Distances in
 Noncommutative Geometry

Pierre Martinetti
Università di Roma Tor Vergata and CMTP

Séminaire CALIN, LIPN PARIS 13, $8^{\text {th }}$ February 2011

Metric aspect of noncommutative geometry

$$
{ }^{\prime \prime} d s=D^{-1} \prime
$$

Distance between states of an algebra \mathcal{A}. Not so much studied but many interesting links with other distances:

- distance on graph (\mathcal{A} finite dimensional) (Lizzi \& al: Dimakis, Miller-Hosen: iochum, Krajewski, P...),
- horizontal distance in subriemannian geometry $\left(\mathcal{A}=C_{0}^{\infty}(\mathcal{M}) \otimes M_{n}(\mathbb{C})\right)_{\text {(P.м.), }}$,
- Wasserstein distance in optimal transport theory (commutative \mathcal{A}) (D'Andrea, P.M.),
- distance in some model of quantum spacetime $(\mathcal{A}=\mathcal{K}=(\mathcal{S}, \star))$ (Cagnache, D'Andrea, P.... wallet);
also yields a metric interpretation of the Higgs field in Connes description of the standard model (Wulkentar, P.,.).

Topological aspect mostly studied by Rieffel, Latrémolière and a recent paper of Bélissard, Marcolli and Reihani.

Outline:

1. Distance in noncommutative geometry
2. The commutative case and the Wassertein distance in optimal transport
3. Product of geometries and the horizontal distance in sub-Riemannian geometry
4. Moyal plane

1. Distance in noncommutative geometry

How to define the distance in purely algebraic terms, so that to export this definition to the noncommutative framework ?

The distance formula

- Let (\mathcal{X}, d) be a locally compact complete metric space.

$$
d(x, y)=\sup _{f \in C_{0}(\mathcal{X})}\left\{|f(x)-f(y)| ;\|f\|_{\text {Lip }} \leq 1\right\}
$$

- Gelfand duality: let $\mathcal{P}(\mathcal{A})$ denote the pure states of a C^{*}-algebra \mathcal{A} (extremal points of the set of normalized positive linear maps $\mathcal{A} \rightarrow \mathbb{C}$).

$$
\mathcal{P}\left(C_{0}(\mathcal{X}) \simeq \mathcal{X}: \omega_{x}(f)=f(x)\right.
$$

- $\left(\mathcal{M}, d_{\text {geo }}\right)$ with \mathcal{M} a Riemannian (spin) manifold:

$$
\left.\|f\|_{\text {Lip }}=\left\|\left[d+d^{\dagger}, \pi_{1}(f)\right]^{2}\right\|_{\mathrm{op}}=\frac{1}{2} \|\left[\Delta, \pi_{2}(f)\right], \pi_{2}(f)\right]\left\|_{\mathrm{op}}=\right\|[\not \partial, \pi(f)] \|_{\mathrm{op}}^{2}
$$

where $d+d^{\dagger}$ is the signature operator, $\Delta=d d^{\dagger}+d^{\dagger} d, \not \partial=-i \sum_{\mu=1}^{\operatorname{dim} \mathcal{M}} \gamma^{\mu} \partial_{\mu}$, π_{1}, π_{2}, π are representations of $C_{0}^{\infty}(\mathcal{M})$ on $L^{2}(\mathcal{M}, \wedge), L^{2}(\mathcal{M}), L^{2}(\mathcal{M}, S)$.
$d_{g e o}(x, y)=d\left(\omega_{x}, \omega_{y}\right)=\sup _{f \in C_{0}^{\infty}(\mathcal{M})}\left\{\left|\omega_{x}(f)-\omega_{y}(f)\right| /\|[\not \partial, f]\| \leq 1\right\}$.

