Doctoral Program
Computational Mathematics
Numerical Analysis and Symbolic Computation

FШF

Der Wissenschaftsfonds.

Extending algorithms for D-finite functions

 D^{n}-finite functionsAntonio Jiménez-Pastor, Veronika Pillwein

LIPN (Jun. 2019)

Outline

(1) D-finite functions
(2) DD-finite functions
(3) Implementation of closure properties
(4) D^{n}-finite functions
(3) Inclusion properties
(1) Conclusions and future work

Extending D-finite to DD-finite

Notation

Through this talk we consider:

- K : a computable field
- $K[[x]]$: ring of formal power series over K.
- Given F a field:

$$
V_{F}(f)=\left\langle f, f^{\prime}, f^{\prime \prime}, \ldots\right\rangle_{F}
$$

D-finite functions

Definition

Let $f \in K[[x]]$. We say that f is D-finite (or holonomic) if there exist $d \in \mathbb{N}$ and polynomials $p_{0}(x), \ldots, p_{d}(x)$ such that:

$$
p_{d}(x) f^{(d)}(x)+\ldots+p_{0}(x) f(x)=0
$$

We say that d is the order of f.

Examples

A lot of special functions are D-finite:

- Exponential function: e^{x}.
- Trigonometric functions: $\sin (x), \cos (x)$.
- Logarithm function: $\log (x+1)$.
- Bessel functions: $J_{n}(x)$.
- Hypergeometric functions: ${ }_{p} F_{q}\left(\begin{array}{l}a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q}\end{array} ; x\right)$.
- Airy functions: $A i(x), B i(x)$.
- Combinatorial generating functions: $F(x), C(x), \ldots$

Non-D-finite examples

There are power series that are not D-finite:

- Double exponential: $f(x)=e^{e^{x}}$.
- Tangent: $\tan (x)=\frac{\sin (x)}{\cos (x)}$.
- Gamma function: $f(x)=\Gamma(x+1)$.
- Partition Generating Function: $f(x)=\sum_{n \geq 0} p(n) x^{n}$.

DD-finite Functions

Definition

Let $f \in K[[x]]$. We say that f is D-finite if there exist $d \in \mathbb{N}$ and polynomials $p_{0}(x), \ldots, p_{d}(x)$ such that:

$$
p_{d}(x) f^{(d)}(x)+\ldots+p_{0}(x) f(x)=0 .
$$

DD-finite Functions

Definition

Let $f \in K[[x]]$. We say that f is $D D$-finite if there exist $d \in \mathbb{N}$ and D-finite elements $r_{0}(x), \ldots, r_{d}(x)$ such that:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=0
$$

Examples

The set is bigger than the D-finite functions:

$$
\begin{array}{clc}
f \text { is D-finite } & \Rightarrow & f \text { is DD-finite, } \\
f(x)=e^{e^{x}} & \Rightarrow & f^{\prime}(x)-e^{x} f(x)=0, \\
f(x)=\tan (x) & \Rightarrow & \cos (x)^{2} f^{\prime \prime}(x)-2 f(x)=0, \\
f(x)=e^{\int_{0}^{x} J_{n}(t) d t} & \Rightarrow & f^{\prime}(x)-J_{n}(x) f(x)=0
\end{array}
$$

Differentially Definable Functions

Definition

Let $f \in K[[x]]$. We say that f is $D D$-finite if there exist $d \in \mathbb{N}$ and D-finite elements $r_{0}(x), \ldots, r_{d}(x)$ such that:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=0
$$

Differentially Definable Functions

Definition

Let $f \in K[[x]]$ and $R \subset K[[x]]$ a ring. We say that f is differentially definable over R if there exist $d \in \mathbb{N}$ and elements in $R r_{0}(x), \ldots, r_{d}(x)$ such that:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=0
$$

$\mathrm{D}(R)$: differentially definable functions over R.

