

DD-finite

 $D^n \subset DA$

Der Wissenschaftsfonds.

Conclusions

Extending algorithms for D-finite functions Dⁿ-finite functions

Dⁿ-finite

Implementation

Antonio Jiménez-Pastor, Veronika Pillwein

LIPN (Jun. 2019)

D-finite

Extending algorithms for D-finite functions

- D-finite functions
- OD-finite functions
- Implementation of closure properties
- Oⁿ-finite functions
- Inclusion properties
- Onclusions and future work

Extending D-finite to DD-finite

Through this talk we consider:

- K: a computable field
- K[[x]]: ring of formal power series over K.
- Given F a field:

$$V_F(f) = \langle f, f', f'', ... \rangle_F.$$

D-finite functions

DD-finite

D-finite

0000

Definition

Let $f \in K[[x]]$. We say that f is *D*-finite (or holonomic) if there exist $d \in \mathbb{N}$ and polynomials $p_0(x), ..., p_d(x)$ such that:

$$p_d(x)f^{(d)}(x) + \dots + p_0(x)f(x) = 0.$$

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

We say that d is the *order* of f.

Implementation

A lot of special functions are D-finite:

- Exponential function: e^{x} .
- Trigonometric functions: sin(x), cos(x).
- Logarithm function: $\log(x+1)$.
- Bessel functions: $J_n(x)$.

• Hypergeometric functions:
$${}_{p}F_{q}\left(\begin{array}{c}a_{1},...,a_{p}\\b_{1},...,b_{q}\end{array};x\right)$$
.

- Airy functions: Ai(x), Bi(x).
- Combinatorial generating functions: $F(x), C(x), \dots$

Non-D-finite examples

There are power series that are not D-finite:

- Double exponential: $f(x) = e^{e^x}$.
- Tangent: $tan(x) = \frac{sin(x)}{cos(x)}$.
- Gamma function: $f(x) = \Gamma(x+1)$.
- Partition Generating Function: $f(x) = \sum_{n \ge 0} p(n)x^n$.

DD-finite Functions

DD-finite

D-finite

Definition

Let $f \in K[[x]]$. We say that f is *D*-finite if there exist $d \in \mathbb{N}$ and polynomials $p_0(x), ..., p_d(x)$ such that:

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

$$p_d(x)f^{(d)}(x) + \dots + p_0(x)f(x) = 0.$$

DD-finite Functions

•**00**00

D-finite

DD-finite

Definition

Let $f \in K[[x]]$. We say that f is *DD-finite* if there exist $d \in \mathbb{N}$ and D-finite elements $r_0(x), ..., r_d(x)$ such that:

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

$$r_d(x)f^{(d)}(x) + \dots + r_0(x)f(x) = 0.$$

The set is bigger than the D-finite functions:

$$f \text{ is D-finite } \Rightarrow f \text{ is DD-finite,}$$

$$f(x) = e^{e^{x}} \Rightarrow f'(x) - e^{x}f(x) = 0,$$

$$f(x) = \tan(x) \Rightarrow \cos(x)^{2}f''(x) - 2f(x) = 0,$$

$$f(x) = e^{\int_{0}^{x} J_{n}(t)dt} \Rightarrow f'(x) - J_{n}(x)f(x) = 0$$

Extending algorithms for D-finite functions

Differentially Definable Functions

Implementation

DD-finite

00000

Definition

D-finite

Let $f \in K[[x]]$. We say that f is *DD-finite* if there exist $d \in \mathbb{N}$ and D-finite elements $r_0(x), ..., r_d(x)$ such that:

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

$$r_d(x)f^{(d)}(x) + \dots + r_0(x)f(x) = 0.$$

Differentially Definable Functions

Implementation

DD-finite

00000

Definition

D-finite

Let $f \in K[[x]]$ and $R \subset K[[x]]$ a ring. We say that f is differentially definable over R if there exist $d \in \mathbb{N}$ and elements in $R r_0(x), ..., r_d(x)$ such that:

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

$$r_d(x)f^{(d)}(x) + \dots + r_0(x)f(x) = 0.$$

D(R): differentially definable functions over R.

