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Ulam’s problem

3 1 6 7 2 5 4

Ulam’61: What is the length Lmax
n of the longest increasing

subsequence of a random permutation of n integers?

Baer and Brock ’68 conjectured that

ELmax
n ∼ 2

√
n, n→∞,

which was proved by Hammersley ’72 (c
√
n), and then

Logan-Shepp ’77 and Vershik-Kerov ’77 (c = 2).

Baik, Deift and Johansson ’99:

Lmax
n − 2

√
n

c0n1/6
d→ Tracy−Widom distribution.

One can equally consider a sequence of i.i.d. random marks
X1, . . . ,Xn sampled from the uniform-[0, 1] (or any other
continuous distribution), or exchangeable sequence without ‘ties’.



The online selection problem
Baer and Brock ’68: What is the maximum expected length ELn
of an increasing subsequence which can be selected by a
nonanticipating online strategy, i.e. under the constraints that

I elements of the background sequence are revealed one at a
time,

I a selection/rejection decision must be made straight at the
time of observation.

Samuels and Steele ’81: for X1, · · · ,Xn iid uniform-[0, 1],

ELn ∼
√

2n, n→∞.

A (suboptimal) strategy achieving the asymptotics has constant
acceptance window: observation x is selected if and only if

x < y < x +

√
2

n
,

where x is the last selection so far.



Extensions of the
√

2n asymptotics
The
√

2n asymptotics is still valid
• when the input data is a permutation of n known values
(Davies ’81),
• or when the selector learns only the rank of observation relative
to the predecessors (G. 2000).

The asymptotically optimal value
√

2n should be replaced by
• √√√√2

∞∑
n=1

[P(N ≥ n) ]2,

in the problem where the number of observations is a random
variable N with given distribution (G. ’99),
•

d + 1

(d + 1)!1/(d+1)
n1/(d+1),

in the problem where X1, · · · ,Xn are sampled from the uniform
distribution in [0, 1]d , and the online selected subsequence must be
increasing coordinate-wise (Baryshnikov and G. ’00).



A bin-packing connection

In this talk, we discuss finer results under the assumption that the
input data has the uniform distribution and is exactly observable.
In that case, the increasing subsequence problem can be cast as
the problem with a sum constraint, that

the selected subsequence Xτi must satisfy
∑

i Xτi ≤ 1.

This connection leads to the upper bound

ELn <
√

2n, n = 1, 2, · · · .

Proof: under a weaker mean-value constraint E (
∑

i Xτi ) ≤ 1, the
bin-packing strategy of choosing all Xi ≤

√
2/n is exactly optimal.



On-line vs off-line mean, a comparison

• Increasing subsequence

√
2n vs 2

√
n

with gaps O(log n) resp. O(n1/6).
• Bin-packing √

2n vs
√

2n

with gaps O(log n) resp. O(1) (Coffman et al ’87, G. ’21).



Poissonisation
Suppose the marks arrive by a Poisson process on [0,T ], so the
number of observations is random with Poisson(T )-distribution. A
increasing subsequence (x1, t1), . . . , (xk , tk) of marks/arrival times
is a chain in two dimensions: x1 < · · · < xk , t1 < · · · < tk where
each (xi , ti ) is an atom of the planar Poisson process in
[0,T ]× [0, 1]



Selfsimilarity
It is sufficient to consider strategies of the kind: if the maximum so
far selected mark is x , and (y , t) is observed then y is chosen iff

0 < y − x ≤ ψ(t,T , x)

where the function ψ determines the size of the moving acceptance
window. (Discrete-time analogues are found in Arlotto et al ’18.)



In the case

ψ(t,T , x) = (1− x)ϕ((T − t)(1− x))

for some ϕ : R→ R+ the strategy is called self-similar.
Then the acceptance window depends on both state x (running
maximum) and time through (T − t)(1− x).



The running maximum under strategies

ψ(t,T , x) =
√

2/T ,

resp.

ψ(t,T , x) =

√
2(1− x)

T − t
.



