The $1 / N$ Expansion in Colored Tensor Models

Răzvan Gurău

Laboratoire d'Informatique de Paris-Nord, 2011

Introduction

Colored Tensor Models

Colored Graphs Jackets and the $1 / \mathrm{N}$ expansion Topology
Leading order graphs are spheres

Conclusion

Introduction

Matrix Models

Matrix Models

A success story: Matrix Models in two dimensions

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics:

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.
Mathematics:

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.
Mathematics: knot theory,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.
Mathematics: knot theory, number theory and the Riemann hypothesis,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.
Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves,

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.
Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves, enumeration problems, etc.

Matrix Models

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- Generate ribbon graphs \leftrightarrow discretized surfaces.
- They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in $D=2$, etc.
Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves, enumeration problems, etc.

All these applications rely crucially on the " $1 / N$ " expansion!

Ribbon Graphs as Feynman Graphs

Ribbon Graphs as Feynman Graphs

Consider the partition function.

$$
Z(Q)=\int[d \phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_{1} a_{2}} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}} \phi_{b_{1} b_{2}}^{*}+\lambda \sum \phi_{a_{1} a_{2}} \phi_{a_{2} a_{3}} \phi_{a_{3} a_{1}}\right)}
$$

Ribbon Graphs as Feynman Graphs

Consider the partition function．

$$
Z(Q)=\int[d \phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_{1} a_{2}} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}} \phi_{b_{1} b_{2}}^{*}+\lambda \sum \phi_{a_{1} a_{2}} \phi_{a_{2} a_{3}} \phi_{a_{3} a_{1}}\right)}
$$

The vertex is a ribbon vertex because the field ϕ has two arguments．

Ribbon Graphs as Feynman Graphs

Consider the partition function.

$$
Z(Q)=\int[d \phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_{1} a_{2}} \delta_{1} b_{1} \delta_{a_{2} b_{2}} \phi_{b_{1} b_{2}}^{*}+\lambda \sum \phi_{a_{1} a_{2}} \phi_{a_{2} a_{3}} \phi_{3_{3} a_{1}}\right)}
$$

The vertex is a ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands).

Ribbon Graphs as Feynman Graphs

Consider the partition function.

$$
Z(Q)=\int[d \phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_{1} a_{2}} \delta_{1 b_{1}} \delta_{a_{2} b_{2}} \phi_{b_{1} b_{2}}^{*}+\lambda \sum \phi_{a_{1} a_{2}} \phi_{a_{2} a_{3}} \phi_{a_{3} a_{1}}\right)}
$$

The vertex is a ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands). The strands close into faces.

Ribbon Graphs as Feynman Graphs

Consider the partition function.

$$
Z(Q)=\int[d \phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_{1} a_{2}} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}} \phi_{b_{1} b_{2}}^{*}+\lambda \sum \phi_{a_{1} a_{2}} \phi_{a_{2} a_{3}} \phi_{a_{3} a_{1}}\right)}
$$

The vertex is a ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands). The strands close into faces.

$Z(Q)$ is a sum over ribbon Feynman graphs.

Amplitude of Ribbon Graphs

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}}
$$

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}}
$$

$\sum \delta_{a_{1} b_{1}}$

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{\mathrm{a}_{2} b_{2}}
$$

$\sum \delta_{a_{1} b_{1}} \delta_{b_{1} c_{1}}$

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}}
$$

$$
\sum \delta_{a_{1} b_{1}} \delta_{b_{1} c_{1}} \ldots \delta_{w_{1} a_{1}}
$$

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{\mathrm{a}_{2} b_{2}}
$$

$$
\sum \delta_{a_{1} b_{1}} \delta_{b_{1} c_{1}} \ldots \delta_{w_{1} a_{1}}=\sum \delta_{a_{1} a_{1}}=N
$$

$$
A=\lambda^{\mathcal{N}} N^{\mathcal{N}-\mathcal{L}+\mathcal{F}}=\lambda^{\mathcal{N}} N^{2-2 g(\mathcal{G})}
$$

with $g_{\mathcal{G}}$ is the genus of the graph.

