
Computational Complexity
and Logical Definability

or
« How logic can help

to discover efficient generic algorithms
or to understand complexity classes »

Etienne Grandjean, GREYC
CNRS / Université de Caen / ENSICAEN

Journée LIPN du 5 juillet 2011
en l’honneur de Christian Lavault

A natural question
n  What relationships exist between

n  Algorithmic complexity
n  How a problem PB is difficult to solve?

and
n  Descriptive complexity

n  How the problem PB is difficult to define?

2 Journée Christian Lavault 5/07/11

Two kinds of results
n  Algorithmic meta theorems

n  Or « generic algorithms of small complexity
for solving a class of problems definable in
some logic »

n  Logical characterizations of complexity
classes
n  Or « complexity class = logically definable

class »

3 Journée Christian Lavault 5/07/11

The logics involved
n  First-order logic: FO
n  Second-order logic: SO

n  And its restrictions
n  Existential second-order: ESO
n  Monadic second-order: MSO
n  Existential monadic second-order: EMSO

4 Journée Christian Lavault 5/07/11

Examples: First-Order Logic
n  The fact that a graph G = (V,E) satisfies the First-

Order (FO) sentence
 ∃x ∃y ∃z E(x,y) ∧ E(y,z) ∧ E(z,x)

means that
 G contains a triangle

n  We say that the problem TRIANGLE is defined in
First-Order logic and denote
n  TRIANGLE ∈ FO

n  Notice: each problem defined in FO is computable in
PTIME. Why?

5 Journée Christian Lavault 5/07/11

Examples: Second-Order Logic
n  The fact that a graph G = (V,E) satisfies the Second-Order (SO)

sentence
 ∀U
 « Any set U of vertices »
 ([∃x U(x) ∧ ∀x∀y ((U(x) ∧ E(x,y)) → U(y))]
 « that is nonempty and closed for neighbours »
 → ∀x U(x))
 « contains all the vertices of G »

means that G is connex
n  We say that problem CONNEX is defined in SO (and MSO) logic,

denoted CONNEX ∈ SO and CONNEX ∈ MSO
n  At the opposite: CONNEX ∉ FO

6 Journée Christian Lavault 5/07/11

More examples in SO
n  Problem 3-COL

n  Input: a graph G=(V,E)
n  Question: Can G be coloured with 3 colours?

n  Problem 3-COL is defined by the Existential Second-Order
(ESO) sentence
∃ C1 ∃ C2 ∃ C3

 [∀x (C1(x) ∨ C2(x) ∨ C3(x)) ∧ the Ci’s are pairwise disjoint

 ∧ ∀x ∀y ∧i (Ci(x) ∧ E(x,y)) → ¬ Ci(y)]

Therefore 3-COL ∈ ESO
and 3-COL ∈ EMSO (Existential Monadic Second-Order)

7 Journée Christian Lavault 5/07/11

More examples in ESO
n  Problem HAMILTON

n  Input: a graph G=(V,E)
n  Question: has G a Hamiltonian path?

n  Problem HAMILTON is defined by the Existential Second-Order
(ESO) sentence
∃ binary relation <

 [< is a linear order (of the vertices)
 ∧ (∀x ∀y (y is the successor of x for <) → E(x,y))]

n  Therefore HAMILTON ∈ ESO
n  Notice: HAMILTON and 3-COL are NP-complete, hence are

hard problems

 8 Journée Christian Lavault 5/07/11

A natural question

n  What relationships exist between
n  Algorithmic complexity

n  How a problem PB is difficult to solve?

and
n  Descriptive complexity

n  How the problem PB is difficult to define?

9 Journée Christian Lavault 5/07/11

Two kinds of results

n  Algorithmic meta theorems
n  Or « generic algorithms of small complexity for

solving a class of problems definable in some
logic »

n  Logical characterizations of complexity
classes
n  Or « complexity class = logically definable class »

10 Journée Christian Lavault 5/07/11

Algorithmic meta theorems using logic

n  They are results of the form
« Each problem definable in a certain logic
on a certain class of structures is solved
efficiently » (Martin Grohe, 2007)

11 Journée Christian Lavault 5/07/11

Algorithmic meta theorems using logic
A preliminary example:
the TRIANGLE problem in a cubic graph
n  Algorithm

n  Input: a cubic graph G=(V,E)
 (each vertex of G has degree 3, i.e. 3 neighbours)

n  For each vertex a of G do
n  For each neighbour b of a do

n  For each neighbour c of b except a do
n  If c is a neighbour of a then
Output « G has a triangle »

n  Output « G has no triangle ».
n  Complexity

n  The internal test is performed in constant time and is repeated
6⎢V⎢times

n  Hence, the whole algorithm runs in linear time

12 Journée Christian Lavault 5/07/11

An algorithmic meta theorem using logic

n  Seese’s Theorem (1996): Each graph problem definable in FO
is solved in linear time on any class of graphs of bounded
degree

n  Application: the TRIANGLE problem is defined by an FO
sentence

 ∃x ∃y ∃z E(x,y) ∧ E(y,z) ∧ E(z,x)

 and hence, is solved on a cubic graph G in time O(|G|)