Spectral triple

An involutive algebra \mathcal{A}, a faithful representation π on \mathcal{H}, an operator D on \mathcal{H} such that $[D, \pi(a)]$ is bounded for any $a \in \mathcal{A}$ and $\pi(a)[D-\lambda \mathbb{I}]^{-1}$ is compact for any $\lambda \notin S p D$; together with a set of necessary and sufficient conditions guaranteeing that
i. For \mathcal{M} a compact Riemannian spin manifold, $\left(C^{\infty}(\mathcal{M}), L^{2}(\mathcal{M}, S), \not \varnothing\right)$ is a spectral triple;
ii. $(\mathcal{A}, \mathcal{H}, D)$ a spectral triple with \mathcal{A} unital commutative, then there exists a compact spin manifold \mathcal{M} such that $\mathcal{A}=C^{\infty}(\mathcal{M})$.

$$
d_{D}\left(\varphi_{1}, \varphi_{2}\right) \doteq \sup _{a \in \mathcal{A}}\left\{\left|\varphi_{1}(a)-\varphi_{2}(a)\right| /\|[D, a]\| \leq 1\right\}
$$

is a distance (possibly infinite) on the state space of $\overline{\mathcal{A}}$ which:

- makes sense whether \mathcal{A} is commutative or not;
- is coherent with the commutative case: $d_{D}=d_{\text {geo }}$ between pure states;
- does not involve notion ill-defined at the quantum level, but only spectral properties of \mathcal{A} and D : spectral distance.

Transportation map and Wassertein distance

\mathcal{X} is a locally compact separable metric space. A state $\varphi \in S\left(C_{0}(\mathcal{X})\right)$ is a probability measure μ on \mathcal{X},

$$
\varphi(f) \doteq \int_{\mathcal{X}} f \mathrm{~d} \mu \quad \forall f \in \mathcal{A}
$$

Let $c(x, y)$ be a positive real function - the "cost function" - representing the work needed to move from x to y.

Minimal work W required to move the configuration φ_{1} to the configuration φ_{2},

$$
\begin{equation*}
W\left(\varphi_{1}, \varphi_{2}\right) \doteq \inf _{\pi} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) \mathrm{d} \pi \tag{1}
\end{equation*}
$$

where the infimum is over all measures π on $\mathcal{X} \times \mathcal{X}$ with marginals μ_{1}, μ_{2}, i.e.

$$
\left.\begin{array}{ll}
\mathbb{X}, \mathbb{Y}: & \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X} \\
& \mathbb{X}(x, y) \doteq x \\
& \mathbb{Y}(x, y) \doteq y
\end{array}\right\} \mathbb{X}_{*}(\pi)=\mu_{1}, \quad \mathbb{Y}_{*}(\pi)=\mu_{2}
$$

Finding the optimal transportation plan (i.e. which minimizes W) is a non-trivial question known as the Monge-Kantorovich problem.

When the cost function c is a distance d,

$$
W\left(\varphi_{1}, \varphi_{2}\right) \doteq \inf _{\pi} \int_{\mathcal{X} \times \mathcal{X}} d(x, y) \mathrm{d} \pi
$$

is a distance on the space of states (possibly infinite), called the KantorovichRubinstein distance, or the Wasserstein distance of order 1.

Proposition 1:

Let \mathcal{M} be a complete, Riemannian, finite dimensional, connected, without boundary, spin manifold. For any $\varphi_{1}, \varphi_{2} \in S\left(C_{0}(\mathcal{M})\right)$,

$$
W\left(\varphi_{1}, \varphi_{2}\right)=d_{D}\left(\varphi_{1}, \varphi_{2}\right)
$$

where W is the Wasserstein distance associated to the cost $d_{\text {geo }}$.
i. Kantorovich duality: $W\left(\varphi_{1}, \varphi_{2}\right)=\sup _{\|f\|_{\text {Lip }} \leq 1}\left(\int_{\mathcal{X}} f \mathrm{~d} \mu_{1}-\int_{\mathcal{X}} f \mathrm{~d} \mu_{2}\right)$. The supremum is on all real 1-Lipschitz. functions f on \mathcal{X},

$$
|f(x)-f(y)| \leq d_{\mathrm{geo}}(x, y) \text { for all } x, y \in \mathcal{X}
$$

ii.

$$
\|[D=\not \partial, f]\|_{\mathrm{op}}=\|f\|_{\text {Lip }}
$$

iii. \mathcal{M} is locally compact non compact: get rid of the vanishing at infinity. For any 1-Lip. f, consider the sequence of functions vanishing at infinity

$$
\begin{equation*}
f_{n}(x) \doteq f(x) e^{-d\left(x_{0}, x\right) / n} \quad n \in \mathbb{N}, x_{0} \text { is any fixed point. } \tag{2}
\end{equation*}
$$

Then $\lim _{n \rightarrow+\infty}\left(\varphi_{1}-\varphi_{2}\right)\left(f_{n}\right)=\left(\varphi_{1}-\varphi_{2}\right)(f)$ and $\left\|f_{n}\right\|_{\text {Lip }} \leq 1$.