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{\mathrm{a}_{2} b_{2}}
$$

$$
\sum \delta_{a_{1} b_{1}} \delta_{b_{1} c_{1}} \ldots \delta_{w_{1} a_{1}}=\sum \delta_{a_{1} a_{1}}=N
$$

$$
A=\lambda^{\mathcal{N}} N^{\mathcal{N}-\mathcal{L}+\mathcal{F}}=\lambda^{\mathcal{N}} N^{2-2 g(\mathcal{G})}
$$

with $g_{\mathcal{G}}$ is the genus of the graph. $1 / N$ expansion in the genus.

Amplitude of Ribbon Graphs

The Amplitude of a graph with \mathcal{N} vertices is

$$
A=\lambda^{\mathcal{N}} N^{-\mathcal{L}+\mathcal{N}} \sum \prod_{\text {lines }} \delta_{a_{1} b_{1}} \delta_{\mathrm{a}_{2} b_{2}}
$$

$$
\sum \delta_{a_{1} b_{1}} \delta_{b_{1} c_{1}} \ldots \delta_{w_{1} a_{1}}=\sum \delta_{a_{1} a_{1}}=N
$$

$$
A=\lambda^{\mathcal{N}} N^{\mathcal{N}-\mathcal{L}+\mathcal{F}}=\lambda^{\mathcal{N}} N^{2-2 g(\mathcal{G})}
$$

with $g_{\mathcal{G}}$ is the genus of the graph. $1 / N$ expansion in the genus. Planar graphs $\left(g_{\mathcal{G}}=0\right)$ dominate in the large N limit.

Ribbon Graphs are Dual to Discrete Surfaces

Ribbon Graphs are Dual to Discrete Surfaces

Ribbon Graphs are Dual to Discrete Surfaces

Place a point in the middle of each face.

Ribbon Graphs are Dual to Discrete Surfaces

Place a point in the middle of each face. Draw a line crossing each ribbon line.

Ribbon Graphs are Dual to Discrete Surfaces

Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

Ribbon Graphs are Dual to Discrete Surfaces

Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.

Ribbon Graphs are Dual to Discrete Surfaces

Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.
Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules).

Ribbon Graphs are Dual to Discrete Surfaces

Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.
Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules). The dominant planar graphs represent spheres.

From Matrix to CO ORED Tensor Models

From Matrix to COLORED Tensor Models

surfaces \leftrightarrow ribbon graphs

From Matrix to CO ORED Tensor Models

surfaces \leftrightarrow ribbon graphs
D dimensional spaces \leftrightarrow colored stranded graphs

From Matrix to CO ORED Tensor Models

surfaces \leftrightarrow ribbon graphs
D dimensional spaces \leftrightarrow colored stranded graphs

Matrix $M_{a b}$, $S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$

From Matrix to CO ORED Tensor Models

surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$
D dimensional spaces \leftrightarrow colored stranded graphs

Tensors $T^{i}{ }_{a_{1} \ldots \text { ad }}$ with color i
$S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)$

From Matrix to CO ORED Tensor Models

D dimensional spaces \leftrightarrow colored stranded graphs
surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$

Tensors $T^{i}{ }_{a_{1} \ldots \text { ad }}$ with color i
$S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)$
$g(\mathcal{G}) \geq 0$ genus

From Matrix to CO ORED Tensor Models

D dimensional spaces \leftrightarrow colored stranded graphs
surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$
$g(\mathcal{G}) \geq 0$ genus

Tensors $T^{i}{ }_{a_{1} \ldots \text { ad }}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots . .}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)
$$

$$
\omega(\mathcal{G}) \geq 0 \text { degree }
$$

From Matrix to CO ORED Tensor Models

D dimensional spaces \leftrightarrow colored stranded graphs
surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$
$g(\mathcal{G}) \geq 0$ genus
$1 / N$ expansion in the genus
$A(\mathcal{G})=N^{2-2 g(\mathcal{G})}$

