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Extending D-finite to DD-finite
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Notation

Through this talk we consider:

K : a computable field

K [[x ]]: ring of formal power series over K .

Given F a field:

VF (f ) = 〈f , f ′, f ′′, ...〉F .

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

D-finite functions

Definition
Let f ∈ K [[x ]]. We say that f is D-finite (or holonomic) if there
exist d ∈ N and polynomials p0(x), ..., pd (x) such that:

pd (x)f (d)(x) + ...+ p0(x)f (x) = 0.

We say that d is the order of f .

Extending algorithms for D-finite functions
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Examples

A lot of special functions are D-finite:

Exponential function: ex .
Trigonometric functions: sin(x), cos(x).
Logarithm function: log(x + 1).
Bessel functions: Jn(x).

Hypergeometric functions: pFq

(
a1, ..., ap
b1, ..., bq

; x
)
.

Airy functions: Ai(x),Bi(x).
Combinatorial generating functions: F (x),C(x),,...

Extending algorithms for D-finite functions
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Non-D-finite examples

There are power series that are not D-finite:

Double exponential: f (x) = eex .
Tangent: tan(x) = sin(x)

cos(x) .

Gamma function: f (x) = Γ(x + 1).
Partition Generating Function: f (x) =

∑
n≥0 p(n)xn.

Extending algorithms for D-finite functions
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DD-finite Functions

Definition
Let f ∈ K [[x ]]. We say that f is D-finite if there exist d ∈ N and
polynomials p0(x), ..., pd (x) such that:

pd (x)f (d)(x) + ...+ p0(x)f (x) = 0.

Extending algorithms for D-finite functions
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DD-finite Functions

Definition
Let f ∈ K [[x ]]. We say that f is DD-finite if there exist d ∈ N and
D-finite elements r0(x), ..., rd (x) such that:

rd (x)f (d)(x) + ...+ r0(x)f (x) = 0.

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

Examples

The set is bigger than the D-finite functions:

f is D-finite ⇒ f is DD-finite,
f (x) = eex ⇒ f ′(x)− ex f (x) = 0,

f (x) = tan(x) ⇒ cos(x)2f ′′(x)− 2f (x) = 0,
f (x) = e

∫ x
0 Jn(t)dt ⇒ f ′(x)− Jn(x)f (x) = 0

Extending algorithms for D-finite functions
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Differentially Definable Functions

Definition
Let f ∈ K [[x ]]. We say that f is DD-finite if there exist d ∈ N and
D-finite elements r0(x), ..., rd (x) such that:

rd (x)f (d)(x) + ...+ r0(x)f (x) = 0.

Extending algorithms for D-finite functions
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Differentially Definable Functions

Definition
Let f ∈ K [[x ]] and R ⊂ K [[x ]] a ring. We say that f is
differentially definable over R if there exist d ∈ N and elements in
R r0(x), ..., rd (x) such that:

rd (x)f (d)(x) + ...+ r0(x)f (x) = 0.

D(R): differentially definable functions over R.

Extending algorithms for D-finite functions
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Characterization Theorem

The following are equivalent:

f (x) ∈ D(R).

There are elements r0(x), ..., rd (x) ∈ R and g(x) ∈ D(R) such:

rd (x)f (d)(x) + ...+ r0(x)f (x) = g(x).

Let F be the field of fractions of R. Then VF (f ) has finite
dimension.

Extending algorithms for D-finite functions
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Closure properties

f (x), g(x) ∈ D(R) of order d1, d2.
F the field of fractions of R.
a(x) algebraic over F of degree p.

Property Is in D(R) Order bound
Addition (f + g) d1 + d2
Product (fg) d1d2

Differentiation f ′ d1
Integration

∫
f d1 + 1

Be Algebraic a(x) p

Extending algorithms for D-finite functions
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Closure properties

f (x), g(x) ∈ D(R) of order d1, d2.
F the field of fractions of R.
a(x) algebraic over F of degree p.

Property Is in D(R) Order bound
Addition (f + g) d1 + d2
Product (fg) d1d2

Differentiation f ′ d1
Integration

∫
f d1 + 1

Be Algebraic a(x) p
−→ Proof by direct formula
−→ Proof by linear algebra

Extending algorithms for D-finite functions
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Implementation of closure properties
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Vector spaces

Let R ⊂ K [[x ]], F its field of fractions and VF (f ) the F -vector
space spanned by f and its derivatives.

