering sequentially into table
- Each element x is placed at first unoccupied location starting from h(x) in cyclic order:

$$h(x), h(x) + 1, \ldots, m, 1, 2, \ldots, h(x) - 1$$

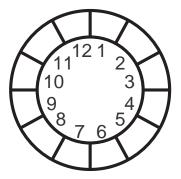
Example II

Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



Example II

Example III

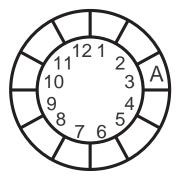
イロト イポト イヨト イヨト

Counterexample

13/64

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



$$A\ldots h(A)=3$$

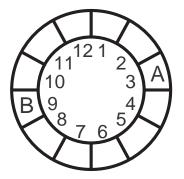
Example II

Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$

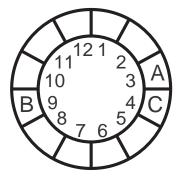
Example II

Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$

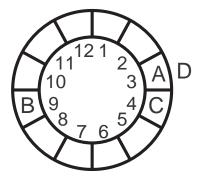
Example II

Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$

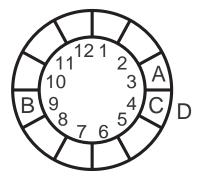
Example II

Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$

Example II

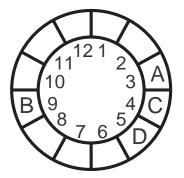
Example III

Counterexample

13/64

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



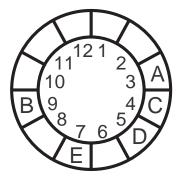
 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$

Example II 00000000000 Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$

Example II 00000000000 Example III

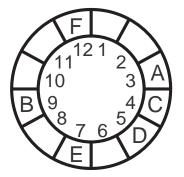
Counterexample

WIET

13/64

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



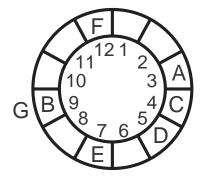
 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$ $F \dots h(F) = 12$

Example II 00000000000 Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$ $F \dots h(F) = 12$ $G \dots h(G) = 9$

Example II 00000000000 Example III

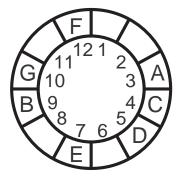
Counterexample

WIET

13/64

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



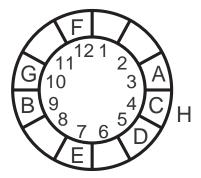
 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$ $F \dots h(F) = 12$ $G \dots h(G) = 9$

Example II 00000000000 Example III

Counterexample

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$ $F \dots h(F) = 12$ $G \dots h(G) = 9$ $H \dots h(H) = 4$

Example II

Example III

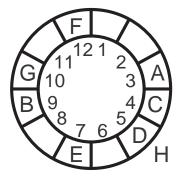
Counterexample

WIET

13/64

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$ $F \dots h(F) = 12$ $G \dots h(G) = 9$ $H \dots h(H) = 4$

Example II 00000000000 Example III

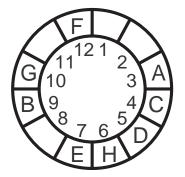
Counterexample

WIET

13/64

Total displacement in linear probing hashing Problem description

Example of constructing a hash table:



 $A \dots h(A) = 3$ $B \dots h(B) = 9$ $C \dots h(C) = 4$ $D \dots h(D) = 3$ $E \dots h(E) = 7$ $F \dots h(F) = 12$ $G \dots h(G) = 9$ $H \dots h(H) = 4$

Counterexample

Total displacement in linear probing hashing Problem description

Displacement d(x) of element x placed at location y:

circular distance between h(x) and y:

$$d(x) := egin{cases} y-h(x), & ext{if} \ h(x) \leq y, \ m+h(x)-y, & ext{otherwise} \end{cases}$$

 \Rightarrow Costs of inserting x and searching x in table

Total displacement of sequence of *n* hashed values:

sum of the individual displacements

$$\Rightarrow$$
 Construction costs of the table

Example II 00000000000 Example III

3

15/64

Counterexample

Total displacement in linear probing hashing Problem description

Assumption:

all m^n hash sequences are equally likely

 $D_{m,n}$: Random variable counting the total displacement of a table of length m with n keys hashed

- Full table: n = m
- Almost full table: n = m 1
- ▶ Sparse tables: $n = \alpha m$, load factor $0 < \alpha < 1$

16/64

Total displacement in linear probing hashing Results

Theorem [Flajolet, Poblete and Viola, 1998]:

Result for almost full tables: the scaled random variable $\left(\frac{2}{n}\right)^{\frac{3}{2}}D_{n,n-1}$ converges in distribution to an Airy distributed random variable:

$$\left(\frac{2}{n}\right)^{\frac{3}{2}}D_{n,n-1}\xrightarrow{(d)}D,$$

where D is determined by its moments:

$$\mathbb{E}(D^r) = \frac{2\sqrt{\pi}}{\Gamma((3r-1)/2)}C_r,$$

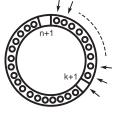
and the constants C_r satisfy the following recurrence:

$$2C_r = (3r-4)rC_{r-1} + \sum_{j=1}^{r-1} \binom{r}{j} C_j C_{r-j}, \text{ for } r \ge 1, \quad C_0 = -1.$$