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots . .}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)
$$

$$
\omega(\mathcal{G}) \geq 0 \text { degree }
$$

From Matrix to COLORED Tensor Models

D dimensional spaces \leftrightarrow colored stranded graphs
surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$
$g(\mathcal{G}) \geq 0$ genus
$1 / N$ expansion in the genus
$A(\mathcal{G})=N^{2-2 g(\mathcal{G})}$

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots . .}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)
$$

$$
\omega(\mathcal{G}) \geq 0 \text { degree }
$$

$1 / N$ expansion in the degree

$$
A(\mathcal{G})=N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}
$$

From Matrix to COLORED Tensor Models

D dimensional spaces \leftrightarrow colored stranded graphs
surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$
$g(\mathcal{G}) \geq 0$ genus
$1 / N$ expansion in the genus
$A(\mathcal{G})=N^{2-2 g(\mathcal{G})}$
leading order: $g(\mathcal{G})=0$, spheres.

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots . .}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)
$$

$$
\omega(\mathcal{G}) \geq 0 \text { degree }
$$

$1 / N$ expansion in the degree

$$
A(\mathcal{G})=N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}
$$

From Matrix to COLORED Tensor Models

D dimensional spaces \leftrightarrow colored stranded graphs
surfaces \leftrightarrow ribbon graphs

Matrix $M_{a b}$,
$S=N\left(M_{a b} \bar{M}_{a b}+\lambda M_{a b} M_{b c} M_{c a}\right)$
$g(\mathcal{G}) \geq 0$ genus
$1 / N$ expansion in the genus
$A(\mathcal{G})=N^{2-2 g(\mathcal{G})}$
leading order: $g(\mathcal{G})=0$, spheres.

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i $S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}\right)$

$$
\omega(\mathcal{G}) \geq 0 \text { degree }
$$

$1 / N$ expansion in the degree $A(\mathcal{G})=N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}$
leading order: $\omega(\mathcal{G})=0$, spheres.
-0000000000000

Introduction

Colored Tensor Models

Colored Graphs
Jackets and the $1 / \mathrm{N}$ expansion
Topology
Leading order graphs are spheres

Conclusion

Colored Stranded Graphs

Colored Stranded Graphs

Clockwise and anticlockwise turning colored

 vertices (positive and negative oriented D simplices).
Colored Stranded Graphs

Clockwise and anticlockwise turning colored vertices（positive and negative oriented D simplices）．

Colored Stranded Graphs

Clockwise and anticlockwise turning colored vertices (positive and negative oriented D simplices).

Lines have a well defined color and D parallel strands ($D-1$ simplices).

Colored Stranded Graphs

Clockwise and anticlockwise turning colored vertices (positive and negative oriented D simplices).

Lines have a well defined color and D parallel strands ($D-1$ simplices).

Colored Stranded Graphs

Clockwise and anticlockwise turning colored vertices (positive and negative oriented D simplices).

Lines have a well defined color and D parallel
 strands ($D-1$ simplices).

Strands are identified by a couple of colors ($D-2$ simplices).

Colored Tensor Models

Răzvan Gurău,

0000000000000

Action

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.

$$
S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i o} a_{i} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i o} a_{i} \ldots a_{i+1}}^{i}\right)
$$

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.

$$
S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i o} a_{i} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i o} a_{i} \ldots a_{i i+1}}^{i}\right)
$$

Topology of the Colored Graphs

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.

$$
S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i o} a_{i} \ldots a_{i i+1}}^{i}\right)
$$

Topology of the Colored Graphs

Amplitude of the graphs:

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i o} a_{i j} \ldots a_{i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$
- the \mathcal{L} lines of a graphs bring each $N^{-D / 2}$

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$
- the \mathcal{L} lines of a graphs bring each $N^{-D / 2}$
- the \mathcal{F} faces of a graph bring each N