The (Poissonised) optimality equation

The expected length F (T ) under the optimal online strategy
satisfies the dynamic programming equation

F ′(T ) =

∫ 1

0
{F (T (1− x)) + 1− F (T )}+ dx , F (0) = 0.

Under the optimal strategy (y , t) is accepted iff

0 <
y − x

1− x
< ϕ∗((T − t)(1− x))

where x is the last selection so far (the running maximum), and
ϕ∗(z) is the solution to

F (z(1− x)) + 1− F (z) = 0

(for z > F←(1) = 1.345 . . . ).



The exact solution is only known for small T :

F (T ) =

∫ T

0

1− e−t

t
dt, ν < 1.345 · · · ,

when the optimal strategy is greedy, that is selects every
consecutive record (i.e. a mark bigger than all seen so far). But for
large T the latter only yields about logT elements.
Bruss-Delbaen ’01 bounds:

√
2T − log(1 +

√
2T ) + c0 < F (T ) <

√
2T .



Asymptotic expansion of the mean length

G. and Seksenbayev ’20: for every self-similar strategy with
ϕ(T ) =

√
2/T + c/T (for any constant c) the expected length

F (T ) of selected increasing subsequence is

F (T ) =
√

2T − 1

12
logT + c1 +

√
2

144
√
T

+ O(T−1)

(c1 is unknown).
Steps of proof:

I a formal matching of expansion coefficients, and justification
using monotonicity (as in Baryshnikov-G. ’00),

I renewal theory arguments to justify the constant term.



Linearisation

With z =
√
T as a linearised size parameter and a change of

variables, the equation for expected length under the optimal
strategy becomes

u′(z) = 4

∫ 1

0
(u(z − y) + 1− u(z))+ (1− y/z)dy .

This is a special case of a nonlinear renewal-type equation

u′r ,θ(z) = 4

∫ θ(z)

0
(ur ,θ(z − y) + r(z)− ur ,θ(z))(1− y/z)dy

with given ‘reward’ function r(z) and control function
0 < θ(z) ≤ z related to a self-similar strategy via

ϕ(z2) = 1−
(

1− θ(z)

z

)2

.



Asymptotic comparison method (Baryshnikov and G. ’00)
The operator

Iθ,rg(z) := 4

∫ θ(z)

0
(g(z − y) + r(z)− g(z)) (1− y/z)dy

has shift and monotonicity properties that imply
Lemma If for large enough z ,

(a) g ′(z) > Iθ,rg(z) then lim sup
z→∞

(uθ,r (z)− g(z)) <∞,

(b) g ′(z) < Iθ,rg(z) then lim inf
z→∞

(uθ,r (z)− g(z)) > −∞.

Example For g(z) = αz , in the optimality equation (with r = 1),
(a) holds for α >

√
2, and (b) holds for α <

√
2, whence

u(z) ∼
√

2 z .

Iterating with the test function g(z) =
√

2z + α log z yields

u(z) ∼
√

2 z − 1

6
log z + O(1), z →∞.

Further expansion terms can be computed, but the method does
not capture the constant term.



Piecewise deterministic Markov process

For given control function 0 < θ(z) ≤ z , a PDMP process Z on
[0,∞) is defined by the rules

(i) drifts with unit speed towards 0,

(ii) jumps at probability rate 4λ(z), where

λ(z) := θ(z)− θ2(z)

2z
,

(iii) if jumps occurs, then from z to z − y , with y having density
(1− y/z)/λ(z) for y ∈ [0, θ(z)],

(iv) terminates in 0.

The number of jumps Nθ(z) of Z starting from z =
√
T is equal

to LT , the length of increasing subsequence under a self-similar
strategy.



Let U(z0, dz), be the occupation measure on [0, z0], for the
sequence of jump points of Z starting from z0, and controlled by
the optimal θ∗(z). The density is

U(z0, dz) = 4λ(z)p(z0, z)dz ,

where p(z0, z) is the probability that z is a drift point.
Lemma There exists a pointwise limit p(z) := limz0→∞ p(z0, z),
such that limz→∞ p(z) = 1/2 and for some a, b > 0

|p(z0, z)− p(z)| < ae−b(z0−z), 0 < z < z0.

