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Goal of this talk

The goal of this talk is threefold

A bit of category theory: How to construct free objects w.r.t. a functor
and two routes to reach the free algebra.

Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients

MRS factorisation: A local system of coordinates for Hausdorff groups
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Bits and pieces of representation theory
and how bialgebras arise

Wikipedia says

Representation theory is a branch of mathematics that studies abstract
algebraic structures by representing their elements as linear
transformations of vector spaces, .../...
The success of representation theory has led to numerous generalizations.
One of the most general is in category theory.

As our track is based on Combinatorial Physics and
Experimental/Computational Mathematics, we will have a practical
approach of the three main points of view

Algebraic

Geometric

Combinatorial

Categorical
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Matters

1 Representation theory or theories
1 Geometric point of view
2 Combinatorial point of view (Ram and Barcelo manifesto)
3 Categorical point of view

2 From groups to algebras
Here is a bit of rep. theory of the symmetric group, deformations,
Wedderburn and idempotents

3 Irreducible and indecomposable modules

4 Characters, central functions and shifts

5 Reductibility and invariant inner products
Here stands Joseph’s result

6 Commutative characters
Here are time-ordered exponentials, iterated integrals, evolution equations
and Minh’s results

7 Lie groups Cartan theorem
Here is BTT
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Universal problem w.r.t. a functor
Free structures and objects

1 Let Cleft , Cright be two categories and F : Cright → Cleft a (covariant)
functor between them

Cleft Cright

U V

Free(U)

F

f

jU f̂

Figure: A solution of the universal problem w.r.t. the functor F is the datum, for
each U ∈ Cleft, of a pair (jU ,Free(U)) (with jU ∈ Hom(U, F [Free(U)]),
Free(U) ∈ Cright) such that, for all f ∈ Hom(U, F [V ]) it exists a unique
f̂ ∈ Hom(Free(U),V ) with F [f̂ ] ◦ jU = f . Elements in Hom(U,F [V ]) are called
heteromorphisms their set is noted HetF (U,V ).
(

∀f ∈ Hom(U,F [V ])
)(

∃! f̂ ∈ Hom(Free(U),V )
)(

F (f̂ ) ◦ jU = f
)
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The pair U → Free(U) is, in fact, a functor.
Which, in turn, will prove to be left-adjoint to F

Cleft Cright

U1 G (U2)

U2 G (U1)

F

g21

j2g21

j1

j2

ĵ2g21=:G(g21)

Figure: Making a free functor G (= Free) from F : for any morphism
g21 ∈ Hom(U1,U2), G(g21) is the unique morphism in Hom(U1,U2) such that

F [G(g21)] ◦ j1 = j2g21 (∗∗)

We now prove that G is a functor.

If U1 = U2 and g21 = IdU1 , then j1 = j2 = j2g21 and F [IdG(U1)] ◦ j1 = j1 = j2g21
hence G [IdU1 ] = IdG(U1)

A remark: Het(?, ?) is intended to give a symmetric middle term/step to the
adjunction chain Hom(U, F [V ]) =: HetF (U,V ) ≃ HetG (U,V ) := Hom(G(U),V )
≃ being constructed by a set of bijections.
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Functor G from Free/2

Let now U1
g21

U2
g32

U3 be a chain of Cleft -morphisms.
We have

F [G(g21)] ◦ j1 = j2 ◦ g21 and F [G(g32)] ◦ j2 = j3 ◦ g32
then

F [G(g32) ◦ G(g21)] ◦ j1
(1)
= F [G(g32)] ◦ F [G(g21)] ◦ j1

(2)
=

F [G(g32)] ◦ j2 ◦ g21
(3)
= j3 ◦ g32 ◦ g21

(1) because F is a functor, (2) is Eq. (**) applied to indices 21,
(3) is Eq. (**) applied to indices 32.
Now, we know that g ∈ Hom(U,U ′) being given, the solution
X ∈ Hom(G(U),G(U ′)) of

F [X ] ◦ j1 = j2 ◦ g

is unique. Then G(g32) ◦ G(g21) = G(g32 ◦ g21)
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Composition of functors F and G

Piling free structures.

C1 C2 C3
U V

F23[V ]

G21[U]

G32[G21[U]]

F12 F23

jU21

f

f

f̂

f̂

j
G21[U]
32

ˆ̂
f

Figure:
[

F12[j
G21 [U]
32 ],G32[G21[U]]

]

is a solution of the universal problem for F12F23 .

