(Co)-Algebras, Shifts
 and a theorem by E. Abe and M. P. Schützenberger

Matthieu Deneufchâtel

Laboratoire d'Informatique de Paris Nord,
Université Paris 13
CIP,
26 October 2010

Notations

In this talk,

- Let (\mathfrak{A}, μ, u) and $(\mathfrak{C}, \Delta, \epsilon)$ denote respectively an associative algebra with unit u and a coalgebra (coassociative with counit ϵ), k the ground field.
- \mathfrak{A}^{*} denotes the algebraic dual of the vector space \mathfrak{A}.
- For V, W two vector spaces, $f \in \operatorname{Hom}(V, W)$ and $v \in V,\langle f \mid v\rangle$ denotes the value of $f(v)$.
- Transpose of a linear map : we denote by ${ }^{t} f: W^{*} \rightarrow V^{*}$ the transpose of f :

$$
\left\langle{ }^{t} f(w) \mid v\right\rangle=\langle w \mid f(v)\rangle, \forall v \in V
$$

Useful properties $1 / 3$

- (i) Let U, V and W be vector spaces and $\phi: U \times V \rightarrow W$ a bilinear map. Then if $z \in \operatorname{Im}(\phi)$ and if

$$
z=\sum_{i=1}^{n} \phi\left(x_{i}, y_{i}\right)
$$

with n minimal, the families $\left(x_{i}\right)_{1 \leq i \leq n}$ and $\left(y_{i}\right)_{1 \leq i \leq n}$ are free in their respective spaces.

Application to the tensor product : Let y be an element of $V \otimes W$. Then there exists $n \in \mathbb{N}$ and two families $\left(a_{i}\right)_{i} \subset V,\left(b_{i}\right)_{i} \subset W,\left(a_{i}\right)_{i}$ being free such that

$$
y=\sum_{i=0}^{n} a_{i} \otimes b_{i}
$$

If n minimal then both families are free.

Proof : Assume, without loss of generality, that $x_{n}=\sum_{i=1}^{n-1} \alpha_{i} x_{i}$. Then

$$
\begin{aligned}
z & =\sum_{i=1}^{n-1} \phi\left(x_{i}, y_{i}\right)+\phi\left(x_{n}, y_{n}\right) \\
& =\sum_{i=1}^{n-1} \phi\left(x_{i}, y_{i}\right)+\phi\left(\sum_{j=1}^{n-1} \alpha_{j} x_{j}, y_{n}\right) \\
& =\sum_{i=1}^{n-1} \phi\left(x_{i}, y_{i}\right)+\sum_{j=1}^{n-1} \alpha_{j} \phi\left(x_{j}, y_{n}\right)
\end{aligned}
$$

since ϕ is bilinear. The same argument allows us to "factor" the x_{i} 's in the two sums :

$$
z=\sum_{i=1}^{n-1} \phi\left(x_{i}, y_{i}+\alpha_{i} y_{n}\right)
$$

Therefore, there would be another decomposition of z with $n^{\prime}=n-1<n$ terms. This is impossible since n is minimal. Therefore, $\left(x_{i}\right)_{i}$ is a free family. The same argument also applies for $\left(y_{i}\right)_{i}$.

Useful properties 2/3

- (ii) If \mathfrak{C} is a coalgebra, then \mathfrak{C}^{*} is an algebra for the following maps:
- $\mu={ }^{t} \Delta:\langle\mu(f \otimes g) \mid z\rangle=\langle f \otimes g \mid \Delta(z)\rangle$;

Indeed, $\mu={ }^{t} \Delta \rho$ with

$$
\begin{aligned}
\rho: \mathfrak{C}^{*} & \otimes \mathfrak{C}^{*}
\end{aligned} \rightarrow(\mathfrak{C} \otimes \mathfrak{C})^{*} .
$$

- $u=\epsilon^{*} \phi$ where $\phi: k \rightarrow k^{*}$ is the canonical isomorphism.

$$
\mathfrak{C} \xrightarrow{\epsilon} k
$$

$$
\begin{aligned}
& k^{*} \rightarrow k \\
& f \mapsto f\left(1_{k}\right) \\
& k \rightarrow k^{*} \\
& k \mapsto \\
&k \mapsto u k)
\end{aligned}
$$

Useful properties 2/3

- (iii) If \mathfrak{A} is a finite dimensional algebra, then \mathfrak{A}^{*} has a coalgebra structure for the following maps :
- $\Delta=j_{\text {nat }}^{-1} \circ{ }^{t} \mu$ where $j_{\text {nat }}$ is the canonical isomorphism between $\mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$ and $(\mathfrak{A} \otimes \mathfrak{A})^{*}$:

$$
j_{\mathrm{nat}}(f \otimes g)\left(a \otimes a^{\prime}\right)=f(a) g\left(a^{\prime}\right)
$$

- $\epsilon=\psi^{t} u$ where ψ is the canonical isomorphism that associates to a linear form its value at 1_{k}.

