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A natural question 
n  What relationships exist between 

n  Algorithmic complexity 
n  How a problem PB is difficult to solve? 

and 
n  Descriptive complexity 

n  How the problem PB is difficult to define? 
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Two kinds of results 
n  Algorithmic meta theorems 

n  Or « generic algorithms of small complexity 
for solving a class of problems definable in 
some logic » 

n  Logical characterizations of complexity 
classes 
n  Or « complexity class = logically definable 

class » 
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The logics involved 
n  First-order logic: FO 
n  Second-order logic: SO 

n  And its restrictions 
n  Existential second-order: ESO 
n  Monadic second-order: MSO 
n  Existential monadic second-order: EMSO 
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Examples: First-Order Logic 
n  The fact that a graph G = (V,E) satisfies the First-

Order (FO) sentence 
 ∃x ∃y ∃z  E(x,y) ∧ E(y,z) ∧ E(z,x) 

means that  
 G contains a triangle 

n  We say that the problem TRIANGLE is defined in 
First-Order logic and denote  
n  TRIANGLE ∈ FO 

n  Notice: each problem defined in FO is computable in 
PTIME. Why? 
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Examples: Second-Order Logic 
n  The fact that a graph G = (V,E) satisfies the Second-Order (SO) 

sentence 
 ∀U 
 « Any set U of vertices »  
 ( [ ∃x U(x) ∧ ∀x∀y ((U(x) ∧ E(x,y)) → U(y)) ] 
 « that is nonempty and closed for neighbours » 
 → ∀x U(x) ) 
 « contains all the vertices of G » 

means that G is connex 
n  We say that problem CONNEX is defined in SO (and MSO) logic, 

denoted  CONNEX ∈ SO and CONNEX ∈ MSO  
n  At the opposite: CONNEX ∉ FO 
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More examples in SO 
n  Problem 3-COL 

n  Input: a graph G=(V,E) 
n  Question: Can G be coloured with 3 colours? 

n  Problem 3-COL is defined by the Existential Second-Order 
(ESO) sentence 
∃ C1 ∃ C2 ∃ C3 

 [ ∀x (C1(x) ∨ C2(x) ∨ C3(x)) ∧ the Ci’s are pairwise disjoint 

 ∧ ∀x ∀y ∧i (Ci(x) ∧ E(x,y)) → ¬ Ci(y) ] 

Therefore 3-COL ∈ ESO  
and 3-COL ∈ EMSO (Existential Monadic Second-Order) 
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More examples in ESO 
n  Problem HAMILTON 

n  Input: a graph G=(V,E) 
n  Question: has G a Hamiltonian path? 

n  Problem HAMILTON is defined by the Existential Second-Order 
(ESO) sentence 
∃ binary relation < 

 [ < is a linear order (of the vertices) 
 ∧ (∀x ∀y (y is the successor of x for <) → E(x,y)) ] 

n  Therefore HAMILTON ∈ ESO 
n  Notice: HAMILTON and 3-COL are NP-complete, hence are 

hard problems   
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A natural question 

n  What relationships exist between 
n  Algorithmic complexity 

n  How a problem PB is difficult to solve? 

and 
n  Descriptive complexity 

n  How the problem PB is difficult to define? 
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Two kinds of results 

n  Algorithmic meta theorems 
n  Or « generic algorithms of small complexity for 

solving a class of problems definable in some 
logic » 

n  Logical characterizations of complexity 
classes 
n  Or « complexity class = logically definable class » 
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Algorithmic meta theorems using logic 

n  They are results of the form 
« Each problem definable in a certain logic 
on a certain class of structures is solved 
efficiently » (Martin Grohe, 2007) 
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Algorithmic meta theorems using logic  
A preliminary example:  
the TRIANGLE problem in a cubic graph  
n  Algorithm 

n  Input: a cubic graph G=(V,E)  
 (each vertex of G has degree 3, i.e. 3 neighbours) 

n  For each vertex a of G do 
n  For each neighbour b of a do 

n  For each neighbour c of b except a do  
n  If c is a neighbour of a then  
Output « G has a triangle » 

n  Output « G has no triangle ». 
n  Complexity 

n  The internal test is performed in constant time and is repeated 
6⎢V⎢times 

n  Hence, the whole algorithm runs in linear time  
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An algorithmic meta theorem using logic 

n  Seese’s Theorem (1996): Each graph problem definable in FO 
is solved in linear time on any class of graphs of bounded 
degree 

n  Application: the TRIANGLE problem is defined by an FO 
sentence  

 ∃x ∃y ∃z  E(x,y) ∧ E(y,z) ∧ E(z,x) 

 and hence, is solved on a cubic graph G in time O(|G|) 

