About different kinds of Substitutions

Matthieu Deneufchâtel

Séminaire CALIN, 18 Janvier 2011

Outline

(1) Commutative case
(2) Non commutative case

- Language theory
- Case of a finite alphabet
- Case of an infinite alphabet
(3) Substitutions, graphs, Faà di Bruno's formula and Bell polynomials

Commutative substitution I

- Let R be a commutative ring and \mathfrak{A} be a R-associative algebra with unit. If $\mathbf{X}=\left(X_{i}\right)_{i \in I}$ is a set of indeterminates, $R[\mathbf{X}]$ denotes the algebra of polynomials with coefficients in R.
- Let $\mathbf{x}=\left(x_{i}\right)_{i \in \prime}$ be a set of pairwise commuting elements of \mathfrak{A}. Then there is only one morphism of AAU $\phi: R[\mathbf{X}] \rightarrow \mathfrak{A}$ such that $\phi\left(X_{i}\right)=x_{i}$. If $u \in R[\mathbf{X}]$, we note $\phi(u)=u(\mathbf{x})=u\left(\left(x_{i}\right)_{i \in I}\right)$.
- If $\lambda: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ is a morphism of R-associative algebras with unit, one has

$$
\begin{equation*}
\lambda(u(\mathbf{x}))=u\left(\left(\lambda\left(x_{i}\right)\right)_{i \in I}\right) \tag{1}
\end{equation*}
$$

for $\lambda \circ \phi: R[\mathbf{X}] \rightarrow \mathfrak{A}^{\prime}$ is such that $X_{i} \mapsto \lambda\left(x_{i}\right)$.

Commutative substitution II

- Let $\mathbf{Y}=\left(Y_{j}\right)_{j \in J}$ be another set of indeterminates and take $\mathfrak{A}=R[\mathbf{Y}]$. If $u \in R[\mathbf{X}]$ and $\left(g_{i}\right)_{i \in I} \in R[\mathbf{Y}]^{\prime}$, let $u(\mathbf{g}) \in R[\mathbf{Y}]$ be the polynomial obtained by substitution of the g_{i} 's in u.
- Let $\mathbf{y}=\left(y_{j}\right)_{j \in J}$ be a set of pairwise commuting elements of \mathfrak{A}^{\prime}. Applying (1) with

$$
\begin{aligned}
& \mathfrak{A}=R[\mathbf{Y}] \rightarrow \mathfrak{A}^{\prime} \\
& g_{i} \quad \mapsto g_{i}(\mathbf{y})
\end{aligned}
$$

yields

$$
\begin{equation*}
(u(\mathbf{g}))(\mathbf{y})=u\left(\left(g_{i}(\mathbf{y})\right)_{i \in I}\right) \tag{2}
\end{equation*}
$$

- Now if $\mathbf{f}=\left(f_{i}\right)_{i \in I} \in\left(R\left[\left(X_{j}\right)_{j \in J}\right]\right)^{\prime}$ and $\mathbf{g}=\left(g_{j}\right)_{j \in J} \in\left(R\left[\left(Y_{k}\right)_{k \in K}\right]\right)^{J}$ we denote by $f \circ g$ the family of polynomials

$$
\left(f_{i}(\mathbf{g})\right)_{i \in I} \in\left(R\left[\left(Y_{k}\right)_{k \in K}\right]\right)^{\prime}
$$

- Eq. (2) implies that \circ is associative.

Lagrange inversion formula

Let f be an analytic complex function such that $f(0)=0$ and $f^{\prime}(0) \neq 0$. Then there exists an analytic function g such that $g(f(z))=z$. If the Taylor series of f near 0 is

$$
f(z)=f_{1} z+f_{2} z^{2}+\ldots
$$

the coefficients of (the Taylor expansion of) g (near 0) are given by

$$
g_{n}=\left.\frac{1}{n!}\left[\left(\frac{d}{d z}\right)^{n-1}\left(\frac{z}{f(z)}\right)^{n}\right]\right|_{z=0}
$$