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i o} a_{i} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i o} a_{i j} \ldots a_{i i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$
- the \mathcal{L} lines of a graphs bring each $N^{-D / 2}$
- the \mathcal{F} faces of a graph bring each N

$$
A^{\mathcal{G}}=(\lambda \bar{\lambda})^{p} N^{-\mathcal{L} \frac{D}{2}+\mathcal{N} \frac{D}{2}+\mathcal{F}}
$$

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$
- the \mathcal{L} lines of a graphs bring each $N^{-D / 2}$
- the \mathcal{F} faces of a graph bring each N

$$
A^{\mathcal{G}}=(\lambda \bar{\lambda})^{p} N^{-\mathcal{L} \frac{D}{2}+\mathcal{N} \frac{D}{2}+\mathcal{F}}
$$

But $\mathcal{N}(D+1)=2 \mathcal{L} \Rightarrow \mathcal{L}=(D+1) p$

Action

Let $T_{a_{1} \ldots a D}^{i}, \bar{T}_{a_{1} \ldots a d}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$
- the \mathcal{L} lines of a graphs bring each $N^{-D / 2}$
- the \mathcal{F} faces of a graph bring each N

$$
A^{\mathcal{G}}=(\lambda \bar{\lambda})^{p} N^{-\mathcal{L} \frac{D}{2}+\mathcal{N} \frac{D}{2}+\mathcal{F}}=(\lambda \bar{\lambda})^{p} N^{-p \frac{D(D-1)}{2}+\mathcal{F}}
$$

But $\mathcal{N}(D+1)=2 \mathcal{L} \Rightarrow \mathcal{L}=(D+1) p$

Action

Let $T_{a_{1} \ldots a_{D}}^{i}, \bar{T}_{a_{1} \ldots a_{D}}^{i}$ tensor fields with color $i=0 \ldots D$.
$S=N^{D / 2}\left(\sum_{i} \bar{T}_{a_{1} \ldots a_{D}}^{i} T_{a_{1} \ldots a_{D}}^{i}+\lambda \prod_{i} T_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}+\bar{\lambda} \prod_{i} \bar{T}_{a_{i i-1} \ldots a_{i 0} a_{i D} \ldots a_{i i+1}}^{i}\right)$

Topology of the Colored Graphs

Amplitude of the graphs:

- the $\mathcal{N}=2 p$ vertices of a graph bring each $N^{D / 2}$
- the \mathcal{L} lines of a graphs bring each $N^{-D / 2}$
- the \mathcal{F} faces of a graph bring each N

$$
A^{\mathcal{G}}=(\lambda \bar{\lambda})^{p} N^{-\mathcal{L} \frac{D}{2}+\mathcal{N} \frac{D}{2}+\mathcal{F}}=(\lambda \bar{\lambda})^{p} N^{-p \frac{D(D-1)}{2}+\mathcal{F}}
$$

But $\mathcal{N}(D+1)=2 \mathcal{L} \Rightarrow \mathcal{L}=(D+1) p$

Introduction

Colored Tensor Models

Jackets and the $1 / \mathrm{N}$ expansion
Topology
Leading order graphs are spheres

Conclusion

Jackets 1

Jackets 1

Define simpler graphs.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

$0,1,2, \ldots$

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

$0,1,2, \ldots$
$0, \pi(0), \pi^{2}(0), \ldots$

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

$\frac{1}{2} D!$ jackets.
$0,1,2, \ldots$
$0, \pi(0), \pi^{2}(0), \ldots$

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

$\frac{1}{2} D!$ jackets. Contain all the vertices and all the lines of \mathcal{G}.
$0,1,2, \ldots$
$0, \pi(0), \pi^{2}(0), \ldots$

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

$\frac{1}{2} D!$ jackets. Contain all the vertices and all the lines of \mathcal{G}. A face belongs to ($D-1$)! jackets.
$0,1,2, \ldots$
$0, \pi(0), \pi^{2}(0), \ldots$

Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.
02 and 13: opposing edges of the tetrahedron. But 01, 23
 and 12,03 are perfectly equivalent. Three jacket (ribbon) graphs.