Total displacement in linear probing hashing Proof idea

Basic decomposition of almost full tables:

- Table length n + 1 with n elements inserted
- Before last element is inserted: Two empty cells at position k+1 and n+1
- Assumption (circular symmetry): free cell remains at n + 1
 ⇒ last element to be inserted has any address in [1...k + 1]
 ⇒ displacement is any value ∈ {0, 1, ..., k}.



イロト 不得下 イヨト イヨト 二日

Counterexample

Total displacement in linear probing hashing Proof idea

Decomposition leads to recursive description:

 $F_{n,k}$: number of ways of creating an almost full table with n elements and total displacement kGenerating function: $F_n(q) := \sum_{k\geq 0} F_{n,k}q^k$ **Recurrence:**

$$F_n(q) = \sum_{k=0}^{n-1} {n-1 \choose k} F_k(q)(1+q+\cdots+q^k) F_{n-1-k}(q)$$

Bivariate generating function: $F(z,q) := \sum_{n\geq 0} F_n(q) \frac{z^n}{n!}$ Functional equation:

$$\frac{\partial}{\partial z}F(z,q)=F(z,q)\cdot\frac{F(z,q)-qF(qz,q)}{1-q}$$

সি মি ত ৫ পে 18 / 64

Example II 0000000000 Counterexample

Total displacement in linear probing hashing Proof idea

Pumping out all moments:

Generating function of *r*-th factorial moments:

$$f_r(z) := \left. \frac{\partial^r}{\partial q^r} F(z,q) \right|_{q=1}$$

 $f_r(z)$ satisfy following linear differential equation:

$$f'_r(z)(1-T(z)) - f_r(z)\frac{T(z)(2-T(z))}{z(1-T(z))} = R_r(z),$$

where the inhomogeneous part $R_r(z)$ contains the functions $f_0(z), f_1(z), \ldots, f_{r-1}(z)$ and T(z) is the tree function: $T(z) = ze^{T(z)}$

Example II 00000000000 ・ロン ・四 と ・ ヨ と ・ ヨ と

Counterexample

Total displacement in linear probing hashing Proof idea

General solution:

$$f_r(z) = \frac{e^{T(z)}}{1 - T(z)} \int_0^z R_r(u) e^{-T(u)} du$$

Asymptotic behaviour around dominant singularity $z = e^{-1}$:

$$zf_r(z) \sim rac{C_r}{(2(1-ez))^{3r/2-1/2}},$$

where constants C_r satisfy the following recurrence:

$$2C_r = (3r-4)rC_{r-1} + \sum_{j=1}^{r-1} {r \choose j} C_j C_{r-j}, \text{ for } r \ge 1, \quad C_0 = -1.$$

3

Example II 00000000000 Example III

Counterexample

Total displacement in linear probing hashing Proof idea

Singularity analysis of generating functions [Flajolet and Odlyzko, 1990]:

 \Rightarrow asymptotic equivalent of the *r*-th factorial and ordinary moments:

$$\left(\frac{2}{n}\right)^{\frac{3}{2}}\mathbb{E}(D_{n,n-1}^r) \to \frac{2\sqrt{\pi}}{\Gamma((3r-1)/2)}C_r$$

イロト イポト イヨト イヨト

Counterexample

Total displacement in linear probing hashing Airy distribution

Airy distribution appears in various contexts:

- Number of inversions in trees
- Path length in trees
- Area under directed lattice paths
- Counting problems for polygon models
- Number of connected graphs with n vertices and k edges
- Additive parameters in context-free grammars

"Similar" functional equations are occurring

Example I

Example II

Example III 0000000000000000 Counterexample

Example II: Subtree varieties in recursive trees

Example II •000000000 Example III Cour

Subtree varieties in recursive trees

Problem description

Subtree varieties in rooted trees:

- ▶ Given: family *T* of rooted trees
- **Consider:** random rooted tree T of size n of family T
- Question: how many subtrees of T have size k = k(n) ?