- (2) requires \mathcal{M} to be (geodesically) complete (Hopf-Rinow theorem).

On the importance of being complete

\mathcal{N} compact, $\mathcal{M}=\mathcal{N} \backslash\left\{x_{0}\right\} \Longrightarrow W=d_{\text {geo }}$ on both \mathcal{M} and \mathcal{N}.

$$
\begin{aligned}
& \mathcal{N}=S^{1}=[0,1] \\
& \mathcal{M}=(0,1) \\
& \mathcal{N}=S^{2}, \mathcal{M}=S^{2} \backslash\left\{x_{0}\right\} \text { then } W_{\mathcal{N}}=W_{\mathcal{M}}(x, y)=|x-y| \neq W_{\mathcal{N}}(x, y)=\min \{|x-y|, 1-|x-y|\}
\end{aligned}
$$

- Removing a point from a complete compact manifold may change or not W.
- It does not modify the spectral distance: $C^{\infty}(\mathcal{N})=C(\mathcal{N})$ has a unit so

$$
\begin{aligned}
d_{D}^{\mathcal{N}}\left(\varphi_{1}, \varphi_{2}\right) & =\sup _{f \in C(\mathcal{N})}\left\{\left|\varphi_{1}(f)-\varphi_{2}(f)\right| ;\|f\|_{\text {Lip }} \leq 1\right\} \\
& =\sup _{f \in C(\mathcal{N}), f\left(x_{0}\right)=0}\left\{\left|\varphi_{1}(f)-\varphi_{2}(f)\right| ;\|f\|_{\text {Lip }} \leq 1\right\}=d_{D}^{\mathcal{M}}\left(\varphi_{1}, \varphi_{2}\right)
\end{aligned}
$$

since $\left(C(\mathcal{N})\right.$, vanishing at $\left.x_{0}\right)=C_{0}(\mathcal{M})$.

$$
\begin{aligned}
& \mathcal{N}=S^{1}, \mathcal{M}=(0,1): d_{D}^{\mathcal{M}}=d_{D}^{\mathcal{N}}=W_{\mathcal{N}}=d_{S^{1}} \neq W_{\mathcal{M}} . \\
& \mathcal{N}=S^{2}, \mathcal{M}=S^{2} \backslash\left\{x_{0}\right\}: d_{D}^{\mathcal{M}}=d_{S^{2}}=W_{\mathcal{M}} .
\end{aligned}
$$

Connected components

Proposition 2: For any $x \in \mathcal{M}$ and any state φ of $C_{0}^{\infty}(\mathcal{M})$,

$$
d_{D}\left(\varphi, \delta_{x}\right)=\mathbb{E}(d(x, \circ) ; \mu)=\int_{\mathcal{M}} d_{\mathrm{geo}}(x, y) d \mu(y)
$$

In particular for two pure states δ_{x}, δ_{y},

$$
d_{D}\left(\delta_{x}, \delta_{y}\right)=d_{\operatorname{geo}}(x, y)
$$

Let $S_{1}\left(C_{0}^{\infty}(\mathcal{M})\right) \doteq\{\varphi$ such that $\mathbb{E}(d(x, \circ) ; \mu)<\infty\}$.
Corollary 3: $\varphi \in S_{1}\left(C_{0}^{\infty}(\mathcal{M})\right)$ if and only if φ is at finite spectral distance from any pure state.

Let $\operatorname{Con}(\varphi) \doteq\left\{\varphi^{\prime} \in \mathcal{S}\left(C_{0}^{\infty}(\mathcal{M})\right)\right.$ such that $\left.d_{D}\left(\varphi, \varphi^{\prime}\right) \leq \infty\right\}$.
Corollary 4: For any $\varphi \in S_{1}\left(C_{0}^{\infty}(\mathcal{M})\right)$, $\operatorname{Con}(\varphi)=S_{1}\left(C_{0}^{\infty}(\mathcal{M})\right)$.

- Two states not in $S_{1}\left(C_{0}^{\infty}(\mathcal{M})\right)$ may be at finite distance from one another.