$\frac{1}{2} D!$ jackets. Contain all the vertices and all the lines of \mathcal{G}. A face belongs to ($D-1$)! jackets.
$0,1,2, \ldots$
$0, \pi(0), \pi^{2}(0), \ldots$

The degree of \mathcal{G} is $\omega(\mathcal{G})=\sum_{\mathcal{J}} g_{\mathcal{J}}$.

Jackets 2: Jackets and Amplitude

Jackets 2: Jackets and Amplitude

Theorem

\mathcal{F} and $\omega(\mathcal{G})$ are related by

$$
\mathcal{F}=\frac{1}{2} D(D-1) p+D-\frac{2}{(D-1)!} \omega(\mathcal{G})
$$

Jackets 2: Jackets and Amplitude

Theorem

\mathcal{F} and $\omega(\mathcal{G})$ are related by

$$
\mathcal{F}=\frac{1}{2} D(D-1) p+D-\frac{2}{(D-1)!} \omega(\mathcal{G})
$$

Proof: $\mathcal{N}=2 p, \mathcal{L}=(D+1) p$

Jackets 2: Jackets and Amplitude

Theorem

\mathcal{F} and $\omega(\mathcal{G})$ are related by

$$
\mathcal{F}=\frac{1}{2} D(D-1) p+D-\frac{2}{(D-1)!} \omega(\mathcal{G})
$$

Proof: $\mathcal{N}=2 p, \mathcal{L}=(D+1) p$
For each jacket $\mathcal{J}, 2 p-(D+1) p+\mathcal{F}_{\mathcal{J}}=2-2 g_{\mathcal{J}}$.

Jackets 2: Jackets and Amplitude

Theorem

\mathcal{F} and $\omega(\mathcal{G})$ are related by

$$
\mathcal{F}=\frac{1}{2} D(D-1) p+D-\frac{2}{(D-1)!} \omega(\mathcal{G})
$$

Proof: $\mathcal{N}=2 p, \mathcal{L}=(D+1) p$
For each jacket $\mathcal{J}, 2 p-(D+1) p+\mathcal{F}_{\mathcal{J}}=2-2 g_{\mathcal{J}}$.
Sum over the jackets: $(D-1)!\mathcal{F}=\sum_{\mathcal{J}} \mathcal{F}_{\mathcal{J}}=\frac{1}{2} D!(D-1) p+D!-2 \sum_{\mathcal{J}} g_{\mathcal{J}}$

Jackets 2: Jackets and Amplitude

Theorem

\mathcal{F} and $\omega(\mathcal{G})$ are related by

$$
\mathcal{F}=\frac{1}{2} D(D-1) p+D-\frac{2}{(D-1)!} \omega(\mathcal{G})
$$

Proof: $\mathcal{N}=2 p, \mathcal{L}=(D+1) p$
For each jacket $\mathcal{J}, 2 p-(D+1) p+\mathcal{F}_{\mathcal{J}}=2-2 g_{\mathcal{J}}$.
Sum over the jackets: $(D-1)!\mathcal{F}=\sum_{\mathcal{J}} \mathcal{F}_{\mathcal{J}}=\frac{1}{2} D!(D-1) p+D!-2 \sum_{\mathcal{J}} g_{\mathcal{J}}$

The amplitude of a graph is given by its degree

$$
A^{\mathcal{G}}=(\lambda \bar{\lambda})^{p} N^{-p \frac{D(D-1)}{2}+\mathcal{F}}=(\lambda \bar{\lambda})^{p} N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}
$$

Introduction

Colored Tensor Models

Colored Graphs
Jackets and the $1 / \mathrm{N}$ expansion
Topology
Leading order graphs are spheres

Conclusion

Topology 1: Colored vs. Stranded Graphs

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices.