Characterization Theorem

DD-finite

D-finite

The following are equivalent:

 $f(x) \in D(R).$

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}^{n+1}$

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

There are elements $r_0(x), ..., r_d(x) \in R$ and $g(x) \in D(R)$ such:

 $r_d(x)f^{(d)}(x) + ... + r_0(x)f(x) = g(x).$

Characterization Theorem

DD-finite

00000

D-finite

The following are equivalent:

 $f(x) \in D(R).$

Dⁿ-finite

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

There are elements $r_0(x), ..., r_d(x) \in R$ and $g(x) \in D(R)$ such:

$$r_d(x)f^{(d)}(x) + \dots + r_0(x)f(x) = g(x).$$

Let F be the *field of fractions* of R. Then $V_F(f)$ has finite dimension.

Closure properties

 $f(x), g(x) \in D(R)$ of order d_1, d_2 . F the field of fractions of R. a(x) algebraic over F of degree p.

Property	Is in $D(R)$	Order bound	
Addition	(f+g)	$d_1 + d_2$	
Product	(<i>fg</i>)	d_1d_2	
Differentiation	f'	d_1	
Integration	$\int f$	$d_1 + 1$	
Be Algebraic	a(x)	р	

Closure properties

 $f(x), g(x) \in D(R)$ of order d_1, d_2 . F the field of fractions of R. a(x) algebraic over F of degree p.

	Property	Is in $D(R)$	Order bound		
	Addition	(f+g)	$d_1 + d_2$		
	Product	(<i>fg</i>)	d_1d_2		
	Differentiation	f'	d_1		
	Integration	$\int f$	$d_1 + 1$		
	Be Algebraic	a(x)	р		
of by divect formula					

 \longrightarrow Proof by direct formula

 \longrightarrow Proof by linear algebra

Implementation of closure properties

Extending algorithms for D-finite functions

Let $R \subset K[[x]]$, F its field of fractions and $V_F(f)$ the F-vector space spanned by f and its derivatives.

The Characterization theorem provides

 $f(x) \in \mathsf{D}(R) \quad \Leftrightarrow \quad \dim(V_{\mathsf{F}}(f)) < \infty$

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $A \in R[\partial]$ such that $Ah = 0$

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $A \in R[\partial]$ such that $Ah = 0$

Method

• Compute $W \subset K[[x]]$ such that dim $(W) < \infty$ and $V_F(h) \subset W$.

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A}h = 0$

Method

- Compute $W \subset K[[x]]$ such that dim $(W) < \infty$ and $V_F(h) \subset W$.
- **2** Compute generators $\Phi = \{\phi_1, ..., \phi_n\}$ of *W*.

$\begin{array}{ccc} D\text{-finite} & DD\text{-finite} & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $A \in R[\partial]$ such that $Ah = 0$

Method

- Compute W ⊂ K[[x]] such that dim(W) < ∞ and V_F(h) ⊂ W.
- **2** Compute generators $\Phi = \{\phi_1, ..., \phi_n\}$ of *W*.
- So For i = 0, ..., dim(W), compute vectors $v_i \in F^n$ such that:

$$h^{(i)}(x) = \sum_{j=0}^{n} v_{ij}\phi_j.$$

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A}h = 0$

Method

Set up the ansatz:

$$\alpha_0 h(x) + \ldots + \alpha_n h^{(n)} = 0.$$

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $A \in R[\partial]$ such that $Ah = 0$

Method

Set up the ansatz:

$$\alpha_0 h(x) + \ldots + \alpha_n h^{(n)} = 0.$$

Solve the induced *F*-linear system for the variables α_k .

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $A \in R[\partial]$ such that $Ah = 0$

Method

Set up the ansatz:

$$\alpha_0 h(x) + \ldots + \alpha_n h^{(n)} = 0.$$

- Solve the induced *F*-linear system for the variables α_k .
- **()** Return $\mathcal{A} = \alpha_n \partial^n + ... + \alpha_1 \partial + \alpha_0$.