Characterization Theorem

The following are equivalent:

$$
f(x) \in \mathrm{D}(R) .
$$

There are elements $r_{0}(x), \ldots, r_{d}(x) \in R$ and $g(x) \in \mathrm{D}(R)$ such:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=g(x)
$$

Characterization Theorem

The following are equivalent:

$$
f(x) \in \mathrm{D}(R) .
$$

There are elements $r_{0}(x), \ldots, r_{d}(x) \in R$ and $g(x) \in D(R)$ such:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=g(x) .
$$

Let F be the field of fractions of R. Then $V_{F}(f)$ has finite dimension.

Closure properties

$f(x), g(x) \in \mathrm{D}(R)$ of order d_{1}, d_{2}.
F the field of fractions of R.
$a(x)$ algebraic over F of degree p.

Property	Is in $D(R)$	Order bound
Addition	$(f+g)$	$d_{1}+d_{2}$
Product	$(f g)$	$d_{1} d_{2}$
Differentiation	f^{\prime}	d_{1}
Integration	$\int f$	$d_{1}+1$
Be Algebraic	$a(x)$	p

Closure properties

$f(x), g(x) \in \mathrm{D}(R)$ of order d_{1}, d_{2}.
F the field of fractions of R.
$a(x)$ algebraic over F of degree p.

Property	Is in $D(R)$	Order bound
Addition	$(f+g)$	$d_{1}+d_{2}$
Product	$(f g)$	$d_{1} d_{2}$
Differentiation	f^{\prime}	d_{1}
Integration	$\int f$	$d_{1}+1$
Be Algebraic	$a(x)$	p

\longrightarrow Proof by direct formula
\longrightarrow Proof by linear algebra

Implementation of closure properties

Vector spaces

Let $R \subset K[[x]], F$ its field of fractions and $V_{F}(f)$ the F-vector space spanned by f and its derivatives.

The Characterization theorem provides

$$
f(x) \in \mathrm{D}(R) \Leftrightarrow \operatorname{dim}\left(V_{F}(f)\right)<\infty
$$

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(1) Compute $W \subset K[[x]]$ such that $\operatorname{dim}(W)<\infty$ and $V_{F}(h) \subset W$.

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(1) Compute $W \subset K[[x]]$ such that $\operatorname{dim}(W)<\infty$ and $V_{F}(h) \subset W$.
(2) Compute generators $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ of W.

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(1) Compute $W \subset K[[x]]$ such that $\operatorname{dim}(W)<\infty$ and $V_{F}(h) \subset W$.
(2) Compute generators $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ of W.
(3) For $i=0, \ldots, \operatorname{dim}(W)$, compute vectors $v_{i} \in F^{n}$ such that:

$$
h^{(i)}(x)=\sum_{j=0}^{n} v_{i j} \phi_{j} .
$$

Extending algorithms for D-finite functions

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(9) Set up the ansatz:

$$
\alpha_{0} h(x)+\ldots+\alpha_{n} h^{(n)}=0 .
$$

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(1) Set up the ansatz:

$$
\alpha_{0} h(x)+\ldots+\alpha_{n} h^{(n)}=0 .
$$

(6) Solve the induced F-linear system for the variables α_{k}.

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(1) Set up the ansatz:

$$
\alpha_{0} h(x)+\ldots+\alpha_{n} h^{(n)}=0 .
$$

(6) Solve the induced F-linear system for the variables α_{k}.
(6) Return $\mathcal{A}=\alpha_{n} \partial^{n}+\ldots+\alpha_{1} \partial+\alpha_{0}$.