3. Product of geometries: Higgs, sub-Riemannian distance

Connection

finite projective $C^{\infty}(\mathcal{M})$-module $\Gamma^{\infty}(E) \quad \rightarrow$ finite projective \mathcal{A}-module \mathcal{E}
vector bundle E over $\mathcal{M} \quad$ "noncommutative vector bundle"

$$
\begin{aligned}
\nabla: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(E) \otimes \Omega_{1}(\mathcal{M}) & \rightarrow \\
& \nabla: \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \Omega_{1}(\mathcal{A}) \doteq\left\{\sum_{i} a^{i}\left[D, b_{i}\right]\right\} \\
\text { connection on } E & \downarrow \\
& \text { connection on the } \\
& \text { "non commutative vector bundle" }
\end{aligned}
$$

Leibniz rule: $\nabla(s a)=(\nabla s) a+s \otimes[D, a] \quad \forall a \in \mathcal{A}, s \in \mathcal{E}$
Hermitian connection: $(s \mid \nabla r)-(\nabla s \mid r)=[D,(s \mid r)]$ where $(. \mid):. \mathcal{E} \otimes \mathcal{E} \rightarrow \mathcal{A}$.

- traduction of Levi-Civita condition $g(\nabla X, Y)+g(X, \nabla Y)=d(g(X, Y))$.

Covariant Dirac operator

given a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ and an hermitian connection on a finite-projective C^{*}-module \mathcal{E}, define

$$
\tilde{\mathcal{A}} \doteq \operatorname{End}_{A}(\mathcal{E}), \quad \tilde{\mathcal{H}} \doteq \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H}, \quad \tilde{D}(s \otimes \psi) \doteq(\nabla s) \psi+s \otimes D \psi
$$

where $\operatorname{End}_{A}(\mathcal{E})$ are the endomorphisms of \mathcal{E} with adjoint (for $\alpha \in \operatorname{End}_{A}(\mathcal{E})$, there exists α^{*} such that $\left.(r \mid \alpha s)=\left(\alpha^{*} r \mid s\right)\right)$. Then
$(\tilde{\mathcal{A}}, \tilde{\mathcal{H}}, \tilde{D})$ is a spectral triple.
Taking $\mathcal{E}=\mathcal{A}$, one builds a new geometry $\left(\mathcal{A}, \mathcal{H}, D_{A}\right)$ where

$$
D_{A}=D+A, \quad A=\sum_{i} a^{i}\left[D, b_{i}\right]=A^{*} .
$$

Product of the continuum by the discrete

$$
\text { pure state: }\left(x, \omega_{l}\right) \Longleftarrow \mathcal{A}=C^{\infty}(\mathcal{M}) \otimes \mathcal{A}_{l}, \quad \Longrightarrow A=H-i \gamma^{\mu} A_{\mu}
$$

- H: scalar field on \mathcal{M} with value in \mathcal{A}_{l}
- A_{μ} : 1-form field with value in $\operatorname{Lie}\left(U\left(\mathcal{A}_{l}\right)\right)$
\rightarrow Higgs.
\rightarrow gauge field.

The standard model:
$\mathcal{A}_{1} \quad=\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})$
$\mathcal{H}_{1}=\mathbb{C}^{96}$
D_{l} is a 96×96 matrix with the fermions masses, the CKM matrix and the neutrinos mixing angles.

Fluctuations of the metric

The replacement $D \rightarrow D_{A}$ yields a fluctuation of the metric since

$$
\left[D_{A}, a\right]=\left[D+H-i \gamma^{\mu} A_{\mu}, a\right] \neq[D, a] .
$$

"Fluctuated distance" on the set $\mathcal{P}(\mathcal{A})$ of (pure) states of \mathcal{A},

$$
d_{D_{A}}\left(\omega_{1}, \omega_{2}\right) \doteq \sup _{a \in \mathcal{A}}\left\{\left|\omega_{1}(a)-\omega_{2}(a)\right| ;\left\|\left[D_{A}, a\right]\right\| \leq 1\right\}
$$

$\mathcal{A}=\mathcal{C}^{\infty}(\mathcal{M}) \otimes \mathcal{A}_{l}$ with $\mathcal{A}_{I}=\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \Longrightarrow \mathcal{P}(\mathcal{A})$ is a two-sheet model