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index.

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

represented as

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

represented as

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

represented as

Conversely: expand the vertices into stranded vertices and the lines into stranded lines with parallel strands

Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

represented as

Conversely: expand the vertices into stranded vertices and the lines into stranded lines with parallel strands

Topology 2: Bubbles

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors.

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color.

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The n-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_{1} \ldots i_{n}}$, with $i_{1}<\cdots<i_{n}$ the colors).

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The n-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_{1} \ldots i_{n}}$, with $i_{1}<\cdots<i_{n}$ the colors).

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The n-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_{1} \ldots i_{n}}$, with $i_{1}<\cdots<i_{n}$ the colors).

A colored graph \mathcal{G} is dual to an orientable, normal, D dimensional, simplicial pseudo manifold. Its n-bubbles are dual to the links of the $D-n$ simplices of the pseudo manifold.

Topology 3: Homeomorphisms and 1-Dipoles

Topology 3: Homeomorphisms and 1-Dipoles

Topology 3: Homeomorphisms and 1-Dipoles

A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1 \ldots D}$ and $w \in \mathcal{B}_{(\beta)}^{1 \ldots}{ }^{D}$ with $\mathcal{B}_{(\alpha)}^{1 \ldots D} \neq \mathcal{B}_{(\beta)}^{1 \ldots}$.

Topology 3: Homeomorphisms and 1-Dipoles

A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1 \ldots D}$ and $w \in \mathcal{B}_{(\beta)}^{1 \ldots}{ }^{D}$ with $\mathcal{B}_{(\alpha)}^{1 \ldots D} \neq \mathcal{B}_{(\beta)}^{1 \ldots}$.
A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from \mathcal{G} and the remaining lines reconnected respecting the coloring. Call the graph after contraction \mathcal{G} / d.

Topology 3: Homeomorphisms and 1-Dipoles

A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1 \ldots D}$ and $w \in \mathcal{B}_{(\beta)}^{1 \ldots D}$ with $\mathcal{B}_{(\alpha)}^{1 \ldots D} \neq \mathcal{B}_{(\beta)}^{1 \ldots D}$.
A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from \mathcal{G} and the remaining lines reconnected respecting the coloring. Call the graph after contraction \mathcal{G} / d.

THEOREM: [M. Ferri and C. Gagliardi, '82] If either $\mathcal{B}_{(\alpha)}^{1 \ldots}$ or $\mathcal{B}_{(\beta)}^{1 \ldots D}$ is dual to a sphere, then the two pseudo manifolds dual to \mathcal{G} and \mathcal{G} / d are homeomorphic.

Topology 3: Homeomorphisms and 1-Dipoles

A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1 \ldots D}$ and $w \in \mathcal{B}_{(\beta)}^{1 \ldots}{ }^{D}$ with $\mathcal{B}_{(\alpha)}^{1 \ldots D} \neq \mathcal{B}_{(\beta)}^{1 \ldots}$.
A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from \mathcal{G} and the remaining lines reconnected respecting the coloring. Call the graph after contraction \mathcal{G} / d.
THEOREM: [M. Ferri and C. Gagliardi, '82] If either $\mathcal{B}_{(\alpha)}^{1 \ldots}$ or $\mathcal{B}_{(\beta)}^{1 \ldots D}$ is dual to a sphere, then the two pseudo manifolds dual to \mathcal{G} and \mathcal{G} / d are homeomorphic. It is in principle very difficult to check if a bubble is a sphere or not.

Introduction

Colored Tensor Models

Colored Graphs
Jackets and the $1 / \mathrm{N}$ expansion
Topology
Leading order graphs are spheres

Conclusion

Răzvan Gurău,

Jackets, Bubbles, 1-Dipoles

Jackets, Bubbles, 1-Dipoles

The D-bubbles $\mathcal{B}_{(\rho)}^{\hat{i}}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree.

Jackets, Bubbles, 1-Dipoles

The D-bubbles $\mathcal{B}_{(\rho)}^{\hat{i}}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent.