The ansatz method

Specifications

Input: A power series $h(x)(f(x)+g(x), f(x) g(x)$ or $a(x))$
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A} h=0$

Method

(1) Compute $W \subset K[[x]]$ such that $\operatorname{dim}(W)<\infty$ and $V_{F}(h) \subset W$.
(2) Compute generators $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ of W.
(3) For $i=0, \ldots, \operatorname{dim}(W)$, compute vectors $v_{i} \in F^{n}$ such that:

$$
h^{(i)}(x)=\sum_{j=0}^{n} v_{i j} \phi_{j} .
$$

Extending algorithms for D-finite functions

Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

$$
w^{\prime \prime}(x)+(a-2 q \cos (2 x)) w(x)=0
$$

Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

$$
w^{\prime \prime}(x)+(a-2 q \cos (2 x)) w(x)=0
$$

The sine and cosine

- Cos: $w_{1}(x)$ with $w_{1}(0)=1$ and $w_{1}^{\prime}(0)=0$.
- Sin: $w_{2}(x)$ with $w_{2}(0)=0$ and $w_{2}^{\prime}(0)=1$.

Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

$$
w^{\prime \prime}(x)+(a-2 q \cos (2 x)) w(x)=0
$$

The sine and cosine

- Cos: $w_{1}(x)$ with $w_{1}(0)=1$ and $w_{1}^{\prime}(0)=0$.
- Sin: $w_{2}(x)$ with $w_{2}(0)=0$ and $w_{2}^{\prime}(0)=1$.

$$
\mathcal{W}=\left|\begin{array}{ll}
w_{1} & w_{2} \\
w_{1}^{\prime} & w_{2}^{\prime}
\end{array}\right|=w_{1}(x) w_{2}^{\prime}(x)-w_{1}^{\prime}(x) w_{2}(x)=1
$$

Mathieu: derivative

Equation for $w_{1}^{\prime}(x)$ and $w_{2}^{\prime}(x)$

$$
\begin{aligned}
(a-2 q \cos (2 x)) \quad y^{\prime \prime} \\
-(4 q \sin (2 x)) \quad y^{\prime} \\
+\left(a^{2}-4 a q \cos (2 x)+4 q^{2} \cos (2 x)^{2}\right) \quad y=0
\end{aligned}
$$

Mathieu: product

Equation for $w_{1}(x) w_{2}^{\prime}(x)$ and $w_{2}(x) w_{1}^{\prime}(x)$

$$
\beta_{4} y^{(4)}+\beta_{3} y^{(3)}+\beta_{2} y^{\prime \prime}+\beta_{1} y^{\prime}=0
$$

$$
\begin{aligned}
\beta_{4}= & q \sin (2 x)^{2}-a \cos (2 x)+2 q \\
\beta_{3}= & -2 \sin (2 x)(2 q \cos (2 x)+a) \\
\beta_{2}= & -4\left(2 q \sin (2 x)^{2} \cos (2 x)-q(a+1) \cos (2 x)^{2}+\right. \\
& \left.+\left(4 q^{2}+a^{2}\right) \cos (2 x)-3 q(a+1)\right) \\
\beta_{1}= & 8 \sin (2 x)\left(q^{2} \sin (2 x)^{2}-5 a q \cos (2 x)+14 q^{2}-a^{2}\right)
\end{aligned}
$$

D^{n}-finite functions: iterating the process

D^{n}-finite functions

Remark

Given a differential ring $R \subset K[[x]]$, the closure properties show that $\mathrm{D}(R)$ is again a ring. Hence we can iterate the construction with the same algorithms.

D^{n}-finite functions

Remark

Given a differential ring $R \subset K[[x]]$, the closure properties show that $\mathrm{D}(R)$ is again a ring. Hence we can iterate the construction with the same algorithms.

D^{n}-finite functions

We define the D^{n}-finite functions as the nth iteration over the polynomials, i.e., $\mathrm{D}^{n}(K[x])$.

$$
K[x] \subset D(K[x]) \subset D^{2}(K[x]) \subset \ldots \subset D^{n}(K[x]) \subset \ldots
$$

Extending algorithms for D-finite functions

New Properties

$f(x) \in \mathrm{D}^{n}(K[x])$ of order d_{1}.
$g(x) \in \mathrm{D}^{m}(K[x])$ of order d_{2}.
$a(x)$ algebraic over $\mathrm{D}^{m}(K[x])$ of degree p.