Useful properties 2/3

- (iii) If \mathfrak{A} is a finite dimensional algebra, then \mathfrak{A}^{*} has a coalgebra structure for the following maps :
- $\Delta=j_{\text {nat }}^{-1} \circ{ }^{t} \mu$ where $j_{\text {nat }}$ is the canonical isomorphism between $\mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$ and $(\mathfrak{A} \otimes \mathfrak{A})^{*}$:

$$
j_{\mathrm{nat}}(f \otimes g)\left(a \otimes a^{\prime}\right)=f(a) g\left(a^{\prime}\right)
$$

- $\epsilon=\psi^{t} u$ where ψ is the canonical isomorphism that associates to a linear form its value at 1_{k}.

Remark : The two following properties are equivalent :

- \mathfrak{A} is of finite dimension;
- $j_{\text {nat }}$ is an isomorphism.

Useful properties $3 / 3$

- (iv) The correspondences $\mathfrak{C} \mapsto \mathfrak{C}^{*}$ and $f \mapsto{ }^{t} f$ define a (contravariant) functor from the category k - Cog of all coalgebras to the category k-Alg of algebras.
Proof : On the black(/white?)board.

The problem

If \mathfrak{A} is an infinite dimensional algebra, \mathfrak{A}^{*} is not in general a coalgebra. The transpose of the multiplication μ takes its values in $(\mathfrak{A} \otimes \mathfrak{A})^{*}$:

$$
\left\langle{ }^{t} \mu(f) \mid x \otimes y\right\rangle=\langle f \mid \mu(x \otimes y)\rangle=f(x y)
$$

and $j_{\text {nat }}$ is no more an isomorphism between $(\mathfrak{A} \otimes \mathfrak{A})^{*}$ and $\mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$. The previous construction does not work anymore.

The problem

If \mathfrak{A} is an infinite dimensional algebra, \mathfrak{A}^{*} is not in general a coalgebra. The transpose of the multiplication μ takes its values in $(\mathfrak{A} \otimes \mathfrak{A})^{*}$:

$$
\left\langle{ }^{t} \mu(f) \mid x \otimes y\right\rangle=\langle f \mid \mu(x \otimes y)\rangle=f(x y)
$$

and $j_{\text {nat }}$ is no more an isomorphism between $(\mathfrak{A} \otimes \mathfrak{A})^{*}$ and $\mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$. The previous construction does not work anymore.

Some diagrams :

\mathfrak{C}^{*} has an algebra structure.

\mathfrak{A}^{*} does not have a coalgebra structure.

Definition : Finite dual (Sweedler's dual)

$$
\mathfrak{A}^{\circ}=\left({ }^{t} \mu\right)^{-1}\left(\mathfrak{A}^{*} \otimes \mathfrak{A}^{*}\right)
$$

A priori, $\forall f \in \mathfrak{A}^{\circ},{ }^{t} \mu(f) \in \mathfrak{A}^{\circ} \otimes \mathfrak{A}^{\circ}$. Therefore,
and the interesting set is $\bigcap_{i} \mathfrak{A}^{\circ i}$. In fact, $\mathfrak{A}^{\circ 1} \otimes \mathfrak{A}^{\circ 1}=\mathfrak{A}^{\circ 2} \otimes \mathfrak{A}^{\circ 2}$.

Finite dual (Sweedler's dual)

Properties

- If (\mathfrak{A}, μ) is an algebra, $\left(\mathfrak{A}^{\circ},{ }^{t} \mu\right)$ is a coalgebra.
- If, morever, \mathfrak{A} admits a unit 1 , then $\left(\mathfrak{A}^{\circ},{ }^{t} \mu, \epsilon\right)$ is coalgebra with counit ϵ such that $\epsilon(f)=f(1)$.
- If \mathfrak{A} is associative, then \mathfrak{A}° is coassociative.
\mathfrak{A}° is the biggest coalgebra contained in \mathfrak{A}^{*} and induced by μ. The mappings $\mathfrak{A} \mapsto \mathfrak{A}^{\circ}$ and $f \mapsto f^{\circ}$ define a contravariant functor from k-Alg to k - $\operatorname{Cog}\left(f^{\circ}\right.$ denotes the morphism induced by f^{*} on B° for $f \in \operatorname{Hom}(A, B))$.

Notations for shifts

Let \mathfrak{A} be an algebra and $f \in \mathfrak{A}^{*}$. Then we define :

- $f_{x}: y \mapsto f(x y)=\langle f \mid x y\rangle$ (left shift);
- ${ }_{x} f: y \mapsto f(y x)$ (right shift);
- ${ }_{x} f_{y}: z \mapsto f(y z x)$.