More generally, if $f(w)=z$ is analytic at the point a with $f^{\prime}(a) \neq 0$, and if $w=g(z)$ with g analytic at the point $b=f(a)$, one has

$$
g(z)=a+\sum_{n=1}^{\infty} \lim _{w \rightarrow a}\left(\left(\frac{d}{d w}\right)^{n-1}\left(\frac{w-a}{f(w)-b}\right)^{n}\right) \frac{(z-b)^{n}}{n!} .
$$

Substitutions and Hopf algebra $1 / 4$

$$
G_{\mathrm{uni}}^{\mathrm{dif}}=\left\{\phi(x)=x+\sum_{k=1}^{\infty} \phi_{n} x^{n+1}, \phi_{n} \in \mathbb{C}\right\}
$$

- Formal diffeomorphisms (tangent to the unity)
- Structure of (non-abelian) group for the composition law

$$
\phi(\psi(x))=\psi(x)+\sum_{n \geq 1} \phi_{n}(\psi(x))^{n+1}
$$

- $\operatorname{ld}(x)=x$
- Inverse of a series can be found by the Lagrange inversion formula.

Substitutions and Hopf algebra 1/4

$$
G_{\mathrm{uni}}^{\text {dif }}=\left\{\phi(x)=x+\sum_{k=1}^{\infty} \phi_{n} x^{n+1}, \phi_{n} \in \mathbb{C}\right\}
$$

- Formal diffeomorphisms (tangent to the unity)
- Structure of (non-abelian) group for the composition law

$$
\phi(\psi(x))=\psi(x)+\sum_{n \geq 1} \phi_{n}(\psi(x))^{n+1}
$$

- $\operatorname{ld}(x)=x$
- Inverse of a series can be found by the Lagrange inversion formula. $\mathbb{C}\left(G_{\text {uni }}^{\text {dif }}\right)$: functions $G_{\text {uni }}^{\text {dif }} \rightarrow \mathbb{C}$ which are in the algebra generated by some basic elements (i.e. are "polynomial" w.r.t. these elements). For example, one can choose the functions

$$
a_{n}: \phi \mapsto \frac{1}{(n+1)!} \frac{d^{n+1} \phi(0)}{d x^{n+1}}=\phi_{n}, n \geq 1
$$

Substitutions and Hopf algebra 2/4

The group structure of $G_{\text {uni }}^{\text {dif }}$ induces a Hopf algebra structure on $\mathbb{C}\left(G_{\text {uni }}^{\text {dif }}\right)$:

- product : $\left\langle\mu\left(a_{n} \otimes a_{m}\right) \mid \phi \circ \psi\right\rangle=a_{n}(\phi) a_{m}(\psi) ;$
- coproduct : $\left\langle\Delta^{\mathrm{dif}} a_{n} \mid \phi \otimes \psi\right\rangle=a_{n}(\phi \circ \psi)$;

Let $A(x)=\sum_{k=0}^{\infty} a_{k} x^{k+1}$ be the generating series of the a_{k} 's $\left(a_{0}=1\right)$.
Then one has

$$
\Delta^{\mathrm{dif}} A(x)=\sum_{n=0}^{\infty} \Delta^{\mathrm{dif}} a_{n} x^{n}=\left\langle z^{-1}\right\rangle A(z) \otimes \frac{1}{z-A(x)}
$$

where

$$
\left\langle z^{-1}\right\rangle f
$$

denotes the coefficient of z^{-1} in f.

Substitutions and Hopf algebra 3/4

Proof
Note first that

$$
\langle A(x) \mid \phi\rangle=\sum_{n=0}^{\infty}\left\langle a_{n} \mid \phi\right\rangle x^{n+1}=\phi(x) \text { and }\left\langle A^{m}(x) \mid \phi\right\rangle=\phi^{m}(x) .
$$

Substitutions and Hopf algebra 3/4

Proof

Note first that

$$
\langle A(x) \mid \phi\rangle=\sum_{n=0}^{\infty}\left\langle a_{n} \mid \phi\right\rangle x^{n+1}=\phi(x) \text { and }\left\langle A^{m}(x) \mid \phi\right\rangle=\phi^{m}(x)
$$