Property	Function	Is in	Order bound
Composition	$f \circ g$	$\mathrm{D}^{n+m}(K[x])$	d_{1}
Alg. subs.	$f \circ a$	$\mathrm{D}^{n+m}(K[x])$	$p d_{1}$

$\mathrm{D}^{n} \subsetneq \mathrm{D}^{n+1}$: Iterated exponentials

Iterated exponentials

$$
K[x] \subsetneq D(K[x]) \subset D^{2}(K[x]) \subset \ldots \subset D^{n}(K[x]) \subset \ldots
$$

Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \in \mathrm{D}(K[x]), \quad e^{e^{x}-1} \in \mathrm{D}^{2}(K[x])
$$

Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \in \mathrm{D}(K[x]), \quad e^{e^{x}-1} \in \mathrm{D}^{2}(K[x])
$$

Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \in D(K[x]), \quad e^{e^{x}-1} \in D^{2}(K[x])
$$

Iterated Exponentials

- $e_{0}(x)=1$,
- $\hat{e}_{n}(x)=\int_{0}^{x} e_{n}(t) d t$,
- $e_{n+1}(x)=\exp \left(\hat{e}_{n}(x)\right)$.

Increasing chain

Proposition

- $e_{n}(x) \in \mathrm{D}^{n}(K[x])$.
- $e_{n}(x) \notin \mathrm{D}^{n-1}(K[x])$.

Increasing chain

Proposition

- $e_{n}(x) \in \mathrm{D}^{n}(K[x])$.
- $e_{n}(x) \notin \mathrm{D}^{n-1}(K[x])$.

First is trivial: $e_{n}^{\prime}(x)=e_{n-1}(x) e_{n}(x)$.

Increasing chain

Proposition

- $e_{n}(x) \in \mathrm{D}^{n}(K[x])$.
- $e_{n}(x) \notin \mathrm{D}^{n-1}(K[x])$.

Second: proof using Differential Galois Theory (M. F. Singer)

Picard-Vessiot

Picard-Vessiot closure

Let (K, ∂) be a differential field with constants C. The Picard-Vessiot closure is the smallest field with same constants such that all linear differential equation with coefficients in K have all the C-linearly independent solutions.

Picard-Vessiot

Picard-Vessiot closure

Let (K, ∂) be a differential field with constants C. The Picard-Vessiot closure is the smallest field with same constants such that all linear differential equation with coefficients in K have all the C-linearly independent solutions.
$C[x] \subset \mathrm{D}(C[x]) \subset \ldots \subset \mathrm{D}^{n}(C[x]) \subset \ldots \subset C[[x]]$

\cap		\cap		\ddots		\cap		\ddots		
F_{0}	\subset	F_{1}	\subset	\ldots	\subset	F_{n}	\subset	\ldots	\subset	$C((x))$
\cap		\cap		\ddots		\cap		\ddots		
K_{0}	\subset	K_{1}	\subset	\ldots	\subset	K_{n}	\subset	\ldots	\subset	$K_{P V}$

Main result

Proposition

Let (K, ∂) be a differential field with algebraically closed field of constants C. Let E be a PV-extension of K. Let $u, v \in E \backslash\{0\}$ such that:

$$
\frac{u^{\prime}}{u}=a \in K, \quad \frac{v^{\prime}}{v}=u
$$

then u is algebraic over K.

Main result

Proposition

Let (K, ∂) be a differential field with algebraically closed field of constants C. Let E be a PV-extension of K. Let $u, v \in E \backslash\{0\}$ such that:

$$
\frac{u^{\prime}}{u}=a \in K, \quad \frac{v^{\prime}}{v}=u
$$

then u is algebraic over K.