Theorem by Abe (extended by Schützenberger's condition)

Characterization of the elements of \mathfrak{A}°
Let \mathfrak{A} be an algebra and $f \in \mathfrak{A}^{*}$. The following properties are equivalent :

- (i) ${ }^{t} \mu(f) \in \mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$;
- (ii) The family $\left(f_{x}\right)_{x \in \mathfrak{A}}$ is of finite rank;
- (iii) The family $\left({ }_{x} f\right)_{x \in \mathfrak{A}}$ is of finite rank;
- (iv) The family $\left({ }_{x} f_{y}\right)_{x, y \in \mathfrak{A}}$ is of finite rank;
- (v) $f(x y)=\sum_{i=1}^{n} f_{i}(x) g_{i}(y)$;
- (vi) $\exists \alpha: \mathfrak{A} \rightarrow k^{n \times n}$ and $(\lambda, \gamma) \in k^{1 \times n} \times k^{n \times 1}$ such that

$$
\forall x \in \mathfrak{A}, \quad f(x)=\lambda \alpha(x) \gamma
$$

- (vii) $\operatorname{Ker}(f)$ contains an ideal of finite codimension (i.e. there exists an ideal I such that $\operatorname{dim}(\operatorname{Ker}(f) / I)<\infty)$.

Proof (elements) $1 / 4:(i) \Rightarrow(v)$ and $(v) \Rightarrow(i i),(i i i)$

We assume that ${ }^{t} \mu(f) \in \mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$. Therefore ${ }^{t} \mu(f)=\sum_{i=1}^{n} f_{i} \otimes g_{i}$. Now

$$
\begin{equation*}
\left\langle{ }^{t} \mu(f) \mid x \otimes y\right\rangle=f(x y)=\sum_{i=1}^{n}\left\langle f_{i} \otimes g_{i} \mid x_{i} \otimes y_{i}\right\rangle=\sum_{i=1}^{n} f_{i}(x) g_{i}(y) \tag{2}
\end{equation*}
$$

which is the condition (v). Hence we can write that

$$
\begin{array}{ll}
\left({ }_{y} f\right)=\sum_{i=1}^{n} g_{i}(y) f_{i} ; & \mathfrak{a} f \subset \operatorname{span}\left(f_{i}\right) . \\
\left(f_{x}\right)=\sum_{i=1}^{n} f_{i}(x) g_{i} ; & f_{\mathfrak{2}} \subset \operatorname{span}\left(g_{i}\right) .
\end{array}
$$

The orbits and ${ }_{\mathfrak{A}} f$ and $f_{\mathfrak{2}}$ are of finite rank.

Proof $2 / 4:(v) \Rightarrow(i v)$

If the g_{i} 's are in $f_{\mathfrak{A}}$, their shifts are also in this orbit (which is finite dimensional). Thus, they are of finite rank and $g_{i}(y z)=\sum_{j=1}^{m} g_{i j}^{1}(y) g_{i j}^{2}(z)$.

$$
f(y z x)=\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i}(y) g_{i j}^{1}(y) g_{i j}^{2}(z), \forall z \in \mathfrak{A}
$$

This is equivalent to the following equation:

$$
\begin{equation*}
{ }_{x} f_{y}=\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i}(y) g_{i j}^{1}(y) g_{i j}^{2} \tag{5}
\end{equation*}
$$

Do we have $\left(g_{i}\right)_{i} \subset f_{\mathfrak{R}}$?

Proof 3/4: (v) \Rightarrow (iv)

We assume now that n is minimal.
Since ${ }^{t} \mu$ is bilinear, the first lemma applied to eq. (2) implies that the f_{i} 's and g_{i} 's form free families.

Proof 3/4: (v) \Rightarrow (iv)

We assume now that n is minimal.
Since ${ }^{t} \mu$ is bilinear, the first lemma applied to eq. (2) implies that the f_{i} 's and g_{i} 's form free families.
$\left(g_{i}\right)_{i}$ is a free family of minimal rank. Hence, $\left(g_{i}\right)_{i}$ is a basis of $\operatorname{span}_{x \in \mathfrak{A}}\left(f_{x}\right)$ and the g_{i} 's are in $f_{\mathfrak{A}}$.

