(Co)-Algebras, Shifts and a theorem by E. Abe and M. P. Schützenberger

Matthieu Deneufchâtel

Laboratoire d'Informatique de Paris Nord, Université Paris 13

> CIP, 26 October 2010

> > <ロ> (四) (四) (四) (四) (四) (四) (四)

Notations

In this talk,

- Let (𝔄, μ, u) and (𝔅, Δ, ϵ) denote respectively an associative algebra with unit u and a coalgebra (coassociative with counit ϵ), k the ground field.
- \mathfrak{A}^* denotes the algebraic dual of the vector space \mathfrak{A} .
- For V, W two vector spaces, $f \in Hom(V, W)$ and $v \in V$, $\langle f | v \rangle$ denotes the value of f(v).
- Transpose of a linear map : we denote by ${}^tf:W^* \to V^*$ the transpose of f :

$$\langle {}^t f(w) | v \rangle = \langle w | f(v) \rangle, \, \forall v \in V.$$

- 4 @ > - 4 @ > - 4 @ >

Introduction

Useful properties 1/3

 (i) Let U, V and W be vector spaces and φ : U × V → W a bilinear map. Then if z ∈ Im(φ) and if

$$\mathsf{z} = \sum_{i=1}^{n} \phi(\mathsf{x}_i, \mathsf{y}_i)$$

with *n* minimal, the families $(x_i)_{1 \le i \le n}$ and $(y_i)_{1 \le i \le n}$ are free in their respective spaces.

Application to the tensor product : Let *y* be an element of $V \otimes W$. Then there exists $n \in \mathbb{N}$ and two families $(a_i)_i \subset V$, $(b_i)_i \subset W$, $(a_i)_i$ being free such that

$$y = \sum_{i=0}^{n} a_i \otimes b_i$$

If n minimal then both families are free.

M. Deneufchâtel (LIPN - P13)

(日) (同) (日) (日) (日)

Introduction

Proof : Assume, without loss of generality, that $x_n = \sum_{i=1}^{n-1} \alpha_i x_i$. Then

$$z = \sum_{i=1}^{n-1} \phi(x_i, y_i) + \phi(x_n, y_n)$$

= $\sum_{i=1}^{n-1} \phi(x_i, y_i) + \phi(\sum_{j=1}^{n-1} \alpha_j x_j, y_n)$
= $\sum_{i=1}^{n-1} \phi(x_i, y_i) + \sum_{j=1}^{n-1} \alpha_j \phi(x_j, y_n)$

since ϕ is bilinear. The same argument allows us to "factor" the x_i 's in the two sums :

$$z = \sum_{i=1}^{n-1} \phi(x_i, y_i + \alpha_i y_n)$$

Therefore, there would be another decomposition of z with n' = n - 1 < n terms. This is impossible since n is minimal. Therefore, $(x_i)_i$ is a free family. The same argument also applies for $(y_i)_{i < n} + \infty$.

Introduction

Useful properties 2/3

• (ii) If \mathfrak{C} is a coalgebra, then \mathfrak{C}^* is an algebra for the following maps : • $\mu = {}^{t}\Delta : \langle \mu(f \otimes g) | z \rangle = \langle f \otimes g | \Delta(z) \rangle;$ Indeed, $\mu = {}^{t}\Delta\rho$ with $\rho: \mathfrak{C}^* \otimes \mathfrak{C}^* \to (\mathfrak{C} \otimes \mathfrak{C})^*$ $f \otimes g \mapsto \rho(f \otimes g) : c \otimes c' \mapsto f(c)g(c')$ • $u = \epsilon^* \phi$ where $\phi : k \to k^*$ is the canonical isomorphism. $\sigma \xrightarrow{\epsilon} k$ $k^* \rightarrow k$ $f \mapsto f(1_k)$ $\overset{k^*}{\xrightarrow{t_{\epsilon}}} \mathfrak{C}^*$ $k \rightarrow k^*$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Useful properties 2/3

- (iii) If \mathfrak{A} is a finite dimensional algebra, then \mathfrak{A}^* has a coalgebra structure for the following maps :
 - $\Delta = j_{nat}^{-1} \circ {}^t \mu$ where j_{nat} is the canonical isomorphism between $\mathfrak{A}^* \otimes \mathfrak{A}^*$ and $(\mathfrak{A} \otimes \mathfrak{A})^*$:

$$j_{\mathrm{nat}}(f\otimes g)(a\otimes a')=f(a)g(a').$$

• $\epsilon = \psi^t u$ where ψ is the canonical isomorphism that associates to a linear form its value at 1_k .