Corollary
Let $c \in C^{*}$ and $n \in \mathbb{N} \backslash\{0\}$. Then $e_{n}^{c}=\exp \left(c \hat{e}_{n-1}\right) \notin K_{n-1}$.

Main result

$$
\begin{array}{ccccccccccc}
C[x] & \subset & \mathrm{D}(C[x]) & \subset & \ldots & \subset & \mathrm{D}^{n-1}(C[x]) & \subset & \ldots & \subset & C[[x]] \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
F_{0} & \subset & F_{1} & \subset & \ldots & \subset & F_{n-1} & \subset & \ldots & \subset & C((x)) \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
K_{0} & \subset & K_{1} & \subset & \ldots & \subset & K_{n-1} & \subset & \ldots & \subset & K_{P V}
\end{array}
$$

$e_{n}(x)$

Main result

$$
\begin{array}{ccccccccccc}
C[x] & \subset & \mathrm{D}(C[x]) & \subset & \ldots & \subset & \mathrm{D}^{n-1}(C[x]) & \subset & \ldots & \subset & C[[x]] \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
F_{0} & \subset & F_{1} & \subset & \ldots & \subset & F_{n-1} & \subset & \ldots & \subset & C((x)) \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
K_{0} & \subset & K_{1} & \subset & \ldots & \subset & K_{n-1} & \subset & \ldots & \subset & K_{P V}
\end{array}
$$

$e_{n}(x) \notin K_{n-1}$, and...

Main result

$$
\begin{array}{ccccccccccc}
C[x] & \subset & \mathrm{D}(C[x]) & \subset & \ldots & \subset & \mathrm{D}^{n-1}(C[x]) & \subset & \ldots & \subset & C[[x]] \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
F_{0} & \subset & F_{1} & \subset & \ldots & \subset & F_{n-1} & \subset & \ldots & \subset & C((x)) \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
K_{0} & \subset & K_{1} & \subset & \ldots & \subset & K_{n-1} & \subset & \ldots & \subset & K_{P V}
\end{array}
$$

$e_{n}(x) \notin F_{n-1}$, and...

Main result

$$
\begin{array}{ccccccccccc}
C[x] & \subset & \mathrm{D}(C[x]) & \subset & \ldots & \subset & \mathrm{D}^{n-1}(C[x]) & \subset & \ldots & \subset & C[[x]] \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
F_{0} & \subset & F_{1} & \subset & \ldots & \subset & F_{n-1} & \subset & \ldots & \subset & C((x)) \\
\cap & & \cap & & \ddots & & \cap & & \ddots & & \\
K_{0} & \subset & K_{1} & \subset & \ldots & \subset & K_{n-1} & \subset & \ldots & \subset & K_{P V}
\end{array}
$$

$e_{n}(x) \notin \mathrm{D}^{n-1}(K[x])$, finishing the proof.

Non linear differential equations

- Diff. definable over $R \longrightarrow$ linear differential equation.
- Diff. algebraic over $R \longrightarrow$ non-linear differential equation.

Non linear differential equations

- Diff. definable over $R \longrightarrow$ linear differential equation.
- Diff. algebraic over $R \longrightarrow$ non-linear differential equation.

Theorem

Let $f \in K[[x]]$. If there is $n \in \mathbb{N}$ with $f \in \mathrm{D}^{n}(R)$, then f is differentially algebraic over R.

Non linear differential equations

- Diff. definable over $R \longrightarrow$ linear differential equation.
- Diff. algebraic over $R \longrightarrow$ non-linear differential equation.

Theorem

Let $f \in K[[x]]$. If there is $n \in \mathbb{N}$ with $f \in \mathrm{D}^{n}(R)$, then f is differentially algebraic over R.

The proof is constructive and it is implemented.