Eq. (5) implies that

$$
\left({ }_{x} f_{y}\right)_{x, y \in \mathfrak{A}} \text { is of finite rank. }
$$

Proof 3/4 : $(i i i) \Rightarrow(v i)$

Let ${ }_{x_{1}} f,_{x_{2}} f, \ldots,{ }_{x_{n}} f$ be a basis of the orbit ${ }_{\mathfrak{A}} f$ of f under the action of \mathfrak{A}. ${ }_{1} f=f \in{ }_{\mathfrak{A}} f$. Thus,

$$
{ }_{1} f=\left(\lambda_{1} \ldots \lambda_{n}\right)\left(\begin{array}{c}
x_{1} f \\
\vdots \\
x_{n} f
\end{array}\right)
$$

and

$$
{ }_{1} f(y)=\left(\lambda_{1} \ldots \lambda_{n}\right)\left(\begin{array}{c}
x_{1} f(y) \\
\vdots \\
x_{n} f(y)
\end{array}\right) .
$$

Proof 3/4 : $(i i i) \Rightarrow(v i)$

Now, if we do another shift on the left, we stay in the same space generated by ${ }_{x_{1}} f,{ }_{x_{2}} f, \ldots,{ }_{x_{n}} f$ and we have another decomposition which involves a (uniquely defined) matrix $\alpha(y)$:

$$
{ }_{y}\left(\begin{array}{c}
x_{1} f(y) \\
\vdots \\
x_{n} f(y)
\end{array}\right)=\left(\begin{array}{c}
y x_{1} f(y) \\
\vdots \\
y x_{n} f(y)
\end{array}\right)
$$

with ${y x_{i}} f(y)=\sum_{j=1}^{n} \alpha_{i j}(y)_{x_{j}} f$. Therefore,

$$
\left(\begin{array}{c}
{ }_{x_{1}} f(y) \\
\vdots \\
{ }_{y} f(y)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{11}(y) & \ldots & \alpha_{1 n}(y) \\
\vdots & & \vdots \\
x_{n 1}(y) & \ldots & \alpha_{n n}(y)
\end{array}\right)\left(\begin{array}{c}
{ }_{x_{1}} f(y) \\
\vdots \\
x_{n} f(y)
\end{array}\right)
$$

Proof $3 / 4$: $(i i i) \Rightarrow(v i)$

$f(z)={ }_{z} f(1)$ thus

$$
\begin{aligned}
{ \left.\left[\left(\lambda_{1} \ldots \lambda_{n}\right)\left(\begin{array}{c}
x_{1} f \\
\vdots \\
x_{n} f
\end{array}\right)\right] \right\rvert\, y=1 } & =\left.\left(\lambda_{1} \ldots \lambda_{n}\right)\left(\begin{array}{c}
x_{x_{1}} f(y) \\
\vdots \\
x_{n} f(y)
\end{array}\right)\right|_{y=1} \\
& \left.=\left[\left(\lambda_{1} \ldots \lambda_{n}\right) \alpha(z)\left(\begin{array}{c}
x_{1} f(y) \\
\vdots \\
x_{n} f(y)
\end{array}\right)\right] \right\rvert\, y=1
\end{aligned}
$$

Finally,

$$
f(z)=\left(\lambda_{1} \ldots \lambda_{n}\right) \alpha(z)\left(\begin{array}{c}
x_{1} f(1) \\
\vdots \\
x_{n} f(1)
\end{array}\right) .
$$

Proof 4/4: (iii) $\Rightarrow(i)$

If $\left({ }_{x} f\right)_{x \in \mathfrak{A}}$ is of finite rank, there exists a linear representation $(\lambda, \alpha, \gamma)$ of f :

$$
f(z)=\left(\lambda_{1} \ldots \lambda_{n}\right) \alpha(z)\left(\begin{array}{c}
x_{1} f(1) \\
\vdots \\
x_{n} f(1)
\end{array}\right)
$$

with :

$$
\begin{gathered}
\alpha(x+y)=\alpha(x)+\alpha(y), \\
\alpha(\delta x)=\delta \alpha(x), \\
\alpha(x y)=\alpha(x) \alpha(y) .
\end{gathered}
$$

Hence $f(z)=\sum_{k, \ell=1}^{n} \lambda_{k} \alpha_{k \ell}(z) \gamma_{\ell}$.

Proof $4 / 4:(i i i) \Rightarrow(i)$

Therefore,

$$
\begin{aligned}
f(x y) & =\sum_{k, \ell=1}^{n} \lambda_{k} \alpha_{k \ell}(x y) \gamma_{\ell} \\
& =\sum_{k, \ell=1}^{n} \sum_{j=1}^{m} \lambda_{k} \alpha_{k j}(x) \alpha_{j \ell}(y) \gamma_{\ell} \\
& =\sum_{j=1}^{m}\left(\sum_{k=1}^{n} \lambda_{k} \alpha_{k j}(x)\right)\left(\sum_{\ell=1}^{n} \alpha_{j \ell}(y) \gamma_{\ell}\right)
\end{aligned}
$$

This equation tells us that $f(x y)$ and therefore ${ }^{t} \mu(f)$ belongs to $\mathfrak{A}^{*} \otimes \mathfrak{A}^{*}$.

What was proved so far ?

(iv)

The proofs of the following implications are straightforward now : $(i i) \Rightarrow(i),(i v) \Rightarrow(i)$ and $(v i) \Rightarrow(i)$.