Example I 00000000000 Example II

Example III Counterexample

<ロ> <同> <同> < 回> < 回>

Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n



э

Example I 00000000000 Example II

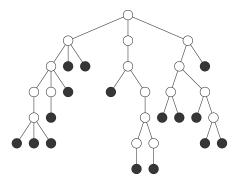
Example III Counterexample

イロト イポト イヨト イヨト

Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n



many subtrees of fixed size: size 1 (= leaves)

3

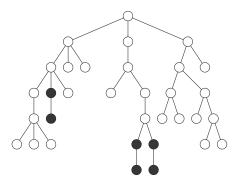
Example I 00000000000 Example II

Example III Counterexample

Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n



many subtrees of fixed size: size 2

Example I 00000000000 Example II

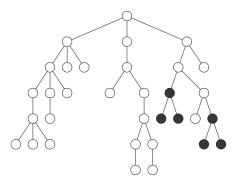
Example III Counterexample

イロト イポト イヨト イヨト

Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n



many subtrees of fixed size: size 3

Example I 00000000000 Example II

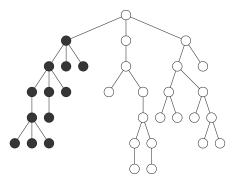
Example III Counterexample

イロト イポト イヨト イヨト

Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n



few subtrees of "large" size: size n/3

3

Example I 00000000000 Example II

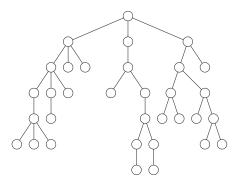
Example III Counterexample

イロト イポト イヨト イヨト

Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n



few subtrees of "large" size: size n/2

3

Example II

Example III Cou

Subtree varieties in recursive trees

Recursive trees

Recursive trees:

important tree family with many applications

- models spread of epidemics
- model for pyramid schemes
- model for the family trees of preserved copies of ancient texts
- related to the Bolthausen-Sznitman coalescence model

Example III Counte

イロト イポト イヨト イヨト

Subtree varieties in recursive trees

Recursive trees

Combinatorial description of a recursive tree:

- non-plane labelled rooted tree
- ▶ size-*n* tree labelled with labels 1, 2, ..., n
- labels along path from root to arbitrary node v are increasing sequence

Random recursive trees:

all (n-1)! recursive trees of size *n* appear with equal probability

Example III Counter

イロン イヨン イヨン イヨン

- 32

28 / 64

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)

Example III Countere

イロン イヨン イヨン イヨン

- 32

28 / 64

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)

Example III Countere

<ロ> <同> <同> < 回> < 回>

3

28 / 64

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)

Example III Counterex

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)

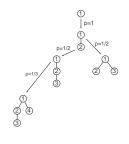
Example III Counterex

<ロ> <同> <同> < 回> < 回>

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)



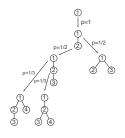
Example III Counterex

(a)

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)

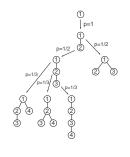


Example III Countere

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)

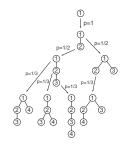


Example III Countere

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)



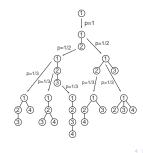
Example III Countere

- 4 同 ト 4 ヨ ト 4 ヨ ト

Subtree varieties in recursive trees

Recursive trees

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)



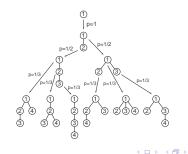
Example III Counterer

Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

- **Step** 1: start with root labelled by 1
- ► Step j: node with label j is attached to any previous node with equal probability 1/(j 1)



E 5 4 E 5

Example II 00000000000 Example III Counterexan

29 / 64

Subtree varieties in recursive trees Results

 $X_{n,k}$: number of subtrees of size k in random recursive tree of size n

Theorem [Feng, Mahmoud and Pan, 2006+]:

there are three phases for behaviour of $X_{n,k}$ depending on the growth of k = k(n)

- subcritical case: $k/\sqrt{n} \rightarrow 0$
- critical case: $k/\sqrt{n} \rightarrow c > 0$
- supercritical case: $k/\sqrt{n} \to \infty$

Example II 00000000000 Example III Counterex

Subtree varieties in recursive trees Results

• subcritical case: $k/\sqrt{n} \rightarrow 0$:

normalized r. v. asympt. Gaussian distributed

$$\frac{X_{n,k} - \frac{n}{k(k+1)}}{\sqrt{\frac{(2k^2 - 1)n}{k(k+1)^2(2k+1)}}} \xrightarrow{(d)} \mathcal{N}(0,1)$$

• critical case: $k/\sqrt{n} \rightarrow c > 0$:

 $X_{n,k}$ asymp. **Poisson-distributed**

$$X_{n,k} \xrightarrow{(d)} \operatorname{Poisson}(\frac{1}{c^2})$$

• supercritical case: $k/\sqrt{n} \to \infty$:

 $X_{n,k}$ asymp. denenerate

$$X_{n,k} \xrightarrow{(d)} X$$
, with $\mathbb{P}\{X=0\}=1$

Example II 000000000000 イロン 不留 とくほど 不良とう 語

Subtree varieties in recursive trees Proof idea

Decomposition of recursive trees according root degree:

$$\begin{aligned} \mathcal{T} &= (1) \times \left(\{ \epsilon \} \stackrel{.}{\cup} \mathcal{T} \stackrel{.}{\cup} 1/2! \cdot \mathcal{T} * \mathcal{T} \stackrel{.}{\cup} 1/3! \cdot \mathcal{T} * \mathcal{T} * \mathcal{T} \stackrel{.}{\cup} \cdots \right) \\ &= (1) \times \exp(\mathcal{T}) \end{aligned}$$