13 Journée Christian Lavault 5/07/11

Another algorithmic meta theorem using
logic

n  Courcelle’s Theorem (1990): Each graph problem definable in

MSO is solved in linear time on any class of graphs of bounded
tree-width

n  An application: the KERNEL problem in a directed graph G =
(V,E), defined by the MSO (even EMSO) sentence
∃ K [∀x ∀y ((K(x) ∧ K(y)) → ¬ E(x,y))

 ∧ ∀x (¬K(x) → ∃y (K(y) ∧ E(x,y)))]
 is solved in time O(|G|) if the graph G has tree-width bounded
 by some fixed k.
 This is not trivial even for k = 1 !

14 Journée Christian Lavault 5/07/11

Meta theorems using logic
Why are they interesting ?

n  They are general: they allow to establish that some

large class of problems are solved efficiently;
typically, in linear time

n  They allow to establish that some specific problem is
solved by an efficient algorithm by defining it in some
logic (FO, MSO, etc.)
n  Examples: Problems TRIANGLE in a cubic graph or

KERNEL in a tree-like graph can both be solved in linear
time by Seese’s and Courcelle’s Theorems, respectively

15 Journée Christian Lavault 5/07/11

Do the converse of meta theorems hold?

n  In general, No !

n  For example, there are graph problems solved in
linear time in cubic graphs that are not definable in
FO

n  Both converses of Seese’s and Courcelle’s
Theorems fail !

16 Journée Christian Lavault 5/07/11

Are meta theorems optimal?

Courcelle’s Theorem is optimal in the following sense
Theorem (Grohe,1999): Let C be a class of graphs (or, more
generally, of structures).
The following three assertions are equivalent (under the
assumption P≠NP)

n  C is of bounded tree-width, i.e. there is some k such that the tree-
width of each structure G of C is at most k

n  Each problem definable in MSO is solved in linear time on each
structure of C

n  Each problem definable in MSO is solved in polynomial time on
each structure of C

n  Notice: here, linear time is equivalent to polynomial time!

17 Journée Christian Lavault 5/07/11

Can we exactly characterize a complexity
class in logic ?

Some results of the form
Complexity class = Logically definable

class

Existential Second-Order Logic is very
expressive

n  ESO logic allows to define NP-complete problems

such as HAMILTON by
∃ binary relation <

 [< is a linear order (of the vertices)
 ∧ (∀x ∀y (y is the successor of x for <) → E(x,y))]

n  An ESO sentence is a formula of the form
∃ R1… ∃Rk ψ
where each Ri is a relation variable of fixed arity and
ψ is an FO sentence

19 Journée Christian Lavault 5/07/11

ESO logic exactly characterizes NP

Fagin’s Theorem (1974): NP = ESO
That means:

A problem is NP
if and only if

 it is definable in ESO

20 Journée Christian Lavault 5/07/11

Proof of ESO ≤ NP

Let PB be a problem, e.g. a graph problem, defined by an ESO
sentence ∃R1… ∃Rk ψ
Here is a nondeterministic algorithm that decides whether a graph
G = (V,E) belongs to PB, i.e. satisfies ∃R1… ∃Rk ψ
Algorithm
n  Guess some relations R1,…,Rk (in time O(|V|r) where r is the

maximal arity of the Ri’s)
n  Check whether the « expanded » structure (G, R1,…,Rk)

satisfies the FO sentence ψ: this is performed in deterministic
polynomial time

So, this nondeterministic algorithm decides problem PB in
polynomial time: hence, problem PB is NP

21 Journée Christian Lavault 5/07/11

Sketch of proof of the converse:
NP ≤ ESO
n  Let PB be an NP problem
n  An input G belongs to PB iff it has an accepting computation