Jackets, Bubbles, 1-Dipoles

The D-bubbles $\mathcal{B}_{(\rho)}^{\hat{i}}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent.

Theorem
$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\mathcal{B}_{(\rho)}\right)$

Jackets, Bubbles, 1-Dipoles

The D-bubbles $\mathcal{B}_{(\rho)}^{\hat{i}}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent.

Theorem

$$
\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)
$$

Theorem

The degree of the graph is invariant under 1-Dipole moves, $\omega(\mathcal{G})=\omega(\mathcal{G} / d)$

Degree 0 Graphs are Spheres

Degree 0 Graphs are Spheres

$$
\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)
$$

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}.

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}
$$

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \hat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\hat{\mathcal{B}}_{(\rho)}\right)=0$.

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\left.\mathcal{B}_{(\rho)}^{\hat{i}}\right)}\right.$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \hat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\hat{\mathcal{B}}_{(\rho)}\right)=0$.

Theorem

If $\omega(\mathcal{G})=0$ then \mathcal{G} is dual to a D-dimensional sphere.

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\left.\mathcal{B}_{(\rho)}^{\hat{i}}\right)}\right.$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \hat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\mathcal{B}_{(\rho)}^{\hat{i}}\right)=0$.

Theorem

If $\omega(\mathcal{G})=0$ then \mathcal{G} is dual to a D-dimensional sphere.
Proof: Induction on D.

Degree 0 Graphs are Spheres

$\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)$
In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \hat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)=0$.

Theorem

If $\omega(\mathcal{G})=0$ then \mathcal{G} is dual to a D-dimensional sphere.
Proof: Induction on D. $D=2$: the colored graphs are ribbon graphs and the degree is the genus.

Degree 0 Graphs are Spheres

$$
\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)
$$

In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)=0$.

Theorem

If $\omega(\mathcal{G})=0$ then \mathcal{G} is dual to a D-dimensional sphere.
Proof: Induction on D. $D=2$: the colored graphs are ribbon graphs and the degree is the genus. In $D>2, \omega(\mathcal{G})=0 \Rightarrow \omega\left(\mathcal{B}_{(\rho)}^{\hat{i}}\right)=0$ and all $\omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)$ are a spheres by the induction hypothesis.

Degree 0 Graphs are Spheres

$$
\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)
$$

In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)=0$.

Theorem

If $\omega(\mathcal{G})=0$ then \mathcal{G} is dual to a D-dimensional sphere.
Proof: Induction on D. $D=2$: the colored graphs are ribbon graphs and the degree is the genus. In $D>2, \omega(\mathcal{G})=0 \Rightarrow \omega\left(\mathcal{B}_{(\rho)}^{\hat{i}}\right)=0$ and all $\omega\left(\mathcal{B}_{(\rho)}^{\hat{i}}\right)$ are a spheres by the induction hypothesis. 1-Dipole contractions do not change the degree and are homeomorphisms. \mathcal{G}_{f} is homeomorphic with \mathcal{G} and has $p_{f}=1$.

Degree 0 Graphs are Spheres

$$
\omega(\mathcal{G})=\frac{(D-1)!}{2}\left(p+D-\mathcal{B}^{[D]}\right)+\sum_{i, \rho} \omega\left(\hat{\mathcal{B}_{(\rho)}}\right)
$$

In a graph \mathcal{G} with $2 p$ vertices and $\mathcal{B}^{[D]} D$-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_{f} with $2 p_{f}$ vertices and exactly one D-bubble for each colors \widehat{i}. Every contraction: $p \rightarrow p-1, \mathcal{B}^{[D]} \rightarrow \mathcal{B}^{[D]}-1$

$$
p-p_{f}=\mathcal{B}^{[D]}-\mathcal{B}_{f}^{[D]}=\mathcal{B}^{[D]}-(D+1) \Rightarrow p+D-\mathcal{B}^{[D]}=p_{f}-1 \geq 0
$$

Thus $\omega(\mathcal{G})=0 \Rightarrow \omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)=0$.