The proof is by coupling: two independent Z -processes starting
with z1 and z2 (where z1 < z2) with high probability visit the same
drift point close to z1.



The ‘mean reward’ for process Z starting with z > 0 has
representation

uθ∗,r (z) =

∫ z

0
r(y)U(z , dy).

A ‘renewal reward theorem’:
Corollary For integrable r(z),

uθ∗,r (z)→
∫ ∞
0

r(y)λ(y)p(y)dy , z →∞.

If r(z) = O(z−β) with β > 1 then the convergence rate is
O(z−β+1).
This allows us to obtain the asymptotic expansions of the moments
of Nθ(t) and of the length of selected sequence Lϕ(t) under
self-similar strategies. In particular, w(z) = E[Nθ∗(z)]2 satisfies

w ′(z) = 4

∫ θ∗(z)

0
(w(z − y)− w(z) + (1 + 2u(z − y))(1− y/z)dy ,

with w(0) = 0.



The asymptotic expansion of moments

For LT the length of selected subsequence under self-similar
strategy with given control function ϕ, and F (T ) = ELT it holds:

Theorem (G. and Seksenbayev ’20) The expected length under
the optimal strategy is

F (T ) ∼
√

2T − 1

12
logT + c1 +

√
2

144
√
T

+ O(T−1)

and the variance is

VarLT =

√
2T

3
+

1

72
logT + c2 + O(T−1/2 logT ).

The optimal strategy is self-similar with

ϕ∗(T ) ∼
√

2

T
− 1

3T
+ O(T−3/2).

Constants c1, c2 are unknown.



A renewal process approximation to Z

The range of Z (starting at location z) is an alternating sequence
of drift intervals and gaps skipped by jumps. Let Dz be the length
of the generic drift interval and Jz that of jump. From

θ∗(z) =
1√
2

+
1

12z
+ O(z−2)

follows that for z →∞ that 4λ(z)→ 2
√

2 and

Dz
d→ E

2
√

2
, Jz

d→ U√
2
,

where E and U are independent Exponential(1) and Uniform-[0, 1]
random variables. At large distance from 0, the generic jump of Z
is approximable by decreasing renewal process with cycle-size

Dz + Jz−Dz

d→ E

2
√

2
+

U√
2

=: H



CLT by stochastic comparison

Cutsem and Ycart ’94, Haas and Miermont ’11, Alsmeyer and
Marynych ’16 obtained limit theorems for absorption times (or
jump-counts) for decreasing Markov chains on N.

Adapting (and filling in a gap in) the stochastic comparison
method of Cutsem and Ycart, we squeeze

(1 + c/z)−1H <st Dz + Jz−Dz <st (1− c/z)−1H

for z > z , where z = ω
√
z and ω large parameter.

Accordingly, the number of jumps of Z within [z , z ] is squeezed
between two renewal processes which satisfy the CLT.

It is important that the cycle-size of Z is within O(z−1) from the
limit, since by slower convergence rate O(z−1/2+ε) the normal
approximation may fail.



Theorem For every self-similar selection strategy with

ϕ(T ) =

√
2

T
+ O(T−1)

the expected length of selected increasing subsequence is within
O(1) from the optimum, and the CLT holds

√
3
LT −

√
2T

(2T )1/4
d→ N (0, 1).

Compare with the Tracy-Widom limit for the length of the LIS.

Bruss and Delbaen ’04, Arlotto et al ’15, proved analogous CLT in
the fixed-n setting, for the optimal strategy using concavity of the
value function F (T ) and martingale methods.



Transversal fluctuations of the online selected subsequence

Q: What is the behaviour of the optimal online selected
subsequence viewed as a function of time?

Standardised framework: Poisson point process of intensity T in
the square [0, 1]× [0, 1].
LT (t) number of selections by time t ∈ [0, 1],
XT (t) the running maximum.