Proposition 5: The spectral distance $d_{D_{A}}$ coincides with the geodesic distance in $\mathcal{M} \times[0,1]$ given by

$$
\left(\begin{array}{cc}
g^{\mu \nu} & 0 \\
0 & \left(\left|1+h_{1}\right|^{2}+\left|h_{2}\right|^{2}\right) m_{\text {top }}^{2}
\end{array}\right) \text { where }\binom{h_{1}}{h_{2}} \text { is the Higgs doublet. }
$$

Gauge fluctuation: $A_{\mu} \neq 0, H=0$

$\mathcal{A}_{l}=C^{\infty}(\mathcal{M}) \otimes M_{n}(\mathbb{C})$. Pure states: $P \xrightarrow{\pi} \mathcal{M}$ with fibre $\mathbb{C} P^{n-1}$.
The distance is fully encoded with the covariant Dirac operator

$$
D_{A}=-i \gamma^{\mu}\left(\partial_{\mu}+A_{\mu}\right)
$$

$A_{\mu} \Rightarrow\left\{\begin{array}{l}\text { distance spectrale } d_{D_{A}} \\ \text { horizontal distance } d_{H}\end{array} \Rightarrow d_{D_{A}}=d_{H}\right.$? (Connes 96)

\mathbb{R}^{3} with $\sum_{\mu} A_{\mu} d x^{\mu}=\left(x^{2} d x^{1}-x^{1} d x^{2}\right) \otimes \theta \partial_{3} \Longrightarrow d_{H}\left(\xi_{x}, \zeta_{x}\right)=4 \pi$
Proposition 6: $d_{D_{A}} \leq d_{H}$ but no equality except if the holonomy is trivial.
$\mathcal{A}=C^{\infty}\left(S_{1}\right) \otimes M_{2}(\mathbb{C})$.

$$
\begin{cases}d_{H}\left(\xi_{x}, \xi_{x}^{k}\right) & =2 k \pi \\ d_{D_{A}}\left(\xi_{x}, \xi_{x}^{k}\right) & =C \sin k \pi \omega \text { where } C \text { is a constant. }\end{cases}
$$

On a fiber

The spectral distance sees the disk through the circle, in the same way it sees between the two sheets of the standard model.

- The pure state space equipped with the spectral distance is not a path-metric space, i.e. there is no curve $s \in[0,1] \mapsto \varphi_{s}$ such that

$$
d_{D}\left(\varphi_{s}, \varphi_{t}\right)=|t-s| d_{D}\left(\varphi_{0}, \varphi_{1}\right) .
$$

Seems to be the case as soon as \mathcal{A} is noncommutative.

4. Moyal Plane

a, b Schwartz functions on \mathbb{R}^{2}. Star-product:

$$
(a \star b)(x)=\frac{1}{(\pi \theta)^{2}} \int d^{2} s d^{2} t a(x+s) b(x+t) e^{-i 2 s \Theta^{-1} t}
$$

where

$$
s \Theta^{-1} t \equiv s^{\mu} \Theta_{\mu \nu}^{-1} t^{\nu} \quad \text { with } \Theta_{\mu \nu}=\theta\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Spectral triple for the Moyal plane

$$
\mathcal{A}_{\theta}=(\mathcal{S}, \star), \quad \mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}^{2}, \quad D=-i \sum_{\mu=1}^{2} \sigma^{\mu} \partial_{\mu}
$$

The left regular representation of $a \in \mathcal{A}_{\theta}$ on \mathcal{H} is

$$
\pi(a)=L(a) \otimes \mathbb{I}_{2}: \pi(f) \psi=\binom{a \star \psi_{1}}{a \star \psi_{2}}
$$

Defining $\partial=\frac{1}{\sqrt{2}}\left(\partial_{1}-i \partial_{2}\right), \bar{\partial}=\frac{1}{\sqrt{2}}\left(\partial_{1}+i \partial_{2}\right)$, the Dirac operator writes

$$
D=-i \sqrt{2}\left(\begin{array}{ll}
0 & \bar{\partial} \\
\partial & 0
\end{array}\right)
$$

- Moyal space is non compact $\Longleftrightarrow \mathcal{A}_{\theta}$ has no unit. Some axioms of spectral triple, e.g. orientation, require a unitization of \mathcal{A}_{θ}. Not relevant for the distance.