(日) (同) (三) (三)

Useful properties 2/3

- (iii) If \mathfrak{A} is a finite dimensional algebra, then \mathfrak{A}^* has a coalgebra structure for the following maps :
 - $\Delta = j_{nat}^{-1} \circ {}^t \mu$ where j_{nat} is the canonical isomorphism between $\mathfrak{A}^* \otimes \mathfrak{A}^*$ and $(\mathfrak{A} \otimes \mathfrak{A})^*$:

$$j_{\mathrm{nat}}(f\otimes g)(a\otimes a')=f(a)g(a').$$

- $\epsilon = \psi^t u$ where ψ is the canonical isomorphism that associates to a linear form its value at 1_k .
- **Remark :** The two following properties are equivalent :
 - \mathfrak{A} is of finite dimension;
 - $j_{\rm nat}$ is an isomorphism.

(日) (周) (三) (三)

Useful properties 3/3

(iv) The correspondences 𝔅 → 𝔅* and f → ^tf define a (contravariant) functor from the category k-Cog of all coalgebras to the category k-Alg of algebras.
 Proof : On the black(/white?)board.

A B F A B F

The problem

The problem

If \mathfrak{A} is an infinite dimensional algebra, \mathfrak{A}^* is not in general a coalgebra. The transpose of the multiplication μ takes its values in $(\mathfrak{A} \otimes \mathfrak{A})^*$:

$$\langle {}^t \mu(f) | x \otimes y \rangle = \langle f | \mu(x \otimes y) \rangle = f(xy)$$

and j_{nat} is no more an isomorphism between $(\mathfrak{A} \otimes \mathfrak{A})^*$ and $\mathfrak{A}^* \otimes \mathfrak{A}^*$. The previous construction does not work anymore.

(日) (同) (三) (三)

The problem

The problem

If \mathfrak{A} is an infinite dimensional algebra, \mathfrak{A}^* is not in general a coalgebra. The transpose of the multiplication μ takes its values in $(\mathfrak{A} \otimes \mathfrak{A})^*$:

$$\langle {}^t \mu(f) | x \otimes y \rangle = \langle f | \mu(x \otimes y) \rangle = f(xy)$$

and j_{nat} is no more an isomorphism between $(\mathfrak{A} \otimes \mathfrak{A})^*$ and $\mathfrak{A}^* \otimes \mathfrak{A}^*$. The previous construction does not work anymore.

Some diagrams :

 \mathfrak{C}^* has an algebra structure.

 \mathfrak{A}^* does not have a coalgebra structure.

M. Deneufchâtel (LIPN - P13)

The problem

Definition : Finite dual (Sweedler's dual)

$$\mathfrak{A}^{\circ} = \left({}^{t}\mu\right)^{-1} (\mathfrak{A}^{*}\otimes\mathfrak{A}^{*})$$

A priori, $\forall f \in \mathfrak{A}^{\circ}$, ${}^{t}\mu(f) \in \mathfrak{A}^{\circ} \otimes \mathfrak{A}^{\circ}$. Therefore,

and the interesting set is $\bigcap \mathfrak{A}^{\circ i}$. In fact, $\mathfrak{A}^{\circ 1} \otimes \mathfrak{A}^{\circ 1} = \mathfrak{A}^{\circ 2} \otimes \mathfrak{A}^{\circ 2}$.

Finite dual (Sweedler's dual)

Properties

- If (\mathfrak{A}, μ) is an algebra, $(\mathfrak{A}^{\circ}, {}^{t}\mu)$ is a coalgebra.
- If, morever, \mathfrak{A} admits a unit 1, then $(\mathfrak{A}^{\circ}, {}^{t}\mu, \epsilon)$ is coalgebra with counit ϵ such that $\epsilon(f) = f(1)$.
- If \mathfrak{A} is associative, then \mathfrak{A}° is coassociative.

 \mathfrak{A}° is the biggest coalgebra contained in \mathfrak{A}^{*} and induced by μ . The mappings $\mathfrak{A} \mapsto \mathfrak{A}^{\circ}$ and $f \mapsto f^{\circ}$ define a contravariant functor from k-Alg to k-Cog (f° denotes the morphism induced by f^{*} on B° for $f \in \operatorname{Hom}(A, B)$).