Then

$$
\begin{aligned}
\left\langle\Delta^{\mathrm{Dif}} A(x) \mid \phi \otimes \psi\right\rangle & =\sum_{n=0}^{\infty}\left\langle\Delta^{\mathrm{Dif}} a_{n} \mid \phi \otimes \psi\right\rangle=\sum_{n=0}^{\infty} a_{n}(\phi \circ \psi) x^{n+1} \\
& =\left\langle z^{-1}\right\rangle \frac{\phi(z)}{z-\psi(x)}=\left\langle z^{-1}\right\rangle\left(\langle A(z) \mid \phi\rangle\left\langle\left.\frac{1}{z-A(x)} \right\rvert\, \psi\right\rangle\right)
\end{aligned}
$$

Substitutions and Hopf algebra 3/4

Proof

Note first that

$$
\langle A(x) \mid \phi\rangle=\sum_{n=0}^{\infty}\left\langle a_{n} \mid \phi\right\rangle x^{n+1}=\phi(x) \text { and }\left\langle A^{m}(x) \mid \phi\right\rangle=\phi^{m}(x)
$$

Then

$$
\begin{aligned}
\left\langle\Delta^{\text {Dif }} A(x) \mid \phi \otimes \psi\right\rangle & =\sum_{n=0}^{\infty}\left\langle\Delta^{\text {Dif }} a_{n} \mid \phi \otimes \psi\right\rangle=\sum_{n=0}^{\infty} a_{n}(\phi \circ \psi) x^{n+1} \\
& =\left\langle z^{-1}\right\rangle \frac{\phi(z)}{z-\psi(x)}=\left\langle z^{-1}\right\rangle\left(\langle A(z) \mid \phi\rangle\left\langle\left.\frac{1}{z-A(x)} \right\rvert\, \psi\right\rangle\right) \\
& =\left\langle z^{-1}\right\rangle\left\langle\left. A(z) \otimes \frac{1}{z-A(x)} \right\rvert\, \phi \otimes \psi\right\rangle \\
& \text { with } \frac{1}{z-A(x)}=\sum_{n=0}^{\infty} A(x)^{n} z^{-n-1}
\end{aligned}
$$

Substitutions and Hopf algebra 4/4

Link with the Faà di Bruno bi-algebra
$\mathbb{C}\left(G_{\text {uni }}^{\text {dif }}\right)$ is the co-ordinate ring ([Brouder, Fabretti, Krattenthaler]) of the group $G_{\text {uni. }}^{\text {dif }}$. The Faà di Bruno bi-algebra is the co-ordinate ring of the semigroup

$$
\left\{\phi(x)=\sum_{n=1}^{\infty} \phi_{n} \frac{x^{n}}{n!}, \phi_{n} \in \mathbb{C}\right\}
$$

with ϕ_{1} not necessarily equal to 1 .

Substitutions and Hopf algebra 4/4

Link with the Faà di Bruno bi-algebra
$\mathbb{C}\left(G_{\text {uni }}^{\text {dif }}\right)$ is the co-ordinate ring ([Brouder, Fabretti, Krattenthaler]) of the group $G_{\text {uni. }}^{\text {dif }}$. The Faà di Bruno bi-algebra is the co-ordinate ring of the semigroup

$$
\left\{\phi(x)=\sum_{n=1}^{\infty} \phi_{n} \frac{x^{n}}{n!}, \phi_{n} \in \mathbb{C}\right\}
$$

with ϕ_{1} not necessarily equal to 1 .
Using the procedure described for $\mathbb{C}\left(G_{\text {uni }}^{\text {dif }}\right)$, one identifies the Faà di Bruno bi-algebra with $\mathbb{C}\left[u_{1}, u_{2}, \ldots\right]$, $\operatorname{deg}\left(u_{n}\right)=n-1$, with coproduct

$$
\Delta u_{n}=\sum_{k=1}^{n} u_{k} \otimes \sum_{\substack{\alpha \vdash k \\ \sum_{i=1}^{n} i \alpha_{i}=n}} \frac{n!}{\alpha_{1}!\ldots \alpha_{n}!} \frac{u_{1}^{\alpha_{1}} \ldots u_{n}^{\alpha_{n}}}{1!^{\alpha_{1}} \ldots n!^{\alpha_{n}}}
$$

and counit $\epsilon\left(u_{n}\right)=\delta_{n, 0}$.