The matrix base

Write $\bar{z}=\frac{1}{\sqrt{2}}\left(x_{1}-i x_{2}\right), z=\frac{1}{\sqrt{2}}\left(x_{1}+i x_{2}\right)$. Define

$$
f_{m n}=\frac{1}{\left(\theta^{m+n} m!n!\right)^{1 / 2}} \bar{z}^{\star m} \star f_{00} \star z^{\star n}, \quad H=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad f_{00}=2 e^{-2 H / \theta},
$$

the Wigner transitions eigenfunctions of the harmonic oscillator ($f_{m m}$: Wigner function of the $m^{\text {th }}$ energy level of the harmonic oscillator).

- $\left\{f_{m n}\right\}_{m, n \in \mathbb{N}}$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{2}\right)$.
- $f_{m n} \star f_{p q}=\delta_{n p} f_{m q}$. There is a Frechet algebra isomorphism between \mathcal{A}_{θ} and the algebra of fast decreasing sequences $\left\{a_{m n}\right\}_{m, n \in \mathbb{N}}$: for any $f \in \mathcal{S}$,

$$
a=\sum_{m, n} a_{m n} f_{m n} \quad \text { with } a_{m n}=\int_{\mathbb{R}^{2}} f(x) f_{m n}(x) d^{2} x
$$

Pure states

The evaluation at x is not a state of \mathcal{A}_{θ} for $\left(f^{*} \star f\right)(x)$ may not be positive.
\mathcal{A}_{θ} is a reducible representation of the algebra of compact operators \mathcal{K} :

$$
\mathcal{H}_{p} \doteq \overline{\operatorname{span}\left\{f_{m p}, m \in \mathbb{N}\right\}}
$$

is invariant for any fixed p.

The set of pure states of $\overline{\mathcal{A}}_{\theta}$ is the set of vector states

$$
\omega_{\psi}(a) \equiv\langle\psi, L(a) \psi\rangle=2 \pi \theta \sum_{m, n \in \mathbb{N}} \psi_{m}^{*} \psi_{n} a_{m n}
$$

where

$$
\psi=\sum_{m \in \mathbb{N}} \psi_{m} f_{m p}, \quad \sum_{m \in \mathbb{N}}\left|\psi_{m}\right|^{2}=\frac{1}{2 \pi \theta}
$$

is a unit vector in \mathcal{H}_{p}.

Spectral distance on the Moyal plane

Proposition 7: The spectral distance on the Moyal plane is not bounded, neither from above nor from below (except by 0).

The eigenstates of the quantum harmonic oscillator,

$$
\omega_{f_{m 0}}(a)=2 \pi \theta a_{m m} \doteq \omega_{m}(a) .
$$

form a 1-dimensional lattice with distance

$$
d_{D}\left(\omega_{m}, \omega_{n}\right)=\sqrt{\frac{\theta}{2}} \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} .
$$

E. Cagnache, F. D'Andrea, P.M., J.C. Wallet 2009

- Quantum space does not necessarily implies minimum lenght. Compare to DFR model where the distance is the spectrum of $\sqrt{X^{2}+Y^{2}}$.

Conclusion

Spectral distance: viewing $d_{\text {geo }}(x, y)$ as $d_{D}\left(\delta_{x}, \delta_{y}\right)$, i.e. as a supremum instead of the length of a minimal curve makes sense in a quantum context.

Kantorovich duality: minimizing a cost (Monge problem)

$$
W_{-}\left(\mu_{1}, \mu_{2}\right)=\inf _{\pi} \int_{\mathcal{M} \times \mathcal{M}} d_{\mathrm{geo}}(x, y) d \mu
$$

is equivalent to maximizing a profit

$$
W_{+}\left(\mu_{1}, \mu_{2}\right)=\sup _{\|f\|_{\text {Lip }} \leq 1}\left\{\int_{\mathcal{M}} f d \mu_{1}-\int_{M} f d \mu_{2}\right\} .
$$

Transport consortium, looking for the tight price $f(x)$ at wich buy the bread from factories and sell it to bakeries, staying competitive: $|f(x)-f(y)| \leq d_{\text {geo }}(x, y)$.
μ_{1} : distribution of bread factories $\int_{M} f d \mu_{1}$: total price paid to farmers
μ_{2} : distribution of bakeries $\int_{M} f d \mu_{2}$: total money got from bakers
W_{-}: total transportation cost $\quad W_{+}$: total profit

- What cost does one minimize in a quantum context ? Higgs field as a cost function $c(x, x) \neq 0$? Towards a noncommutative economics ?