Non linear differential equations

- Double exponential $(\exp (\exp (x)-1))$:

$$
f^{\prime}(x)-\exp (x) f(x)=0 \rightarrow f^{\prime \prime}(x) f(x)-f^{\prime}(x)^{2}-f^{\prime}(x) f(x)=0
$$

Non linear differential equations

- Double exponential $(\exp (\exp (x)-1))$:

$$
f^{\prime}(x)-\exp (x) f(x)=0 \rightarrow f^{\prime \prime}(x) f(x)-f^{\prime}(x)^{2}-f^{\prime}(x) f(x)=0
$$

- Mathieu functions:

$$
\begin{gathered}
f^{\prime \prime}(x)-(a-2 q \cos (2 x)) f(x)=0 \\
\downarrow \\
f^{(5)}(x) f(x)^{3}-3 f^{(4)}(x) f^{\prime}(x) f(x)^{2}-4 f^{\prime \prime \prime}(x) f^{\prime \prime}(x) f(x)^{2}+ \\
6 f^{\prime \prime \prime}(x) f^{\prime}(x)^{2} f(x)+4 f^{\prime \prime \prime}(x) f(x)^{3}+6 f^{\prime \prime}(x)^{2} f^{\prime}(x) f(x) \\
-6 f^{\prime \prime}(x) f^{\prime}(x)^{3}-4 f^{\prime \prime}(x) f^{\prime}(x) f(x)^{2}=0
\end{gathered}
$$

The reverse is not true

Remark

Not all Diff. algebraic functions are D^{n}-finite (M. Van der Put)

The reverse is not true

Remark

Not all Diff. algebraic functions are D^{n}-finite (M. Van der Put)
Key property
Let $P\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)$ be a differential polynomial and $\mathcal{A}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a finite set of solutions, i.e.,

$$
P\left(x, f_{i}(x), \ldots, f_{i}^{(n)}(x)\right)=0
$$

Then \mathcal{A} is a algebraically independent set.

The reverse is not true

Remark

Not all Diff. algebraic functions are D^{n}-finite (M. Van der Put)

Key property

Let $P\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)$ be a differential polynomial and $\mathcal{A}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a finite set of solutions, i.e.,

$$
P\left(x, f_{i}(x), \ldots, f_{i}^{(n)}(x)\right)=0
$$

Then \mathcal{A} is a algebraically independent set.

Example

The equation $y^{\prime}=y^{2}(y-1)$ has that property.

The SAGE package

SAGE system

SAGE

- Open Source computer system based on Python
- Interfaces to many mathematical tools.

SAGE system

SAGE

- Open Source computer system based on Python
- Interfaces to many mathematical tools.

Public repository

https://www.dk-compmath.jku.at/Members/antonio/sage-packagedd_functions

SAGE system

SAGE

- Open Source computer system based on Python
- Interfaces to many mathematical tools.

Public repository

https://www.dk-compmath.jku.at/Members/antonio/sage-packagedd_functions

Based on package ore_algebra by M. Kauers and M. Mezzarobba

SAGE system

Features

- Implementation of $\mathrm{D}(R)$ for any ring R.
- Computation of initial values for elements of $\mathrm{D}(R)$.
- Implementation of closure properties $(+,-, *, /, \circ)$.
- Possibility to have constant parameters.
- Computation of non-linear differential equations.
- Library of examples (extracted from DLMF)

Conclusions and Future work

Conclusions

Achievements

- Extended the framework of D-finite to wider class of computable functions
- Implemented closure properties for DD-finite
- Implemented composition of D^{n}-finite functions
- Detected limits of the class of differentially definable
- Code available for SAGE

Conclusions

Future work

- Improve performance of the current code
- Study analytic properties of DD-finite functions
- Study combinatorial properties of DD-finite functions
- Study the annalog of DD-finite functions in sequences
- Multivariate case
- Generalize for other type of operators (q-shift)

Thank you!

Contact webpage:

- https://www.dk-compmath.jku.at/people/antonio
- https://www.risc.jku.at/home/ajpastor

SAGE code:

- https://www.dk-compmath.jku.at/Members/antonio/ sage-package-dd_functions