Series with coefficient in the Boolean semiring

Let $\mathfrak{B}=\{0,1\}$ be the Boolean semiring and let L be a language over the alphabet A.
Characteristic series of the language L : the sum $\underline{L}=\sum_{w \in L} w(\in \mathfrak{B}\langle\langle A\rangle\rangle)$.
If S is a series with coefficients $\alpha_{w} \in \mathfrak{B}, S$ is the characteristic series of the language $\mathfrak{L}=\operatorname{Supp}(\alpha)$.

Series with coefficient in the Boolean semiring

Let $\mathfrak{B}=\{0,1\}$ be the Boolean semiring and let L be a language over the alphabet A.
Characteristic series of the language L : the sum $\underline{L}=\sum_{w \in L} w(\in \mathfrak{B}\langle\langle A\rangle\rangle)$.
If S is a series with coefficients $\alpha_{w} \in \mathfrak{B}, S$ is the characteristic series of the language $\mathfrak{L}=\operatorname{Supp}(\alpha)$.
The usual operations on languages are represented on their characteristic series as follows :

- $\underline{L \cup M}=\underline{L}+\underline{M}$;
- $\underline{L \cap M}=\underline{L} \odot \underline{M}$ where \odot denotes the Hadamard product of series;
- $\underline{L} \cdot M=\underline{L} \cdot \underline{M}$ where in the point in the Ihs denotes the concatenation and in the rhs the Cauchy (or concatenation) product of two series.

Let A and B be two languages and $f: A \rightarrow \mathfrak{P}\left(B^{*}\right) . f$ is called a substitution.
f can be extended as a morphism of monoids from (A^{*}, conc) to $\left(\mathfrak{P}\left(B^{*}\right)\right.$, conc) and then as a sum-preserving application from $\mathfrak{P}\left(A^{*}\right)$ to $\mathfrak{P}\left(B^{*}\right)$ denoted by \bar{f} :

$$
\forall\left(L_{i}\right)_{i \in I} \in \mathfrak{P}\left(A^{*}\right), f\left(\sum_{i \in I} L_{i}\right)=\sum_{i \in I} f\left(L_{i}\right)
$$

These substitutions are composable : if $f: A \rightarrow \mathfrak{P}\left(B^{*}\right)$ and $g: B \rightarrow \mathfrak{P}\left(C^{*}\right)$, one defines $g \circ f: A \rightarrow \mathfrak{P}\left(C^{*}\right)$ as the composition

$$
\bar{g} \circ f: A \rightarrow \mathfrak{P}\left(B^{*}\right) \rightarrow \mathfrak{P}\left(C^{*}\right) .
$$

Let A be a finite alphabet and R a commutative ring with a unit.

Substitution

A substitution is a morphism of algebras from $R\langle\langle A\rangle\rangle$ to $R\langle\langle A\rangle\rangle$ such that $\phi(A) \subseteq R_{\geq 1}\langle\langle A\rangle\rangle$.

- Let $\phi: A \rightarrow R_{\geq 1}\langle\langle A\rangle\rangle$ be a substitution.
- We extend ϕ as a morphism of monoids from $\left(A^{*}, \bullet\right)$ to $\left(R_{\geq 1}\langle\langle A\rangle\rangle, \times\right)$ where \times denotes the Cauchy product: if $w=a_{1} \cdots a_{n}$,

$$
\phi(w)=\phi\left(a_{1}\right) \times \cdots \times \phi\left(a_{n}\right) .
$$

- Since A^{*} is a basis of $R\langle A\rangle$, we can extend ϕ as an application from $R\langle A\rangle$ to $R_{\geq 1}\langle\langle A\rangle\rangle$ by linearity :

$$
\phi(S)=\phi\left(\sum_{w \in A^{*}}\langle S \mid w\rangle w\right)=\sum_{w \in A^{*}}\langle S \mid w\rangle \phi(w)
$$