Generating functions: $M_k(z, v) := \sum_{n \ge 1} \sum_{m \ge 0} \mathbb{P}\{X_{n,k} = m\} \frac{z^n}{n!} v^m$ Differential equation:

$$rac{\partial}{\partial z}M_k(z,v)=\exp\left(M_k(z,v)
ight)+(v-1)z^{k-1}$$

জন জ গ ৫ লে 31 / 64

Example II 000000000000 Example III Counterexample

Subtree varieties in recursive trees

Proof idea

Explicit solution of generating function:

$$M_k(z,v)=rac{(v-1)z^k}{k}+\log\left(rac{1}{1-\int\limits_0^z e^{rac{(v-1)t^k}{k}}\,dt}
ight)$$

Exact solution for factorial moments:

$$\mathbb{E}(X_{n,k}^{\underline{r}}) = \frac{\llbracket n \ge kr+1 \rrbracket n}{k^r} \sum_{\ell=1}^r \frac{\binom{n-kr-1}{\ell-1}}{\ell} \times \sum_{\substack{j_1 + \dots + j_\ell = r\\ j_q \ge 1, \ 1 \le q \le \ell}} \binom{r}{j_1, \dots, j_\ell} \frac{1}{\prod_{i=1}^\ell (j_i k+1)}$$

3

Example II 000000000 Example III Count

Subtree varieties in recursive trees

Proof idea

Critical case: \Rightarrow Asymptotically Poisson distribed

$$n/k^2 \to \lambda \quad \to \quad \mathbb{E}(X_{n,k}^r) \to \lambda^r$$

Subcritical case: \Rightarrow Dealing with cancellations

Normalized r.v.
$$\tilde{X}_{n,k} := \frac{X_{n,k} - \mathbb{E}(X_{n,k})}{\mathbb{V}(X_{n,k})}$$

 \Rightarrow Asymptotically Gaussian distributed

$$\mathbb{E}\left(\left(\frac{\tilde{X}_{n,k}}{\sqrt{\nu(k)n}}\right)^{2d}\right) \to \frac{(2d)!}{d!\,2^d}, \quad \text{for } d \ge 0,$$
$$\mathbb{E}\left(\left(\frac{\tilde{X}_{n,k}}{\sqrt{\nu(k)n}}\right)^{2d+1}\right) \to 0, \quad \text{for } d \ge 0$$

3

Example III Counterexample

<ロ> <同> <同> < 回> < 回>

3

34 / 64

Subtree varieties in recursive trees

Remarks

Application of method of moments to asympt. Gaussian r.v.:

- heavy cancellations \Rightarrow high computational effort
- method usually only "last weapon"

イロト イポト イヨト イヨト

3

34 / 64

Subtree varieties in recursive trees

Remarks

Application of method of moments to asympt. Gaussian r.v.:

- heavy cancellations \Rightarrow high computational effort
- method usually only "last weapon"

One might try first:

- analytic methods (saddle point method, continuity theorem of Levy, quasi-power theorem)
- central limit theorems for sums of independent or weakly dependent r.v.
- Stein's method
- contraction method
- martingale description

Example I

Example II 00000000000 Example III

Counterexample

Example III: Total costs of Union-Find-algorithms

Example II 00000000000 Counterexample

Total costs in $\operatorname{Union-Find-algorithms}$

Problem description

UNION-FIND-problem

- Maintaining representation of equivalence classes (= partitions of a finite set)
- Two basic operations:
 - UNION: merge two different equivalence classes s and t into a single equivalence class
 - ▶ FIND: find equivalence class that contains a given element *x*

Problem arises naturally in applications in computer science (e.g., minimum-cost spanning tree algorithms)

- 32

Example II 00000000000 Example III

・ロン ・四 と ・ ヨ と ・ ヨ と

- 32

37 / 64

Counterexample

Total costs in UNION-FIND-algorithms

Problem description

Data structure for Union-Find problem, Aho et al [1974]:

- consider partition P(S) of finite set S
- ▶ for every element x ∈ S: store in R[x] name of the equivalence class containing x
- for every equivalence class $s \in P(S)$:
 - store in N[s] the number of elements of s
 - store in L[s] the elements of s in a linked list

Example II 00000000000 Example III

Counterexample

Total costs in $\operatorname{Union-Find}$ -algorithms

Problem description

Basic algorithm for operation UNION, Yao [1976]:

"Quick Find Weighted" (QFW):

if we merge different equivalence classes s and t then we update the class with less elements:

- if N[s] ≤ N[t]:
 set R[x] := t for all x in L[s]
 append L[s] to L[t],
 set N[t] := N[t] + N[s]
 call new equivalence class t
- ► otherwise set R[x] := s for all x in L[t] append L[t] to L[s] set N[s] := N[s] + N[t] call new equivalence class s

Example II 00000000000 Example III

・ロト ・回ト ・ヨト ・ヨト

- 32

39/64

Counterexample

Total costs in UNION-FIND-algorithms

Problem description

Cost of UNION-operation:

- Costs when merging equivalence classes s and t: measured by number of updated elements, i.e., the number of allocations R[x] := s or R[x] := t
- QFW: cost of merging step is given by minimum of the class sizes min(N[s], N[t])

Example II 00000000000 Counterexample

Total costs in UNION-FIND-algorithms

Problem description

Basic model for sequences of UNION-operations, Yao [1976]:

Random spanning tree model:

- deal with set S of size n
- ▶ at the beginning all elements x ∈ S are forming equivalence class {x}
- n equivalence classes will be merged into larger and larger classes by carrying out UNION-operations according following Merging rule

イロン イヨン イヨン イヨン 三日

Counterexample

41/64

Total costs in $\operatorname{Union-Find}$ -algorithms

Problem description

Merging rule:

- choose at random a spanning tree of complete graph with vertex set S
- ► choose a random ordering of the edges of this spanning tree by enumerating it from 1 to n - 1
- ▶ leads to sequence of edges $e_1 = (x_1, y_1)$, $e_2 = (x_2, y_2)$, ..., $e_{n-1} = (x_{n-1}, y_{n-1})$, with $x_i, y_i \in S$

▶ gives then sequence of UNION-operations UNION($R[x_1], R[y_1]$), UNION($R[x_2], R[y_2]$), ..., UNION($R[x_{n-1}], R[y_{n-1}]$)

⇒ all nⁿ⁻²(n − 1)! possible sequence of UNION-operations of that kind are equally likely

Example III

イロト 不得下 イヨト イヨト 二日

Counterexample

Total costs in $\operatorname{Union-Find}$ -algorithms

Problem description

Total cost of algorithm QFW:

Average performance of QFW described by total costs:

- sum of cost of every merging step when merging the elements of a set S of size n
- at beginning all elements are in different equivalence classes
- merge all elements into one equivalence class (containing all elements of S)
- ► carrying out sequence of n − 1 UNION-operations according to merging rules under random spanning tree model
- $ightarrow X_n$: random variable depending only on size *n* of set *S*

Example I 00000000000 Example II 00000000000 Example III

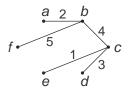
Counterexample

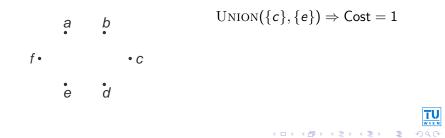
43 / 64

Total costs in UNION-FIND-algorithms

Problem description

Example of algorithm QFW:





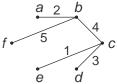
Example I 00000000000 Example II 00000000000 Example III

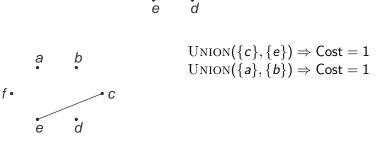
(a)

Total costs in $\operatorname{Union-Find}$ -algorithms

Problem description

Example of algorithm QFW:



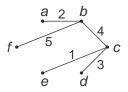


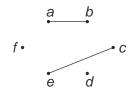
Example I 00000000000 Example II 00000000000 Example III

Total costs in $\operatorname{Union-Find}$ -algorithms

Problem description

Example of algorithm QFW:





 $\begin{aligned} &\text{UNION}(\{c\}, \{e\}) \Rightarrow \text{Cost} = 1\\ &\text{UNION}(\{a\}, \{b\}) \Rightarrow \text{Cost} = 1\\ &\text{UNION}(\{c\}, \{d\}) \Rightarrow \text{Cost} = 1\end{aligned}$

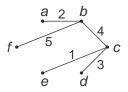
(a)

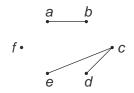
Example I 00000000000 Example II 00000000000 Example III

Total costs in $\operatorname{Union-Find}$ -algorithms

Problem description

Example of algorithm QFW:





 $\begin{aligned} &\text{UNION}(\{c\}, \{e\}) \Rightarrow \text{Cost} = 1 \\ &\text{UNION}(\{a\}, \{b\}) \Rightarrow \text{Cost} = 1 \\ &\text{UNION}(\{c\}, \{d\}) \Rightarrow \text{Cost} = 1 \\ &\text{UNION}(\{b\}, \{c\}) \Rightarrow \text{Cost} = 2 \end{aligned}$

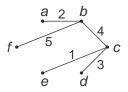
(a)

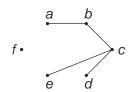
Example I 00000000000 Example II 00000000000 Example III

Total costs in UNION-FIND-algorithms

Problem description

Example of algorithm QFW:





 $\begin{aligned} &\text{UNION}(\{c\}, \{e\}) \Rightarrow \text{Cost} = 1\\ &\text{UNION}(\{a\}, \{b\}) \Rightarrow \text{Cost} = 1\\ &\text{UNION}(\{c\}, \{d\}) \Rightarrow \text{Cost} = 1\\ &\text{UNION}(\{b\}, \{c\}) \Rightarrow \text{Cost} = 2\\ &\text{UNION}(\{b\}, \{b\}) \Rightarrow \text{Cost} = 1\end{aligned}$