The Characterization theorem provides

f (x) ∈ D(R) ⇔ dim(VF (f )) <∞

Extending algorithms for D-finite functions
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The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Extending algorithms for D-finite functions
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The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Method
1 Compute W ⊂ K [[x ]] such that dim(W ) <∞ and

VF (h) ⊂W .

2 Compute generators Φ = {φ1, ..., φn} of W .
3 For i = 0, ..., dim(W ), compute vectors vi ∈ F n such that:

h(i)(x) =
∑n

j=0 vijφj .

Extending algorithms for D-finite functions
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The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Method
4 Set up the ansatz:

α0h(x) + ...+ αnh(n) = 0.

5 Solve the induced F -linear system for the variables αk .
6 Return A = αn∂

n + ...+ α1∂ + α0.

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Method
4 Set up the ansatz:

α0h(x) + ...+ αnh(n) = 0.

5 Solve the induced F -linear system for the variables αk .

6 Return A = αn∂
n + ...+ α1∂ + α0.

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

The ansatz method

Specifications
Input: A power series h(x) (f (x) + g(x), f (x)g(x) or a(x))
Output: An operator A ∈ R[∂] such that Ah = 0

Method
4 Set up the ansatz:

α0h(x) + ...+ αnh(n) = 0.

5 Solve the induced F -linear system for the variables αk .
6 Return A = αn∂

n + ...+ α1∂ + α0.

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

The ansatz method

Specifications
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Mathieu: definition

Mathieu functions
Mathieu functions are solutions of the differential equation:

w ′′(x) + (a − 2q cos(2x))w(x) = 0

The sine and cosine
Cos: w1(x) with w1(0) = 1 and w ′1(0) = 0.
Sin: w2(x) with w2(0) = 0 and w ′2(0) = 1.

W =
∣∣∣∣∣w1 w2
w ′1 w ′2

∣∣∣∣∣ = w1(x)w ′2(x)− w ′1(x)w2(x) = 1.

Extending algorithms for D-finite functions
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Mathieu: derivative

Equation for w ′1(x) and w ′2(x)
(a − 2q cos (2x)) y ′′

− (4q sin (2x)) y ′

+
(
a2 − 4aq cos (2x) + 4q2 cos (2x)2

)
y = 0

Extending algorithms for D-finite functions
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Mathieu: product

Equation for w1(x)w ′2(x) and w2(x)w ′1(x)

β4y (4) + β3y (3) + β2y ′′ + β1y ′ = 0,

β4 = q sin(2x)2 − a cos(2x) + 2q

β3 = −2 sin(2x) (2q cos(2x) + a)

β2 = −4
(
2q sin(2x)2 cos(2x)− q(a + 1) cos(2x)2+

+(4q2 + a2) cos(2x)− 3q(a + 1)
)

β1 = 8 sin(2x)
(
q2 sin(2x)2 − 5aq cos(2x) + 14q2 − a2)

Extending algorithms for D-finite functions
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Dn-finite functions: iterating the process

Extending algorithms for D-finite functions
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Dn-finite functions

Remark
Given a differential ring R ⊂ K [[x ]], the closure properties show
that D(R) is again a ring. Hence we can iterate the construction
with the same algorithms.

Dn-finite functions
We define the Dn-finite functions as the nth iteration over the
polynomials, i.e., Dn(K [x ]).

K [x ] ⊂ D(K [x ]) ⊂ D2(K [x ]) ⊂ . . . ⊂ Dn(K [x ]) ⊂ . . .

Extending algorithms for D-finite functions
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New Properties

f (x) ∈ Dn(K [x ]) of order d1.
g(x) ∈ Dm(K [x ]) of order d2.
a(x) algebraic over Dm(K [x ]) of degree p.

Property Function Is in Order bound
Composition f ◦ g Dn+m(K [x ]) d1
Alg. subs. f ◦ a Dn+m(K [x ]) pd1

Extending algorithms for D-finite functions
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Dn ( Dn+1: Iterated exponentials
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Iterated exponentials

K [x ] ( D(K [x ]) ⊂ D2(K [x ]) ⊂ . . . ⊂ Dn(K [x ]) ⊂ . . .