(日) (周) (三) (三)

Notations for shifts

Let \mathfrak{A} be an algebra and $f \in \mathfrak{A}^*$. Then we define :

- $f_x: y \mapsto f(xy) = \langle f | xy \rangle$ (left shift);
- $_{x}f: y \mapsto f(yx)$ (right shift);
- $_{x}f_{y}: z \mapsto f(yzx).$

(日) (周) (三) (三)

Theorem by Abe (extended by Schützenberger's condition) Characterization of the elements of \mathfrak{A}°

Let \mathfrak{A} be an algebra and $f \in \mathfrak{A}^*$. The following properties are equivalent :

• (i)
$${}^t\mu(f) \in \mathfrak{A}^* \otimes \mathfrak{A}^*;$$

- (ii) The family $(f_x)_{x \in \mathcal{N}}$ is of finite rank;
- (iii) The family $({}_{x}f)_{x \in \mathcal{N}}$ is of finite rank;
- (*iv*) The family $({}_{x}f_{y})_{x,y\in\mathfrak{A}}$ is of finite rank;

• (v)
$$f(xy) = \sum_{i=1}^{n} f_i(x)g_i(y);$$

• (vi) $\exists \alpha : \mathfrak{A} \to k^{n \times n}$ and $(\lambda, \gamma) \in k^{1 \times n} \times k^{n \times 1}$ such that

$$\forall x \in \mathfrak{A}, \quad f(x) = \lambda \alpha(x) \gamma;$$

• (vii) Ker(f) contains an ideal of finite codimension (i.e. there exists an ideal I such that $\dim(\operatorname{Ker}(f)/I) < \infty)$.

Proof (elements) 1/4 :(*i*) \Rightarrow (*v*) and (*v*) \Rightarrow (*ii*), (*iii*)

We assume that ${}^t\mu(f) \in \mathfrak{A}^* \otimes \mathfrak{A}^*$. Therefore ${}^t\mu(f) = \sum_{i=1}^n f_i \otimes g_i$. Now

$$\langle {}^{t}\mu(f)|x\otimes y\rangle = f(xy) = \sum_{i=1}^{n} \langle f_{i}\otimes g_{i}|x_{i}\otimes y_{i}\rangle = \sum_{i=1}^{n} f_{i}(x)g_{i}(y)$$
 (2)

which is the condition (v). Hence we can write that

> $(_{y}f)=\sum g_{i}(y)f_{i};$ $_{\mathfrak{N}}f \subset \operatorname{span}(f_i).$

$$(f_{x}) = \sum_{i=1}^{''} f_{i}(x)g_{i}; \qquad f_{\mathfrak{A}} \subset \operatorname{span}(g_{i}).$$

The orbits and $_{\mathfrak{A}}f$ and $f_{\mathfrak{A}}$ are of finite rank.

Elements of the proof

Proof 2/4: $(v) \Rightarrow (iv)$

If the g_i 's are in $f_{\mathfrak{A}}$, their shifts are also in this orbit (which is finite dimensional). Thus, they are of finite rank and $g_i(yz) = \sum_{j=1}^m g_{ij}^1(y)g_{ij}^2(z)$.

$$f(yzx) = \sum_{i=1}^n \sum_{j=1}^m f_i(y)g_{ij}^1(y)g_{ij}^2(z), \forall z \in \mathfrak{A}.$$

This is equivalent to the following equation:

$$_{x}f_{y} = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{i}(y)g_{ij}^{1}(y)g_{ij}^{2}$$
 (5)

Do we have $(g_i)_i \subset f_{\mathfrak{A}}$?

イロト イポト イヨト イヨト 二日

Proof 3/4: $(v) \Rightarrow (iv)$

We assume now that *n* is minimal.

Since ${}^{t}\mu$ is bilinear, the first lemma applied to eq. (2) implies that the f_{i} 's and g_{i} 's form free families.

(日) (同) (三) (三)

Proof 3/4: $(v) \Rightarrow (iv)$

We assume now that n is minimal.

Since ${}^{t}\mu$ is bilinear, the first lemma applied to eq. (2) implies that the f_{i} 's and g_{i} 's form free families.

 $(g_i)_i$ is a free family of minimal rank. Hence, $(g_i)_i$ is a basis of $\operatorname{span}_{x \in \mathfrak{A}}(f_x)$ and the g_i 's are in $f_{\mathfrak{A}}$.