Question : Does the last relation hold for $S \in R\langle\langle A\rangle\rangle$?
The family $(\langle S \mid w\rangle \phi(w))_{w \in A^{*}}$ is summable. Indeed, $\forall v \in A^{*}$, the support of $(\langle S \mid w\rangle\langle\phi(w) \mid v\rangle)_{w \in A^{*}}$ is finite :

- $\phi(a) \in R_{\geq 1}\langle\langle A\rangle\rangle$. Hence, $\forall w \in A^{*}$,

$$
\phi(w) \in R_{\geq|w|}\langle\langle A\rangle\rangle .
$$

- Therefore, $\operatorname{Supp}\left((\langle S \mid w\rangle\langle\phi(w) \mid v\rangle)_{w \in A^{*}}\right) \subseteq A^{\leq|v|}$ which is finite in the case of a finite alphabet.

Substitution

If $S \in R\langle\langle A\rangle\rangle$,

$$
\phi(S)=\sum_{w \in A^{*}}\langle S \mid w\rangle \phi(w)=\sum_{v \in A^{*}}\left(\sum_{w \in A^{*}}\langle S \mid w\rangle\langle\phi(w) \mid v\rangle\right) v .
$$

Infinite alphabet

- Let Y be an infinite alphabet (common in Physics and Geometry). Example : we define $\phi: Y \rightarrow R_{\geq 1}\langle\langle Y\rangle\rangle$ by $\phi\left(y_{i}\right)=y_{1}, \forall i \in \mathbb{N}$.
- We extend ϕ to Y^{*} as a morphism of monoids.
- We extend ϕ by linearity to $R\langle Y\rangle$.
- Is it possible to extend it to $R\langle\langle Y\rangle\rangle$?

One has to be able to substitute the characteristic series of Y, namely $\sum_{y \in Y} y$. Hence, $(\phi(y))_{y \in Y}$ has to be summable.

Exercise

ϕ is a substitution $\Leftrightarrow \forall w \in Y^{*},\left|\operatorname{Supp}\binom{Y \rightarrow R}{y \mapsto\langle\phi(y) \mid w\rangle}\right|<\infty$

Statistics on graphs

Let \mathfrak{C} be a class of graphs stable under taking connected components ($\forall \Gamma \in \mathfrak{C}, \forall \Gamma_{i}$ connected component of $\Gamma, \Gamma_{i} \in \mathfrak{C}$). An integer-valued statistics c is a map $\mathfrak{C} \rightarrow \mathbb{N}^{d}$.
Very often, one represents this statistics by $c(\Gamma)=L_{1}^{c(\Gamma)_{1}} \ldots L_{d}^{c(\Gamma)_{d}}$.

- $n=$ number of vertices,
- $c^{1}(\Gamma)=x^{n} y^{k}$;
- $c^{2}(\Gamma)=x^{k} L_{1}^{\alpha_{1}} \ldots L_{n}^{\alpha_{n}}$.
- $k=$ number of connected components,
- $\alpha_{i}=$ number of i-blocks.

Example :

Exponential formula

How to memorize it ?

$$
\operatorname{EGF}(A L L)=\exp (E G F(C O N N E C T E D))
$$

More formally, if:

- \mathfrak{C} is a class of graphs stable under relabelling and taking connected components,
- $\mathfrak{C}_{[1 . . n]}$ denotes the class obtained by renaming the vertices with integers from 1 to n,
- $\mathfrak{C}_{[1 . . n]}^{c}$ the connected graphs of $\mathfrak{C}_{[1 . . n]}$,

$$
\sum_{n \geq 0} c\left(\mathfrak{C}_{[1 . . n]}\right) \frac{z^{n}}{n!}=\exp \left(\sum_{n \geq 1} c\left(\mathfrak{C}_{[1 . . n]}^{c}\right) \frac{z^{n}}{n!}\right)
$$

where $c(\mathfrak{C})=\sum_{\Gamma \in \mathfrak{C}} c(\Gamma)$.