Extending algorithms for D-finite functions

The ansatz method

Specifications

Input: A power series
$$h(x)$$
 $(f(x) + g(x), f(x)g(x)$ or $a(x)$)
Output: An operator $\mathcal{A} \in R[\partial]$ such that $\mathcal{A}h = 0$

Method

- Compute W ⊂ K[[x]] such that dim(W) < ∞ and V_F(h) ⊂ W.
- **2** Compute generators $\Phi = \{\phi_1, ..., \phi_n\}$ of *W*.
- So For i = 0, ..., dim(W), compute vectors $v_i \in F^n$ such that:

$$h^{(i)}(x) = \sum_{j=0}^{n} v_{ij}\phi_j.$$

$\begin{array}{cccc} D-finite & DD-finite & Implementation \\ \circ \circ \circ \circ \circ & \circ \circ & \circ & \circ \end{array} \\ \begin{array}{cccc} D^n-finite & D^n \subsetneq D^{n+1} & D^n \subsetneq DA \\ \circ \circ \circ & \circ \circ & \circ & \circ & \circ \end{array} \\ \begin{array}{ccccc} O^n-finite & O^n \smile D^{n+1} \\ \circ \circ \circ & \circ & \circ & \circ \end{array} \\ \end{array}$

Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

$$w''(x) + (a - 2q\cos(2x))w(x) = 0$$

$\begin{array}{cccc} D-finite & DD-finite & Implementation \\ \circ \circ \circ \circ \circ & \circ & \circ & \circ \end{array} \\ \begin{array}{cccc} D^n-finite & D^n \subsetneq D^{n+1} & D^n \subsetneq DA & Conclusions \\ \circ \circ \circ & \circ & \circ & \circ & \circ \end{array} \\ \end{array}$

Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

$$w''(x) + (a - 2q\cos(2x))w(x) = 0$$

The sine and cosine

• Cos:
$$w_1(x)$$
 with $w_1(0) = 1$ and $w'_1(0) = 0$.

• Sin:
$$w_2(x)$$
 with $w_2(0) = 0$ and $w_2'(0) = 1$.

D-finite DD-finite Implementation D^n -finite $D^n \subseteq D$ 0000 0000 0000 000 000 000 000

Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

$$w''(x) + (a - 2q\cos(2x))w(x) = 0$$

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

The sine and cosine

- Cos: $w_1(x)$ with $w_1(0) = 1$ and $w'_1(0) = 0$.
- Sin: $w_2(x)$ with $w_2(0) = 0$ and $w'_2(0) = 1$.

$$\mathcal{W} = egin{bmatrix} w_1 & w_2 \ w_1' & w_2' \ w_1' & w_2' \ \end{pmatrix} = w_1(x) w_2'(x) - w_1'(x) w_2(x) = 1.$$

Mathieu: derivative

Equation for $w'_1(x)$ and $w'_2(x)$

$$(a-2q\cos(2x))$$
 y"

$$-(4q\sin(2x))$$
 y'

$$+(a^2-4aq\cos{(2x)}+4q^2\cos{(2x)}^2) \quad y = 0$$

Mathieu: product

Equation for $w_1(x)w'_2(x)$ and $w_2(x)w'_1(x)$

$$\beta_4 y^{(4)} + \beta_3 y^{(3)} + \beta_2 y'' + \beta_1 y' = 0,$$

$$\beta_4 = q \sin(2x)^2 - a \cos(2x) + 2q$$

$$\beta_3 = -2\sin(2x)(2q\cos(2x) + a)$$

$$\beta_2 = -4 (2q \sin(2x)^2 \cos(2x) - q(a+1) \cos(2x)^2 + (4q^2 + a^2) \cos(2x) - 3q(a+1))$$

$$\beta_1 = 8\sin(2x) \left(q^2\sin(2x)^2 - 5aq\cos(2x) + 14q^2 - a^2\right)$$

D^n -finite functions: iterating the process

Extending algorithms for D-finite functions

Dⁿ-finite functions

Remark

Given a differential ring $R \subset K[[x]]$, the closure properties show that D(R) is again a ring. Hence we can iterate the construction with the same algorithms.

D^{*n*}-finite functions

DD-finite

Remark

D-finite

Given a differential ring $R \subset K[[x]]$, the closure properties show that D(R) is again a ring. Hence we can iterate the construction with the same algorithms.