13 Journée Christian Lavault 5/07/11 



Another algorithmic meta theorem using 
logic 
 
n  Courcelle’s Theorem (1990): Each graph problem definable in 

MSO is solved in linear time on any class of graphs of bounded 
tree-width 

n  An application: the KERNEL problem in a directed graph G = 
(V,E), defined by the MSO (even EMSO) sentence 
∃ K [ ∀x ∀y ((K(x) ∧ K(y)) → ¬ E(x,y))  

 ∧ ∀x (¬K(x) → ∃y (K(y) ∧ E(x,y))) ] 
     is solved in time O(|G|) if the graph G has tree-width bounded    
     by some fixed k. 
     This is not trivial even for k = 1 !  
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Meta theorems using logic 
Why are they interesting ? 
 
n  They are general: they allow to establish that some 

large class of problems are solved efficiently; 
typically, in linear time 

n  They allow to establish that some specific problem  is 
solved by an efficient algorithm by defining it in some 
logic (FO, MSO, etc.) 
n  Examples: Problems TRIANGLE in a cubic graph or 

KERNEL in a tree-like graph can both be solved in linear 
time by Seese’s and Courcelle’s Theorems, respectively 
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Do the converse of meta theorems hold? 
 
n  In general, No ! 

n  For example, there are graph problems solved in 
linear time in cubic graphs that are not definable in 
FO 

n  Both converses of Seese’s and Courcelle’s 
Theorems fail ! 
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Are meta theorems optimal? 

Courcelle’s Theorem is optimal in the following sense 
Theorem (Grohe,1999): Let C be a class of graphs (or, more 
generally, of structures).  
The following three assertions are equivalent (under the 
assumption P≠NP) 

n  C is of bounded tree-width, i.e. there is some k such that the tree-
width of each structure G of C is at most k 

n  Each problem definable in MSO is solved in linear time on each 
structure of C 

n  Each problem definable in MSO is solved in polynomial time on 
each structure of C 

n  Notice: here, linear time is equivalent to polynomial time! 
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Can we exactly characterize a complexity 
class in logic ? 

Some results of the form 
Complexity class =  Logically definable 

class 

 



Existential Second-Order Logic is very 
expressive 
 
n  ESO logic allows to define NP-complete problems 

such as HAMILTON by 
∃ binary relation < 

 [ < is a linear order (of the vertices) 
 ∧ (∀x ∀y (y is the successor of x for <) → E(x,y)) ] 

n  An ESO sentence is a formula of the form 
∃ R1… ∃Rk ψ  
where each Ri is a relation variable of fixed arity and 
ψ is an FO sentence 
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ESO logic exactly characterizes NP 
 
Fagin’s Theorem (1974): NP = ESO 
That means:  

A problem is NP  
if and only if 

 it is definable in ESO 
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Proof of ESO ≤ NP  
 
Let PB be a problem, e.g. a graph problem, defined by an ESO 
sentence ∃R1… ∃Rk ψ  
Here is a nondeterministic algorithm that decides whether a graph 
G = (V,E) belongs to PB, i.e. satisfies ∃R1… ∃Rk ψ 
Algorithm  
n  Guess some relations R1,…,Rk (in time O(|V|r) where r is the 

maximal arity of the Ri’s) 
n  Check whether the « expanded » structure (G, R1,…,Rk ) 

satisfies the FO sentence ψ: this is performed in deterministic 
polynomial time 

So, this nondeterministic algorithm decides problem PB in 
polynomial time: hence, problem PB is NP   

21 Journée Christian Lavault 5/07/11 



Sketch of proof of the converse:  
NP ≤ ESO  
n  Let PB be an NP problem  
n  An input G belongs to PB iff it has an accepting computation 

C of polynomial time and then of polynomial size 
n  Such an accepting computation can be encoded by a list of 

relations R1… Rk  
n  There is an FO sentence ψ that exactly defines the correct 

accepting computations of input G 
n  In other words, the list of relations R1… Rk  encodes a correct 

accepting computation of G if and only if (G, R1… Rk) 
satisfies ψ 

n  In other words, G has an accepting computation if and only if 
G satisfies the ESO sentence ∃R1… ∃Rk ψ  

n  That means PB is defined by this ESO sentence 
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The central rôle of Second-Order logic 
 
n  The SO logic and its restrictions  

n  Existential Second-Order Logic (ESO) 
n  Monadic Second-Order Logic (MSO)  

play a key rôle in describing computations and complexity classes 
 
Here are analogues of Fagin’s Theorem for some classical complexity 
classes included in NP 
Theorem (Grädel, 1992) 
n  PTIME = ESO(Horn-clauses) = SO(Horn-clauses) 
n  NLOGSPACE = ESO(2-clauses) = SO(2-clauses) 
Idea: A deterministic computation is easily described by Horn clauses 
Similarly, an NLOGSPACE computation is described by 2-clauses (clauses 
of 2 litterals) 
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A striking refinement of Fagin’s Theorem 
 