Eq. (5) implies that

 $({}_{x}f_{y})_{x,y\in\mathfrak{A}}$ is of finite rank.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Theorem by Abe (extended by Schützenberger's condition)

Elements of the proof

Proof 3/4: (*iii*) \Rightarrow (*vi*)

Let $_{x_1}f, _{x_2}f, \ldots, _{x_n}f$ be a basis of the orbit $_{\mathfrak{A}}f$ of f under the action of \mathfrak{A} . $_1f = f \in _{\mathfrak{A}}f$. Thus,

$$_{1}f = (\lambda_{1} \dots \lambda_{n}) \begin{pmatrix} x_{1}f \\ \vdots \\ x_{n}f \end{pmatrix}$$

and

$$_{1}f(y) = (\lambda_{1} \dots \lambda_{n}) \begin{pmatrix} x_{1}f(y) \\ \vdots \\ x_{n}f(y) \end{pmatrix}.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem by Abe (extended by Schützenberger's condition) Elements of the proof

Proof 3/4 : (iii) \Rightarrow (vi)

Now, if we do another shift on the left, we stay in the same space generated by $_{x_1}f, _{x_2}f, \ldots, _{x_n}f$ and we have another decomposition which involves a (uniquely defined) matrix $\alpha(y)$:

$$\int_{Y} \begin{pmatrix} x_1 f(y) \\ \vdots \\ x_n f(y) \end{pmatrix} = \begin{pmatrix} yx_1 f(y) \\ \vdots \\ yx_n f(y) \end{pmatrix}$$

with
$$_{yx_i}f(y) = \sum_{j=1}^n \alpha_{ij}(y)_{x_j}f$$
. Therefore,

$$\begin{pmatrix} x_1 f(y) \\ \vdots \\ y \end{pmatrix} = \begin{pmatrix} \alpha_{11}(y) & \dots & \alpha_{1n}(y) \\ \vdots & & \vdots \\ \alpha_{n1}(y) & \dots & \alpha_{nn}(y) \end{pmatrix} \begin{pmatrix} x_1 f(y) \\ \vdots \\ x_n f(y) \end{pmatrix}$$

M. Deneufchâtel (LIPN - P13)

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Theorem by Abe (extended by Schützenberger's condition)

Elements of the proof

Proof 3/4 : (iii) \Rightarrow (vi)

 $f(z) = {}_{z}f(1)$ thus

$$\sum_{z} \begin{bmatrix} (\lambda_{1} \dots \lambda_{n}) \begin{pmatrix} x_{1}f \\ \vdots \\ x_{n}f \end{pmatrix} \end{bmatrix} \Big|_{y=1} = (\lambda_{1} \dots \lambda_{n}) \begin{bmatrix} x_{1}f(y) \\ \vdots \\ x_{n}f(y) \end{pmatrix} \Big|_{y=1}$$
$$= \begin{bmatrix} (\lambda_{1} \dots \lambda_{n})\alpha(z) \begin{pmatrix} x_{1}f(y) \\ \vdots \\ x_{n}f(y) \end{pmatrix} \end{bmatrix} \Big|_{y=1}$$

Finally,

$$f(z) = (\lambda_1 \dots \lambda_n) \alpha(z) \begin{pmatrix} x_1 f(1) \\ \vdots \\ x_n f(1) \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•

Proof 4/4: (*iii*) \Rightarrow (*i*)

If $({}_{x}f)_{x\in\mathfrak{A}}$ is of finite rank, there exists a linear representation $(\lambda, \alpha, \gamma)$ of f:

$$f(z) = (\lambda_1 \dots \lambda_n) \alpha(z) \begin{pmatrix} x_1 f(1) \\ \vdots \\ x_n f(1) \end{pmatrix}$$

with :

$$\alpha(x + y) = \alpha(x) + \alpha(y),$$
$$\alpha(\delta x) = \delta \alpha(x),$$
$$\alpha(xy) = \alpha(x)\alpha(y).$$

Hence $f(z) = \sum_{k,\ell=1}^{n} \lambda_k \alpha_{k\ell}(z) \gamma_{\ell}$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Theorem by Abe (extended by Schützenberger's condition)

Elements of the proof

Proof 4/4: (*iii*) \Rightarrow (*i*)

f

Therefore,

$$(xy) = \sum_{k,\ell=1}^{n} \lambda_k \alpha_{k\ell}(xy) \gamma_\ell$$
$$= \sum_{k,\ell=1}^{n} \sum_{j=1}^{m} \lambda_k \alpha_{kj}(x) \alpha_{j\ell}(y) \gamma_\ell$$
$$= \sum_{j=1}^{m} \left(\sum_{k=1}^{n} \lambda_k \alpha_{kj}(x) \right) \left(\sum_{\ell=1}^{n} \alpha_{j\ell}(y) \gamma_\ell \right)$$

This equation tells us that f(xy) and therefore ${}^t\mu(f)$ belongs to $\mathfrak{A}^* \otimes \mathfrak{A}^*$.

イロト イヨト イヨト イヨト

What was proved so far ?

The proofs of the following implications are straightforward now : $(ii) \Rightarrow (i), (iv) \Rightarrow (i)$ and $(vi) \Rightarrow (i)$.