Dⁿ-finite

000

Implementation

 $\mathsf{D}^n \subseteq \mathsf{D}\mathsf{A}$

Conclusions

D^{n} -finite functions

We define the Dⁿ-finite functions as the *n*th iteration over the polynomials, i.e., $D^n(K[x])$.

$$\mathcal{K}[x] \subset \mathsf{D}(\mathcal{K}[x]) \subset \mathsf{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathsf{D}^n(\mathcal{K}[x]) \subset \ldots$$

New Properties

 $f(x) \in D^{n}(K[x])$ of order d_{1} . $g(x) \in D^{m}(K[x])$ of order d_{2} . a(x) algebraic over $D^{m}(K[x])$ of degree p.

Property	Function	ls in	Order bound
Composition	$f \circ g$	$D^{n+m}(K[x])$	d_1
Alg. subs.	f ∘ a	$D^{n+m}(K[x])$	pd_1

$D^n \subsetneq D^{n+1}$: Iterated exponentials

Extending algorithms for D-finite functions

Iterated exponentials

$\mathcal{K}[x] \subsetneq \mathsf{D}(\mathcal{K}[x]) \subset \mathsf{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathsf{D}^n(\mathcal{K}[x]) \subset \ldots$

Iterated exponentials

$$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subsetneq \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$$

$$e^x \in \mathsf{D}(\mathcal{K}[x]), \qquad e^{e^x-1} \in \mathsf{D}^2(\mathcal{K}[x])$$

Iterated exponentials

$$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subsetneq \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$$

$$e^x \in \mathsf{D}(\mathcal{K}[x]), \qquad e^{e^x-1} \in \mathsf{D}^2(\mathcal{K}[x])$$

Iterated exponentials

$$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subsetneq \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$$

$$e^x \in \mathsf{D}(\mathcal{K}[x]), \qquad e^{e^x-1} \in \mathsf{D}^2(\mathcal{K}[x])$$

Iterated Exponentials

- $e_0(x) = 1$,
- $\hat{e}_n(x) = \int_0^x e_n(t) dt$,
- $e_{n+1}(x) = \exp(\hat{e}_n(x)).$

Increasing chain

Proposition

Ä

• $e_n(x) \in D^n(K[x]).$

•
$$e_n(x) \notin \mathsf{D}^{n-1}(K[x]).$$

$$\begin{array}{cccc} D-finite & DD-finite & Implementation & D^n-finite & D^n \subsetneq D^{n+1} & D^n \subsetneq DA & Conclusions \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

Increasing chain

Proposition

Ä

• $e_n(x) \in \mathsf{D}^n(K[x]).$

•
$$e_n(x) \notin \mathsf{D}^{n-1}(K[x]).$$

First is trivial:
$$e'_n(x) = e_{n-1}(x)e_n(x)$$
.

Increasing chain

Proposition

- $e_n(x) \in \mathsf{D}^n(K[x]).$
- $e_n(x) \notin D^{n-1}(K[x]).$

Second: proof using Differential Galois Theory (M. F. Singer)

Picard-Vessiot

Picard-Vessiot closure

Let (K, ∂) be a differential field with constants *C*. The *Picard-Vessiot* closure is the *smallest* field with same constants such that **all** linear differential equation with coefficients in *K* have all the *C*-linearly independent solutions.

Picard-Vessiot

Picard-Vessiot closure

Let (K, ∂) be a differential field with constants *C*. The *Picard-Vessiot* closure is the *smallest* field with same constants such that **all** linear differential equation with coefficients in *K* have all the *C*-linearly independent solutions.

$$C[x] \subset D(C[x]) \subset \ldots \subset D^{n}(C[x]) \subset \ldots \subset C[[x]]$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$F_{0} \subset F_{1} \subset \ldots \subset F_{n} \subset \ldots \subset C((x))$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$K_{0} \subset K_{1} \subset \ldots \subset K_{n} \subset \ldots \subset K_{PV}$$

D-finite DD-finite Implementation D^n -finite

Main result

Proposition

Let (K, ∂) be a differential field with algebraically closed field of constants *C*. Let *E* be a PV-extension of *K*. Let $u, v \in E \setminus \{0\}$ such that:

$$\frac{u'}{u} = a \in K, \qquad \frac{v'}{v} = u,$$

 $\mathsf{D}^n \subset \mathsf{D}^{n+1}$

000000

 $D^n \subseteq DA$

Conclusions

then u is algebraic over K.