Fagin’s Theorem can be also refined for precise nondeterministic 
time bounds 
 
n  using the RAM model of computation 

n  and the ESOF logic (Existential Second-Order logic with 
Functions), i.e. sentences of the form  

∃f1… ∃fk ψ  
n  where the fi’s are function variables (of any arity) instead of (or in 

complement of) relation variables  
n  and ψ is an FO sentence 
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A striking refinement of Fagin’s Theorem 
  
 
Theorem (Grandjean, 1990, and Grandjean, Olive, 2004) 
n  NLINTIME = ESOF(1 var) = ESOF(∀1) = ESOF(∀1, arity 1) 
n  And more generally, for each integer d ≥1, 

NTIME(nd) = ESOF(d var) = ESOF(∀d) = ESOF(∀d, arity d) 
 

Here, ESOF(d var) denotes the class of ESOF sentences with at most d distinct 
first-order variables. ESO(∀d) and ESOF(∀d, arity d) are defined similarly. 
 
In simplified words,  

the degree of the nondeterministic polynomial time  
is exactly  

the number of first-order variables  
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Why those results are interesting? 
  
n  They yield straightforward (or almost straightforward) completeness results in 

complexity for natural problems, typically for problems in propositional logic: 
n  Fagin’s Theorem immediately implies Cook and Levin’s Theorem 

n  SAT is NP-complete 
n  Grädel’s Theorem immediately implies that 

n  HORN-SAT is PTIME-complete 
n  2-SAT is NLOGSPACE-complete 

Hint (for proving Cook’s Theorem from Fagin’s Theorem): 
n  Unfold the FO subformula ψ of the ESO formula ∃R1…∃Rk ψ as a 

conjunction over all the possible assignments of its (first-order) variables 
n  This gives a propositional formula of polynomial size 
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Why those results are interesting? 
  
Even for nondeterministic linear time (NLINTIME) 
The characterization 

 NLINTIME = ESOF(∀1, arity 1) 
also implies by a (sophisticated) unfolding of the unique first-order variable 
x of any ESOF(∀1, arity 1) sentence  

∃f1…∃fk ∀x ψ (where ψ is quantifier-free) 
that the classical problem 

RISA (Reduction of Incompletely Specified finite state Automata) 
is NLINTIME-complete 

Remark: Since the linear time complexity class DTIME(n) (for Turing machines) is 
strictly included in NLINTIME, this implies a complexity lower bound:  
RISA ∉ DTIME(n), i.e. RISA cannot be solved in linear time on any Turing 
machine 
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Why those results are interesting?  
Robustness and machine independence 

  
n  Those characterizations show how the complexity classes involved, NP, 

PTIME, NLOGSPACE, NLINTIME are robust,  
n  not only from a computational point of view (they have many equivalent 

definitions)  
n  but also from a logical point of view 

n  They are in fact machine independent: 
n  NP is the set of problems definable in ESO 
n   NLINTIME is the set of problems definable in ESO (with function variables) 

using only 1 first-order variable 
n  As their machine counterparts, the logical classes involved are robust, 

i.e. their ability to define problems does not change for a number of 
extensions and restrictions (normalizations), typically 

 ESOF(1 var) = ESOF(∀1) = ESOF(∀1, arity 1) 
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Conclusion 
We have presentented two kinds of results that involve 
logic in algorithmics and complexity theory: 
n  Algorithmic meta theorems 

n  Or « generic algorithms of small complexity for solving a 
class of problems definable in some logic » 

n  Logical characterizations of complexity classes 
n  Or « complexity class = logically definable class » 
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Conclusion: the state of art 

Our initial question: What relationships exist between 
n  Algorithmic complexity, and 
n  Descriptive complexity 
is still widely open ! 
 

Typically, we have  
n  ESO = NP and also SO = PH (the Polynomial Hierarchy beyond 

NP) 
n  but know no similar equality for the class FO (the class of 

problems defined in First-Order logic) or MSO 
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