Bruss and Delbaen ’04 have shown: The processes (XT , LT )
centred by their compensators (CX ,CL) (and properly scaled)
converge weakly in Skorokhod’s space D[0, 1] to a bivariate BM
W = (W1,W2) with covariance

E[W (1)TW (1)] =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
2
√
2

3
1√
2

1√
2

1√
2

)



For given ψ, an acceptance window (in the Poissonised setting),
the compensators themselve are unknown adapted processes

CX (t) =
ν

2

∫ t

0
ψ2(s, ν,X (s))ds,

CL(t) = ν

∫ t

0
ψ(s, ν,X (s))ds,

which account for a substantial fluctuation component.



We shall assume that the employed selection strategy is optimal or
is any other self-similar with

ϕ(T ) =

√
2

T
+ O(T−1),

so with the acceptance window

ψ(t,T , x) =

√
2(1− x)

T (1− t)
+ O

(
1

T (1− t)

)
.

We scale the running maximum and running length as

X̃T (t) := T 1/4(XT (t)− t),

L̃T (t) := T 1/4

(
LT (t)√

2T
− t

)
To compare: scaling for the longest increasing subsequence is T 1/6

resp. T 1/3, and yields a non-Gaussian functional limit (Duverne,
Nica, Virag ’19).



G. and Seksenbayev ’20:

Theorem As T →∞, in D[0, 1] the weak convergence holds:

(X̃T , L̃T )⇒ (Y1,Y2),

where the limit satisfies SDE

dY1(t) =
−Y1(t)

1− t
dt + dW1(t),

dY2(t) =
−Y1(t)

2(1− t)
dt + dW2(t).

with the initial condition 0. Explicitly,

Y1(t) = (1− t)

∫ t

0

dW1(s)

1− s

is a Brownian bridge with σ21 = 2
√

2/3, and

Y2(t) =
Y1(t)

2
− W1(t)

2
+ W2(t).



For 0 ≤ s < t < 1 the cross-covariance matrix is

E{Y (s)TY (t)} =

 2
√
2 s(1−t)
3

2s(1−t)−(1−s) log (1−s)
3
√
2

(1−t)(2s−log (1−s))
3
√
2

2s(2−t)−(2−s−t) log (1−s))
6
√
2

 ,

VarY1,VarY2

Cov(Y1(t),Y2(t)), Corr(Y1(t),Y2(t))



Generators

The generator of (X̃ , L̃, t) is

L̃T f = ft−T−1/4(fx+f`)+T 3/4

∫ ψ̃

0
{f (x+u, `+1, t)−f (x , `, t)}du,

where ψ̃ = T 1/4ψ(t,T , xT−1/4 + t), converges to

L̃f := ft −
x

1− t
fx −

x

2(1− t)
f` +

σ21
2
fxx +

σ22
2
f`` + σ1σ2ρfx`

for functions f on [0, 1]×R+ × [0, 1− h] in a core of the operator,
for every fixed h ∈ (0, 1).

This implies convergence in D[0, 1− h], for any given h > 0.



End of proof: tightness in D[0, 1]

Let X ↑T be the process driven by the control function

ψ↑(t) :=

√
2

T
+

β

T (1− t)
1(t ≤ 1− KT−1/2),

and a reflection near the diagonal t = x , and X ↓T a process with
control

ψ↓(t, x) =


(√

2
T −

β
T (1−t)

)
∧ (t − x), for 0 ≤ t ≤ 1− K/

√
T ,

0, for 1− K/
√
T < t ≤ 1,

where K , β > 0 are large enough constants. Both X ↑ and X ↓

converge in D[0, 1] to reflected Brownian motions. The tightness
of X̃T ’s on the whole [0, 1] follows, since

X ↓T ≤st XT ≤st X
↑
T .



Moment bounds

If ϕ(ν) =
√

2/T + O(T−1) then the mean running maximum and
the mean running length satisfy uniformly in t ∈ [0, 1]

|EXT (t)− t| = O(T−1/2),

√
2T t +

1

6
log(1− t) + C1 ≤ ELT (t) ≤

√
2T t + C2t.

For the optimal strategy, C2 = 0.