D-finite DD-finite Dⁿ-finite

 D' 00

$$C \subseteq D^{n+1} \quad D$$

 $\subsetneq \mathsf{DA}$

Main result

Proposition

Let (K, ∂) be a differential field with algebraically closed field of constants C. Let E be a PV-extension of K. Let $u, v \in E \setminus \{0\}$ such that:

$$\frac{u'}{u} = a \in K, \qquad \frac{v'}{v} = u,$$

then u is algebraic over K.

Corollary

Let
$$c \in C^*$$
 and $n \in \mathbb{N} \setminus \{0\}$. Then $e_n^c = \exp(c\hat{e}_{n-1}) \notin K_{n-1}$.

Main result

$$C[x] \subset D(C[x]) \subset \dots \subset D^{n-1}(C[x]) \subset \dots \subset C[[x]]$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$F_0 \subset F_1 \subset \dots \subset F_{n-1} \subset \dots \subset C((x))$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$K_0 \subset K_1 \subset \dots \subset K_{n-1} \subset \dots \subset K_{PV}$$

 $e_n(x)$

Х

D-finite DD-finite Implementation D^n -finite $D^n \subsetneq D^{n+1}$ $D^n \subsetneq DA$ Conclusions

Main result

Х

$$C[x] \subset D(C[x]) \subset \ldots \subset D^{n-1}(C[x]) \subset \ldots \subset C[[x]]$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$F_0 \subset F_1 \subset \ldots \subset F_{n-1} \subset \ldots \subset C((x))$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$K_0 \subset K_1 \subset \ldots \subset K_{n-1} \subset \ldots \subset K_{PV}$$

 $e_n(x) \notin K_{n-1}$, and...

Extending algorithms for D-finite functions

D-finite DD-finite Implementation D^n -finite $D^n \subsetneq D^{n+1}$ $D^n \subsetneq DA$ Conclusions

Main result

Х

$$C[x] \subset D(C[x]) \subset \dots \subset D^{n-1}(C[x]) \subset \dots \subset C[[x]]$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$F_0 \subset F_1 \subset \dots \subset F_{n-1} \subset \dots \subset C((x))$$

$$\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$$

$$K_0 \subset K_1 \subset \dots \subset K_{n-1} \subset \dots \subset K_{PV}$$

 $e_n(x) \notin F_{n-1}$, and...

Extending algorithms for D-finite functions

Main result

$C[x] \subset D(C[x]) \subset \dots \subset D^{n-1}(C[x]) \subset \dots \subset C[[x]]$ $\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$ $F_0 \subset F_1 \subset \dots \subset F_{n-1} \subset \dots \subset C((x))$ $\cap \qquad \cap \qquad \ddots \qquad \cap \qquad \ddots \qquad \vdots$ $K_0 \subset K_1 \subset \dots \subset K_{n-1} \subset \dots \subset K_{PV}$

 $e_n(x) \notin D^{n-1}(K[x])$, finishing the proof.

- Diff. definable over $R \longrightarrow$ linear differential equation.
- Diff. algebraic over $R \longrightarrow$ non-linear differential equation.

- Diff. definable over $R \longrightarrow$ linear differential equation.
- Diff. algebraic over $R \longrightarrow$ non-linear differential equation.

Theorem

Let $f \in K[[x]]$. If there is $n \in \mathbb{N}$ with $f \in D^n(R)$, then f is differentially algebraic over R.

- Diff. definable over $R \longrightarrow$ linear differential equation.
- Diff. algebraic over $R \longrightarrow$ non-linear differential equation.

Theorem

Let $f \in K[[x]]$. If there is $n \in \mathbb{N}$ with $f \in D^n(R)$, then f is differentially algebraic over R.

The proof is constructive and it is implemented.