C of polynomial time and then of polynomial size
n  Such an accepting computation can be encoded by a list of

relations R1… Rk
n  There is an FO sentence ψ that exactly defines the correct

accepting computations of input G
n  In other words, the list of relations R1… Rk encodes a correct

accepting computation of G if and only if (G, R1… Rk)
satisfies ψ

n  In other words, G has an accepting computation if and only if
G satisfies the ESO sentence ∃R1… ∃Rk ψ

n  That means PB is defined by this ESO sentence

22 Journée Christian Lavault 5/07/11

The central rôle of Second-Order logic

n  The SO logic and its restrictions

n  Existential Second-Order Logic (ESO)
n  Monadic Second-Order Logic (MSO)

play a key rôle in describing computations and complexity classes

Here are analogues of Fagin’s Theorem for some classical complexity
classes included in NP
Theorem (Grädel, 1992)
n  PTIME = ESO(Horn-clauses) = SO(Horn-clauses)
n  NLOGSPACE = ESO(2-clauses) = SO(2-clauses)
Idea: A deterministic computation is easily described by Horn clauses
Similarly, an NLOGSPACE computation is described by 2-clauses (clauses
of 2 litterals)

23 Journée Christian Lavault 5/07/11

A striking refinement of Fagin’s Theorem

Fagin’s Theorem can be also refined for precise nondeterministic
time bounds

n  using the RAM model of computation

n  and the ESOF logic (Existential Second-Order logic with
Functions), i.e. sentences of the form

∃f1… ∃fk ψ
n  where the fi’s are function variables (of any arity) instead of (or in

complement of) relation variables
n  and ψ is an FO sentence

24 Journée Christian Lavault 5/07/11

A striking refinement of Fagin’s Theorem

Theorem (Grandjean, 1990, and Grandjean, Olive, 2004)
n  NLINTIME = ESOF(1 var) = ESOF(∀1) = ESOF(∀1, arity 1)
n  And more generally, for each integer d ≥1,

NTIME(nd) = ESOF(d var) = ESOF(∀d) = ESOF(∀d, arity d)

Here, ESOF(d var) denotes the class of ESOF sentences with at most d distinct
first-order variables. ESO(∀d) and ESOF(∀d, arity d) are defined similarly.

In simplified words,

the degree of the nondeterministic polynomial time
is exactly

the number of first-order variables

25 Journée Christian Lavault 5/07/11

Why those results are interesting?

n  They yield straightforward (or almost straightforward) completeness results in

complexity for natural problems, typically for problems in propositional logic:
n  Fagin’s Theorem immediately implies Cook and Levin’s Theorem

n  SAT is NP-complete
n  Grädel’s Theorem immediately implies that

n  HORN-SAT is PTIME-complete
n  2-SAT is NLOGSPACE-complete

Hint (for proving Cook’s Theorem from Fagin’s Theorem):
n  Unfold the FO subformula ψ of the ESO formula ∃R1…∃Rk ψ as a

conjunction over all the possible assignments of its (first-order) variables
n  This gives a propositional formula of polynomial size

26 Journée Christian Lavault 5/07/11

Why those results are interesting?

Even for nondeterministic linear time (NLINTIME)
The characterization

 NLINTIME = ESOF(∀1, arity 1)
also implies by a (sophisticated) unfolding of the unique first-order variable
x of any ESOF(∀1, arity 1) sentence

∃f1…∃fk ∀x ψ (where ψ is quantifier-free)
that the classical problem

RISA (Reduction of Incompletely Specified finite state Automata)
is NLINTIME-complete

Remark: Since the linear time complexity class DTIME(n) (for Turing machines) is
strictly included in NLINTIME, this implies a complexity lower bound:
RISA ∉ DTIME(n), i.e. RISA cannot be solved in linear time on any Turing
machine

27 Journée Christian Lavault 5/07/11

Why those results are interesting?
Robustness and machine independence

n  Those characterizations show how the complexity classes involved, NP,

PTIME, NLOGSPACE, NLINTIME are robust,
n  not only from a computational point of view (they have many equivalent

definitions)
n  but also from a logical point of view

n  They are in fact machine independent:
n  NP is the set of problems definable in ESO
n  NLINTIME is the set of problems definable in ESO (with function variables)

using only 1 first-order variable
n  As their machine counterparts, the logical classes involved are robust,

i.e. their ability to define problems does not change for a number of
extensions and restrictions (normalizations), typically

 ESOF(1 var) = ESOF(∀1) = ESOF(∀1, arity 1)

28 Journée Christian Lavault 5/07/11

Conclusion
We have presentented two kinds of results that involve
logic in algorithmics and complexity theory:
n  Algorithmic meta theorems

n  Or « generic algorithms of small complexity for solving a
class of problems definable in some logic »

n  Logical characterizations of complexity classes
n  Or « complexity class = logically definable class »

29 Journée Christian Lavault 5/07/11

Conclusion: the state of art

Our initial question: What relationships exist between
n  Algorithmic complexity, and
n  Descriptive complexity
is still widely open !

Typically, we have
n  ESO = NP and also SO = PH (the Polynomial Hierarchy beyond

NP)
n  but know no similar equality for the class FO (the class of

problems defined in First-Order logic) or MSO

30 Journée Christian Lavault 5/07/11