Extending algorithms for D-finite functions
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Iterated exponentials

K [x ] ( D(K [x ]) ( D2(K [x ]) ⊂ . . . ⊂ Dn(K [x ]) ⊂ . . .

ex ∈ D(K [x ]), eex−1 ∈ D2(K [x ])

Extending algorithms for D-finite functions
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Iterated exponentials
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Iterated exponentials

K [x ] ( D(K [x ]) ( D2(K [x ]) ⊂ . . . ⊂ Dn(K [x ]) ⊂ . . .

ex ∈ D(K [x ]), eex−1 ∈ D2(K [x ])

Iterated Exponentials
e0(x) = 1,
ên(x) =

∫ x
0 en(t)dt,

en+1(x) = exp(ên(x)).

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

Increasing chain

Proposition
en(x) ∈ Dn(K [x ]).
en(x) /∈ Dn−1(K [x ]).

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

Increasing chain

Proposition
en(x) ∈ Dn(K [x ]).
en(x) /∈ Dn−1(K [x ]).

First is trivial: e′n(x) = en−1(x)en(x).

Extending algorithms for D-finite functions
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Increasing chain

Proposition
en(x) ∈ Dn(K [x ]).
en(x) /∈ Dn−1(K [x ]).

Second: proof using Differential Galois Theory (M. F. Singer)

Extending algorithms for D-finite functions
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Picard-Vessiot

Picard-Vessiot closure
Let (K , ∂) be a differential field with constants C . The
Picard-Vessiot closure is the smallest field with same constants
such that all linear differential equation with coefficients in K have
all the C -linearly independent solutions.

C [x ] ⊂ D(C [x ]) ⊂ . . . ⊂ Dn(C [x ]) ⊂ . . . ⊂ C [[x ]]
∩ ∩ . . . ∩ . . .
F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ C((x))
∩ ∩ . . . ∩ . . .
K0 ⊂ K1 ⊂ . . . ⊂ Kn ⊂ . . . ⊂ KPV

Extending algorithms for D-finite functions
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Main result

Proposition
Let (K , ∂) be a differential field with algebraically closed field of
constants C . Let E be a PV-extension of K . Let u, v ∈ E \ {0}
such that:

u′
u = a ∈ K , v ′

v = u,

then u is algebraic over K .

Corollary
Let c ∈ C∗ and n ∈ N \ {0}. Then ec

n = exp(cên−1) /∈ Kn−1.

Extending algorithms for D-finite functions
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Main result

C [x ] ⊂ D(C [x ]) ⊂ . . . ⊂ Dn−1(C [x ]) ⊂ . . . ⊂ C [[x ]]
∩ ∩ . . . ∩ . . .
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∩ ∩ . . . ∩ . . .
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en(x)

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

Main result

C [x ] ⊂ D(C [x ]) ⊂ . . . ⊂ Dn−1(C [x ]) ⊂ . . . ⊂ C [[x ]]
∩ ∩ . . . ∩ . . .
F0 ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ . . . ⊂ C((x))
∩ ∩ . . . ∩ . . .
K0 ⊂ K1 ⊂ . . . ⊂ Kn−1 ⊂ . . . ⊂ KPV

en(x) /∈ Kn−1, and...

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

Main result

C [x ] ⊂ D(C [x ]) ⊂ . . . ⊂ Dn−1(C [x ]) ⊂ . . . ⊂ C [[x ]]
∩ ∩ . . . ∩ . . .
F0 ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ . . . ⊂ C((x))
∩ ∩ . . . ∩ . . .
K0 ⊂ K1 ⊂ . . . ⊂ Kn−1 ⊂ . . . ⊂ KPV

en(x) /∈ Fn−1, and...

Extending algorithms for D-finite functions



D-finite DD-finite Implementation Dn-finite Dn ( Dn+1 Dn ( DA Conclusions

Main result

C [x ] ⊂ D(C [x ]) ⊂ . . . ⊂ Dn−1(C [x ]) ⊂ . . . ⊂ C [[x ]]
∩ ∩ . . . ∩ . . .
F0 ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ . . . ⊂ C((x))
∩ ∩ . . . ∩ . . .
K0 ⊂ K1 ⊂ . . . ⊂ Kn−1 ⊂ . . . ⊂ KPV

en(x) /∈ Dn−1(K [x ]), finishing the proof.

Extending algorithms for D-finite functions
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Non linear differential equations

Diff. definable over R −→ linear differential equation.
Diff. algebraic over R −→ non-linear differential equation.