Substitution of formal power series

Let $f=\sum_{i \geq 1} f_{i} \frac{z^{i}}{i!}$ (zero constant term), and $g=\sum_{j \geq 0} g_{j} \frac{z^{j}}{j!}$.
$g \circ f=\sum_{j \geq 0} g_{j} \frac{f^{j}}{j!}$. Is there a simple expression of f^{j} in terms of the $f_{j}{ }^{\prime} s$?

$$
\begin{equation*}
\operatorname{EGF}\left(f^{j}\right)=\sum_{k \geq 0} f^{k} \frac{y^{k}}{k!}=\exp \left(y \sum_{i \geq 1} f_{i} \frac{z^{i}}{i!}\right) \tag{3}
\end{equation*}
$$

Ideally, we would like something like

$$
f^{j}=\sum_{m \geq 0} P_{k}\left(f_{1}, \ldots, f_{*}\right) \frac{z^{m}}{m!}
$$

for some polynomials P_{k}.

Substitution of formal power series

Let $f=\sum_{i \geq 1} f_{i} \frac{z^{i}}{i!}$ (zero constant term), and $g=\sum_{j \geq 0} g_{j} \frac{z^{j}}{j!}$.
$g \circ f=\sum_{j \geq 0} g_{j} \frac{f^{j}}{j!}$. Is there a simple expression of f^{j} in terms of the f_{j} 's?

$$
\begin{equation*}
\operatorname{EGF}\left(f^{j}\right)=\sum_{k \geq 0} f^{k} \frac{y^{k}}{k!}=\exp \left(y \sum_{i \geq 1} f_{i} \frac{z^{i}}{i!}\right) \tag{3}
\end{equation*}
$$

Ideally, we would like something like

$$
f^{j}=\sum_{m \geq 0} P_{k}\left(f_{1}, \ldots, f_{*}\right) \frac{z^{m}}{m!}
$$

for some polynomials P_{k}.
Idea : Find a class of "good" class of graphs with the statistics c^{2} and use the exponential formula.

Equivalence relation graphs I

Interesting properties :

- Their connected components are complete;
- There is only one connected graph with n vertices.
$\mathfrak{C}_{e q}=$ class of equivalence relation graphs.

$$
\text { Therefore, } \sum_{n \geq 1} c\left(\mathfrak{C}_{\text {eq },[1 . . n]}^{c}\right) \frac{z^{n}}{n!}=y \sum_{n \geq 1} L_{n} \frac{z^{n}}{n!} \text {. }
$$

But

$$
\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{\Gamma \in \mathbb{C}_{\text {eq },[1 . . n]}} c(\Gamma)=\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{k=0}^{n} y^{k} \sum_{\substack{\|\alpha\|=n \\|\alpha|=k}} \text { numpart }(\alpha) \mathbb{L}^{\alpha}
$$

with $|\alpha|=\sum_{i=1} \alpha_{i}$ and $\|\alpha\|=\sum_{i} i \alpha_{i}$.

Equivalence relation graphs II

$$
\sum_{\substack{\|\alpha\|=n \\|\alpha|=k}} \text { numpart }(\alpha) \mathbb{L}^{\alpha}=B_{n, k}\left(L_{1}, \ldots, L_{n-k+1}\right)
$$

One has,

$$
\exp (y f)=1+\sum_{n=1}^{\infty} \sum_{k=1}^{n} B_{n, k}\left(f_{1}, \ldots, f_{n-k+1}\right) \frac{y^{k} z^{n}}{n!} .
$$

Therefore

$$
f^{j}=\sum_{n \geq j} B_{n, j}\left(f_{1}, \ldots, f_{n-j+1}\right) \frac{z^{n}}{n!} .
$$

Cf. Faà di Bruno's formula :

$$
\frac{d^{n}}{d x^{n}} g(f(x))=\sum_{k=0}^{\infty} h_{n} \frac{z^{n}}{n!} \text { with } h_{n}=\sum_{k=1}^{n} g_{k} B_{n, k}\left(f_{1}, \ldots, f_{n-k+1}\right)
$$