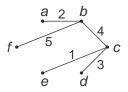
(a)

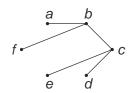
Example I 00000000000 Example II 00000000000 Example III

Total costs in UNION-FIND-algorithms

Problem description

Example of algorithm QFW:





$$\begin{split} & \text{UNION}(\{c\}, \{e\}) \Rightarrow \text{Cost} = 1 \\ & \text{UNION}(\{a\}, \{b\}) \Rightarrow \text{Cost} = 1 \\ & \text{UNION}(\{c\}, \{d\}) \Rightarrow \text{Cost} = 1 \\ & \text{UNION}(\{b\}, \{c\}) \Rightarrow \text{Cost} = 2 \\ & \text{UNION}(\{b\}, \{b\}) \Rightarrow \text{Cost} = 1 \\ & \text{Total costs} = 6 \end{split}$$

(a)

44 / 64

Total costs in UNION-FIND-algorithms Results

Theorem [Kuba and Pan, 2007]: The expectation $\mathbb{E}(X_n)$ of the total costs of the UNION-FIND-algorithm under the random spanning tree model has for $n \to \infty$ the following asymptotic expansion:

$$\mathbb{E}(X_n) = \frac{1}{\pi} n \log n + Cn + \mathcal{O}(n^{\frac{3}{4}}),$$

where the constant $C \approx 0.6315$ is given as follows:

$$C = \frac{\gamma + 2\log 2}{\pi} + \sum_{n \ge 0} \frac{1}{n+1} \Big[e^{-(n+1)} \Big(R_{n+2} - R_{n+1} - \sum_{k=0}^{n} \frac{(k+1)^{k+1}}{(k+2)!} R_{n-k} \Big) - \frac{1}{\pi} \Big],$$

with

$$R_n = \sum_{k=1}^{n-1} \frac{k^k (n-k)^{n-k-1}}{k! (n-k)!} \min(k, n-k).$$

Counterexample

Total costs in $\operatorname{Union-Find-algorithms}$

Results

Theorem [Kuba and Pan, 2007]: The suitably shifted and scaled r.v. X_n converges in distribution to a r.v. X, which can be characterized by its *r*-th integer moments:

$$\frac{X_n - \frac{1}{\pi} n \log n - Cn}{n} \xrightarrow{(d)} X, \quad \text{with} \quad \mathbb{E}(X^r) = m_r,$$

where m_r is given recursively as follows:

$$m_r = \frac{\Gamma(r-1)}{2\sqrt{\pi}\Gamma(r-\frac{1}{2})} \sum_{\substack{r_1+r_2+r_3=r,\\r_2,r_3 < r}} \binom{r}{r_1, r_2, r_3} m_{r_2} m_{r_3} I_{r_1, r_2, r_3}, \quad \text{for } r \ge 2,$$

with initial values $m_0 = 1$ and $m_1 = 0$ and

$$I_{r_1,r_2,r_3} = \int_0^1 \left(\frac{1}{\pi} \left(x \log x + (1-x) \log(1-x) \right) + \min(x, 1-x) \right)^{r_1} x^{r_2 - \frac{1}{2}} (1-x)^{r_3 - \frac{3}{2}} dx.$$

Example II 00000000000 イロト イポト イヨト イヨト

Counterexample

46 / 64

Total costs in UNION-FIND-algorithms Proof idea

The reverse process: destroying a tree

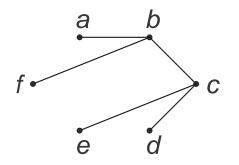
- Start with a random spanning tree of size n
- Remove successively edges at random from remaining edges
- In every step split a connected component into two parts
- Cost of a cut is the size of the smaller part after the splitting step
- Stop when all nodes are isolated

Example I 00000000000 Example II 00000000000 Example III

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

Example of destroying a tree:

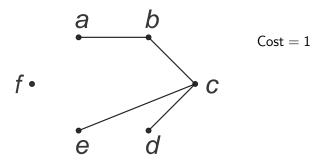


Example I 00000000000 Example II 00000000000 Example III

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

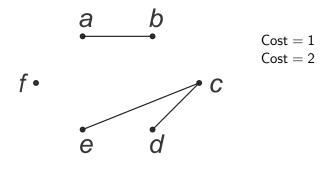
Example of destroying a tree:



Example I 00000000000 Example II 00000000000 Example III

Total costs in UNION-FIND-algorithms Proof idea

Example of destroying a tree:



Counterexample

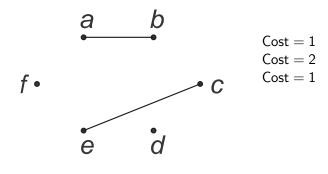
Example I 00000000000 Example II 00000000000 Example III

イロト イポト イヨト イヨト

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

Example of destroying a tree:



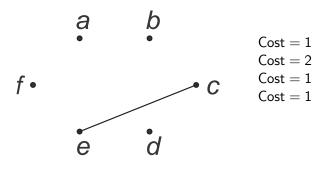
Example I 00000000000 Example II 00000000000 Example III

イロト イポト イヨト イヨト

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

Example of destroying a tree:



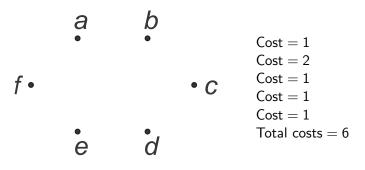
Example I 00000000000 Example II 00000000000 Example III

イロト イポト イヨト イヨト

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

Example of destroying a tree:



3

Example II 00000000000 イロト 不同下 イヨト イヨト

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

Recursive description of total costs X_n :

Distributional recurrence for rooted trees:

$$X_n \stackrel{(d)}{=} X_{S_n} + X_{n-S_n}^* + t_{n,S_n}$$

 S_n : size of subtree containing root after removing random edge of randomly chosen labeled rooted tree of size nToll function: $t_{n,k} = \min(k, n - k)$ S_n is distributed as follows:

$$\mathbb{P}\{S_n=k\}=\frac{kT_kT_{n-k}}{(n-1)T_n},$$

with $T_n := \frac{n^{n-1}}{n!}$

- 32

Example I 00000000000 Example II 00000000000 Example III

ヘロン ヘロン ヘビン ヘビン

Counterexample

49 / 64

Total costs in ${\rm UNION}\mbox{-}{\rm FIND}\mbox{-}{\rm algorithms}$ Proof idea

Recurrence for r-th moments of X_n

Linear recurrence for $\mu_n^{[r]} := \mathbb{E}(X_n^r)$:

$$(n-1)T_n\mu_n^{[r]} = \sum_{k=1}^{n-1} kT_k T_{n-k}(\mu_k^{[r]} + \mu_{n-k}^{[r]}) + R_n^{[r]},$$

where the inhomogeneous part $R_n^{[r]}$ depends on the lower order moments $\mu_n^{[1]},\ldots,\mu_n^{[r-1]}$

Example III

Counterexample

Total costs in UNION-FIND-algorithms Proof idea

Generating functions treatment

Linear differential equation:

$$z(1 - T(z))C'_r(z) - (1 + zT'(z))C_r(z) = R_r(z),$$

where the inhomogeneous part depends on the g.f. $C_1(z), \ldots, C_r(z)$ for lower moments **Solution:** $T(z) = \int_{-\infty}^{z} R(t)$

$$C_r(z) = \frac{T(z)}{1-T(z)} \int_0^z \frac{R_r(t)}{tT(t)} dt$$

Asymptotic equivalents of *r*-th moments:

"pumped out" inductively

Example II 00000000000 Example III

Counterexample

Total costs in ${\rm UNION}\mbox{-}{\rm FIND}\mbox{-}{\rm algorithms}$ Remark

Problems of similar "nature":

- Quicksort: number of comparisons
- Pathlengths in search tree models
- Wiener-index of certain tree models

Limiting distribution characterized by "complicated" moment's sequence

Example I

Example II 00000000000 Example III

Counterexample

Counterexample

Example II 00000000000 ・ロト ・回ト ・ヨト ・ヨト

- 32

53 / 64

Counterexample

Counterexample

Cutting down recursive trees

Cutting down procedure for rooted trees:

```
INPUT: tree T

steps \leftarrow 0

while |T| > 1 do

cut off an edge e of T

T \leftarrow subtree containing the root

steps \leftarrow steps +1

OUTPUT: steps
```

Remove edges until root is isolated

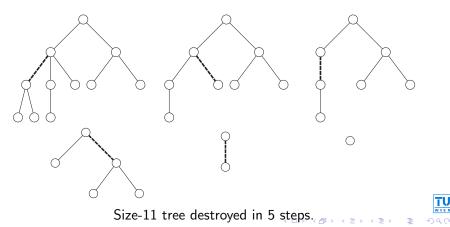
Example II 00000000000 Example III

Counterexample

Counterexample

Cutting down recursive trees

An example of cutting a tree:



54 / 64

Example II 00000000000 Example III

Counterexample

Counterexample

Cutting down recursive trees

How many steps are done, until root is isolated?

Probability model:

- Randomized cutting down procedure:
 Edges in tree chosen at random in each step.
- Random tree model for certain tree families.
- R. v. X_n counts steps done to destroy size-*n* tree.

Example II 00000000000 Example III 00000000000000000

イロト イポト イヨト イヨト

Counterexample

Counterexample

Cutting down recursive trees

Why are the number of cuts to destroy the tree of interest?