Theorem

If $\omega(\mathcal{G})=0$ then \mathcal{G} is dual to a D-dimensional sphere.
Proof: Induction on D. $D=2$: the colored graphs are ribbon graphs and the degree is the genus. In $D>2, \omega(\mathcal{G})=0 \Rightarrow \omega\left(\mathcal{B}_{(\rho)}^{\hat{i}}\right)=0$ and all $\omega\left(\widehat{\mathcal{B}_{(\rho)}}\right)$ are a spheres by the induction hypothesis. 1-Dipole contractions do not change the degree and are homeomorphisms. \mathcal{G}_{f} is homeomorphic with \mathcal{G} and has $p_{f}=1$. The only graph with $p_{f}=1$ is a sphere.

From Matrix to CO ORED Tensor Models

From Matrix to COLORED Tensor Models

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}+\bar{\lambda} \bar{T}_{\ldots}^{0} \bar{T}_{\ldots}^{1} \ldots \bar{T}_{\ldots}^{D}\right)
$$

From Matrix to CO ORED Tensor Models

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots \ldots}^{1} \ldots T_{\ldots}^{D}+\bar{\lambda} \bar{T}_{\ldots}^{0} \bar{T}_{\ldots}^{1} \ldots \bar{T}_{\ldots}^{D}\right)
$$

$\omega(\mathcal{G})=\sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$ degree

From Matrix to CO ORED Tensor Models

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}+\bar{\lambda} \bar{T}_{\ldots}^{0} \bar{T}_{\ldots}^{1} \ldots \bar{T}_{\ldots}^{D}\right)
$$

$\omega(\mathcal{G})=\sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$ degree
$1 / N$ expansion in the degree $A(\mathcal{G})=N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}$

From Matrix to CO ORED Tensor Models

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}+\bar{\lambda} \bar{T}_{\ldots}^{0} \bar{T}_{\ldots}^{1} \ldots \bar{T}_{\ldots}^{D}\right)
$$

$\omega(\mathcal{G})=\sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$ degree
$1 / N$ expansion in the degree $A(\mathcal{G})=N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}$
colored stranded graphs $\leftrightarrow D$ dimensional pseudo manifolds

From Matrix to CO ORED Tensor Models

Tensors $T^{i}{ }_{a_{1} \ldots a_{D}}$ with color i

$$
S=N^{D / 2}\left(T_{\ldots}^{i} \bar{T}_{\ldots}^{i}+\lambda T_{\ldots}^{0} T_{\ldots}^{1} \ldots T_{\ldots}^{D}+\bar{\lambda} \bar{T}_{\ldots}^{0} \bar{T}_{\ldots}^{1} \ldots \bar{T}_{\ldots}^{D}\right)
$$

$\omega(\mathcal{G})=\sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$ degree
$1 / N$ expansion in the degree $A(\mathcal{G})=N^{D-\frac{2}{(D-1)!} \omega(\mathcal{G})}$
colored stranded graphs $\leftrightarrow D$ dimensional pseudo manifolds
leading order: $\omega(\mathcal{G})=0$ are spheres

Conclusion: A To Do List

Conclusion: A To Do List

- Is the dominant sector summable?

Conclusion: A To Do List

- Is the dominant sector summable?
- Does it lead to a phase transition and a continuum theory?

Conclusion: A To Do List

- Is the dominant sector summable?
- Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?

Conclusion: A To Do List

- Is the dominant sector summable?
- Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?
- Multi critical points?

Conclusion: A To Do List

- Is the dominant sector summable?
- Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?
- Multi critical points?
- More complex models, driven to the phase transition by renormalization group flow.

Conclusion: A To Do List

- Is the dominant sector summable?
- Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?
- Multi critical points?
- More complex models, driven to the phase transition by renormalization group flow.
- Generalize the results obtained using matrix models in higher dimensions.