Double exponential (exp(exp(x)− 1)):
f ′(x)− exp(x)f (x) = 0→ f ′′(x)f (x)− f ′(x)2 − f ′(x)f (x) = 0
Mathieu functions:

f ′′(x)− (a − 2q cos(2x))f (x) = 0
↓

f (5)(x)f (x)3 − 3f (4)(x)f ′(x)f (x)2 − 4f ′′′(x)f ′′(x)f (x)2+
6f ′′′(x)f ′(x)2f (x) + 4f ′′′(x)f (x)3 + 6f ′′(x)2f ′(x)f (x)

−6f ′′(x)f ′(x)3 − 4f ′′(x)f ′(x)f (x)2 = 0

Extending algorithms for D-finite functions
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Non linear differential equations

Diff. definable over R −→ linear differential equation.
Diff. algebraic over R −→ non-linear differential equation.

Theorem
Let f ∈ K [[x ]]. If there is n ∈ N with f ∈ Dn(R), then f is
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Non linear differential equations

Diff. definable over R −→ linear differential equation.
Diff. algebraic over R −→ non-linear differential equation.

Theorem
Let f ∈ K [[x ]]. If there is n ∈ N with f ∈ Dn(R), then f is
differentially algebraic over R.

The proof is constructive and it is implemented.

Double exponential (exp(exp(x)− 1)):
f ′(x)− exp(x)f (x) = 0→ f ′′(x)f (x)− f ′(x)2 − f ′(x)f (x) = 0
Mathieu functions:

f ′′(x)− (a − 2q cos(2x))f (x) = 0
↓

f (5)(x)f (x)3 − 3f (4)(x)f ′(x)f (x)2 − 4f ′′′(x)f ′′(x)f (x)2+
6f ′′′(x)f ′(x)2f (x) + 4f ′′′(x)f (x)3 + 6f ′′(x)2f ′(x)f (x)

−6f ′′(x)f ′(x)3 − 4f ′′(x)f ′(x)f (x)2 = 0
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The reverse is not true

Remark
Not all Diff. algebraic functions are Dn-finite (M. Van der Put)

Key property
Let P(x , y , y ′, ..., y (n)) be a differential polynomial and
A = {f1, ..., fn} be a finite set of solutions, i.e.,

P(x , fi (x), ..., f (n)
i (x)) = 0

Then A is a algebraically independent set.

Example
The equation y ′ = y2(y − 1) has that property.

Extending algorithms for D-finite functions
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The SAGE package
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SAGE system

SAGE
Open Source computer system based on Python
Interfaces to many mathematical tools.
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SAGE system

SAGE
Open Source computer system based on Python
Interfaces to many mathematical tools.

Public repository
https://www.dk-compmath.jku.at/Members/antonio/sage-package-
dd_functions
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SAGE system

SAGE
Open Source computer system based on Python
Interfaces to many mathematical tools.

Public repository
https://www.dk-compmath.jku.at/Members/antonio/sage-package-
dd_functions

Based on package ore_algebra by M. Kauers and M. Mezzarobba
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SAGE system

Features
Implementation of D(R) for any ring R.
Computation of initial values for elements of D(R).
Implementation of closure properties (+,−, ∗, /, ◦).
Possibility to have constant parameters.
Computation of non-linear differential equations.
Library of examples (extracted from DLMF)

Extending algorithms for D-finite functions
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Conclusions and Future work
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Conclusions

Achievements
Extended the framework of D-finite to wider class of
computable functions
Implemented closure properties for DD-finite
Implemented composition of Dn-finite functions
Detected limits of the class of differentially definable
Code available for SAGE

Extending algorithms for D-finite functions
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Future work
Improve performance of the current code
Study analytic properties of DD-finite functions
Study combinatorial properties of DD-finite functions
Study the annalog of DD-finite functions in sequences
Multivariate case
Generalize for other type of operators (q-shift)

Extending algorithms for D-finite functions
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Thank you!

Contact webpage:

https://www.dk-compmath.jku.at/people/antonio

https://www.risc.jku.at/home/ajpastor

SAGE code:

https://www.dk-compmath.jku.at/Members/antonio/
sage-package-dd_functions
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https://www.dk-compmath.jku.at/people/antonio
https://www.risc.jku.at/home/ajpastor
https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions
https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions
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