DD-finite

D-finite

• Double exponential $(\exp(\exp(x) - 1))$:

Implementation

 $f'(x) - \exp(x)f(x) = 0 \to f''(x)f(x) - f'(x)^2 - f'(x)f(x) = 0$

Dⁿ-finite

 $\mathsf{D}^n \subsetneq \mathsf{D}\mathsf{A}$

00

Conclusions

DD-finite

D-finite

• Double exponential $(\exp(\exp(x) - 1))$:

Implementation

 $f'(x) - \exp(x)f(x) = 0 \to f''(x)f(x) - f'(x)^2 - f'(x)f(x) = 0$

Dⁿ-finite

 $\mathsf{D}^n \subsetneq \mathsf{D}\mathsf{A}$

00

Conclusions

Mathieu functions:

$$f''(x) - (a - 2q\cos(2x))f(x) = 0$$

$$\downarrow$$

$$f^{(5)}(x)f(x)^3 - 3f^{(4)}(x)f'(x)f(x)^2 - 4f'''(x)f''(x)f(x)^2 + 6f'''(x)f'(x)^2f(x) + 4f'''(x)f(x)^3 + 6f''(x)^2f'(x)f(x) - 6f''(x)f'(x)^3 - 4f''(x)f'(x)f(x)^2 = 0$$

The reverse is not true

Remark

Not all Diff. algebraic functions are D^{n} -finite (M. Van der Put)

The reverse is not true

DD-finite

Remark

D-finite

Not all Diff. algebraic functions are D^n -finite (M. Van der Put)

Dⁿ-finite

 $\mathsf{D}^n \subsetneq \mathsf{D}\mathsf{A}$

Conclusions

Key property

Let $P(x, y, y', ..., y^{(n)})$ be a differential polynomial and $\mathcal{A} = \{f_1, ..., f_n\}$ be a finite set of solutions, i.e.,

$$P(x, f_i(x), ..., f_i^{(n)}(x)) = 0$$

Then \mathcal{A} is a algebraically independent set.

Implementation

The reverse is not true

DD-finite

Remark

D-finite

Not all Diff. algebraic functions are D^n -finite (M. Van der Put)

Dⁿ-finite

 $\mathsf{D}^n \subsetneq \mathsf{D}\mathsf{A}$

Conclusions

Key property

Let $P(x, y, y', ..., y^{(n)})$ be a differential polynomial and $\mathcal{A} = \{f_1, ..., f_n\}$ be a finite set of solutions, i.e.,

$$P(x, f_i(x), ..., f_i^{(n)}(x)) = 0$$

Then \mathcal{A} is a algebraically independent set.

Implementation

Example

The equation
$$y' = y^2(y-1)$$
 has that property.

Extending algorithms for D-finite functions

The SAGE package

Extending algorithms for D-finite functions

SAGE

- Open Source computer system based on Python
- Interfaces to many mathematical tools.

SAGE

- Open Source computer system based on Python
- Interfaces to many mathematical tools.

Public repository

 $https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions$

 $D^n \subseteq DA$

Conclusions

SAGE

- Open Source computer system based on Python
- Interfaces to many mathematical tools.

Public repository

 $https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions$

Based on package ore_algebra by M. Kauers and M. Mezzarobba

 $D^n \subseteq DA$

Conclusions

DD-finite

D-finite

Features

• Implementation of D(R) for any ring R.

Implementation

• Computation of initial values for elements of D(R).

Dⁿ-finite

Conclusions

 $D^n \subset DA$

- Implementation of closure properties $(+, -, *, /, \circ)$.
- Possibility to have constant parameters.
- Computation of non-linear differential equations.
- Library of examples (extracted from DLMF)

Conclusions and Future work

Extending algorithms for D-finite functions

D-finite

D'-finite

Finite $D^n \subseteq O^n$

$$\mathsf{D}^{n+1} \quad \mathsf{D}^n_{\circ\circ} \subsetneq$$

DA

Conclusions

Conclusions

Achievements

DD-finite

- Extended the framework of D-finite to wider class of computable functions
- Implemented closure properties for DD-finite
- Implemented composition of Dⁿ-finite functions
- Detected limits of the class of differentially definable
- Code available for SAGE

 D^n -finite

finite D"

 $D^{n+1} \quad D^n_{oo} \subsetneq DA$

Conclusions

Future work

DD-finite

- Improve performance of the current code
- Study analytic properties of DD-finite functions
- Study combinatorial properties of DD-finite functions
- Study the annalog of DD-finite functions in sequences
- Multivariate case
- Generalize for other type of operators (q-shift)

Thank you!

Contact webpage:

- https://www.dk-compmath.jku.at/people/antonio
- https://www.risc.jku.at/home/ajpastor

SAGE code:

 https://www.dk-compmath.jku.at/Members/antonio/ sage-package-dd_functions