- Strong connections to coalescent models ⇒ theoretical physics, mathematical biology
- Cayley-trees: additive Marcus-Lushnikov process
- Recursive trees: Bolthausen-Sznitman coalescent
- ► X_n for recursive trees: number of collision events in the coalescent model until there is just a single block

Example III

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Counterexample

Counterexample

Cutting down recursive trees

Apply cutting-down procedure to recursive trees:

- non-plane labelled rooted tree
- size-*n* tree labelled with labels $1, 2, \ldots, n$
- labels along path from root to arbitrary node v are increasing sequence

Random recursive trees:

all (n-1)! recursive trees of size n appear with equal probability

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Idea: apply recursive approach:

$$\mathbb{P}\{X_n = m\} = \sum_{k=1}^{n-1} p_{n,k} \mathbb{P}\{X_k = m-1\}.$$

 $p_{n,k}$: Probability, that subtree containing root has size k, if we cut off random edge in random size-n tree.

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Idea: apply recursive approach:

$$\mathbb{P}\{X_n = m\} = \sum_{k=1}^{n-1} p_{n,k} \mathbb{P}\{X_k = m-1\}.$$

 $p_{n,k}$: Probability, that subtree containing root has size k, if we cut off random edge in random size-n tree.

Attention:

- approach only applicable if randomness is preserved by cutting off random edge
- satisfied, e.g, by recursive trees, Cayley-trees, planted plane trees, d-ary trees
- not satisfied, e.g., by Motzkin-trees, binary search trees

Example II 00000000000 Example III

Counterexample

Counterexample

Cutting down recursive trees

- Cutting off random edge:
- Planted plane trees: randomness preserved

Motzkin trees: randomness not preserved



Example II 00000000000 Example III Counterexample

イロト 不同下 イヨト イヨト

Counterexample

Cutting down recursive trees

Computations for recursive trees:

Splitting probability: size-*n* tree \longrightarrow size-*k* tree:

$$p_{n,k}=\frac{n}{(n-1)(n-k)(n-k+1)}.$$

Recurrence:

$$\mathbb{P}\{X_n = m\} = \sum_{k=1}^{n-1} \frac{n}{(n-1)(n-k)(n-k+1)} \mathbb{P}\{X_k = m-1\}.$$

∽ < (~ 60 / 64

3

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Computations for recursive trees:

Proper generating function:

$$M(z,v) = \sum_{n\geq 1} \sum_{0\leq m\leq n} \mathbb{P}\{X_n = m\} \frac{z^n}{n} v^m.$$

Differential equation:

$$\frac{\partial}{\partial z}M(z,v) = \frac{1}{z-v\left(z-(1-z)\log\left(\frac{1}{1-z}\right)\right)}M(z,v).$$

∽ **へ** (~ 61 / 64

3

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Computations for recursive trees:

Solution of DE:

$$M(z,v) = z e^{\int\limits_{t=0}^{z} \frac{v\left(t-(1-t)\log\left(\frac{1}{1-t}\right)\right)}{t\left(t-v\left(t-(1-t)\log\left(\frac{1}{1-t}\right)\right)\right)}} dt.$$

Try method of moments:

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Computations for recursive trees:

Solution of DE:

$$M(z,v) = z e^{\int\limits_{t=0}^{z} \frac{v\left(t-(1-t)\log\left(\frac{1}{1-t}\right)\right)}{t\left(t-v\left(t-(1-t)\log\left(\frac{1}{1-t}\right)\right)\right)}} dt.$$

Try method of moments:

r-th moments:

$$\mathbb{E}(X_n^r) = \frac{n^r}{\log^r n} + \frac{n^r}{\log^{r+1} n} \big((r+1)H_r - r\gamma \big) + \mathcal{O}\big(\frac{n^r}{\log^{r+2} n}\big).$$

Scaling does not lead to a limiting distribution!

э

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Computations for recursive trees: *r*-th **centered** moments:

$$\mathbb{E}\Big(\big(X_n-\mathbb{E}(X_n)\big)^r\Big)\sim \frac{(-1)^r}{(r-1)r}\,\frac{n^r}{\log^{r+1}n},\ r\geq 2.$$

Also centering and scaling does not lead to a limiting distribution!

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Computations for recursive trees: *r*-th **centered** moments:

$$\mathbb{E}\left(\left(X_n-\mathbb{E}(X_n)\right)^r\right)\sim \frac{(-1)^r}{(r-1)r}\frac{n^r}{\log^{r+1}n}, \ r\geq 2.$$

Also centering and scaling does not lead to a limiting distribution!

Method of moments not applicable!

Example II 00000000000 Counterexample

Counterexample

Cutting down recursive trees

Theorem (Drmota, Iksanov, Möhle and Rösler, 2009) *The random variable*

$$Y_n = \frac{X_n - \frac{n}{\log n} - \frac{n \log \log n}{(\log n)^2}}{\frac{n}{(\log n)^2}}$$

converges in distribution to a **stable random variable** *Y* with characteristic function

$$\phi_{\mathbf{Y}}(\lambda) = \mathbb{E}(e^{i\lambda \mathbf{Y}}) = e^{i\lambda \log |\lambda| - \frac{\pi}{2}|\lambda|}.$$

The moments of the limiting distribution Y do not exist!