Proof: In fact, HetF12F23(U,V ) = Hom(U, F12F23[V ]) = HetF12 (U,F23[V ]), hence

existence of f̂ ∈ Hom(G21[U], F23[V ]) = HetF23 (G21[U],V ), hence again existence of ˆ̂f .

Uniqueness of ˆ̂f is left to the reader.
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First example: T = UL.

k−Mod k− Lie

M g

Liek(M)

F

f

j f̂

k− Lie k− AAU

g A

U(g)

F

f

j f̂

Set k−Mod

X M

k(X )

F

f

j f̂

k−Mod k−AAU

M A

T (M)

F

f

j f̂

T (M) = U(Liek(M)) k〈X 〉 = T (k(X ))
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First example: T = UL, k field.

k− Vect k− Lie

V g

Liek(V )

F

f

j f̂

k− Lie k−AAU

g A

U(g)

F

f

j f̂

Set k− Vect

X V

k(X )

F

f

j f̂

k− Vect k− AAU

V A

T (V )

F

f

j f̂

T (V ) = U(Liek(V )) k〈X 〉 = T (k(X ))
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An immediate (and although rich) example/1
Piling free structures/2

1 First, C1 = Set (sets and maps) and C2 = Mon (monoids and
morphisms) gives you the triple (X , j21,X

∗)

Usually X , a set, is seen as an alphabet that is to say a set of non
commuting variables. Let us introduce the ring k of coefficients

2 With C2 = Mon (monoids and morphisms) and C3 = k− AAU

(k-associative algebras with unit), one gets k[M] the algebra of a
monoid M, we get the triple (M, j32, k[M]) and,

3 by transitivity of free objects with C1 = Set (sets and maps) and C3
as above, we get the triple (X , j31, k〈X 〉), k〈X 〉 = k[X ∗] being the
algebra of noncommutative polynomials.

4 we immediately obtain that k〈X 〉 = k[X ∗] is free with {w}w∈X ∗ (this
will be useful for the principal pairing)
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An immediate (and although rich) example/2

5 let us observe here that k〈X 〉 can be reached, instead of

[Set] −→ [Mon] −→ [k− AAU]

by another path, and this will provide a host of other very interesting
(combinatorial) bases.

6 the preceding route amounts to the formula k〈X 〉 = k[X ∗], but it can
be also proved that k〈X 〉 = U(Liek〈X 〉)

[Set] −→ [k− Lie] −→ [k− AAU]
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An immediate (and although rich) example/3
Piling free structures and dual bases

7 from the first (obvious) way (sets to monoids to k-AAU) we got the
basis {w}w∈X ∗ which provides the fine grading of k〈X 〉. indeed to
each word w ∈ X ∗, we can associate the family

β(w) = (|w |x )x∈X ∈ N(X )

8 therefore, due to this partitioning of the basis (of words), we get

k〈X 〉 =
⊕

α∈N(X )

kα〈X 〉 (1)

where kα〈X 〉 := spank{w |β(w) = α}.
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An immediate (and although rich) example/4
Graded bases through free Lie algebra

9 each kα〈X 〉 is free of dimension
|α| !

α !
; for example with two letters a, b, we

have k〈X 〉 =
⊕

(p,q)∈N2 k(p,q)〈X 〉 and dim(k(p,q)〈X 〉) =
(p + q) !

p !q !
=

(

p
q

)

.

10 this fine grading is a grading of algebra as

kα〈X 〉kβ〈X 〉 ⊂ kα+β〈X 〉 ; 1X ∗ ∈ k0〈X 〉 (2)

11 now through the second route (sets-Lie-AAU), we can construct many finely
homogeneous bases of k〈X 〉 using the following scheme

pick any finely homogeneous basis of Liek〈X 〉, (Pi )i∈I (we will
construct at least one)
(Totally) order I and form the PBW basis (of k〈X 〉). it is finely
homogeneous (due to eq. 2).
use this for MRS factorisation (unfolded below after semi-simplicity)
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Semi-simple categories of modules/1

Next steps

1 Semi-simple categories of modules

2 Link with non-degenerate bilinear forms + examples

About pronunciation

Here are examples of pronunciation

https://www.linguee.fr/anglais-francais/traduction/semi.html

including: “semi-detached house”, “semi-public”, “semiconductor”. On
this ground, I think that, until there is evidence to the contrary, the “i” of
“semi-simple” should sound as in “fish” and not as in “file”.
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Semisimple categories of modules/2

Semi-simple categories of modules, see in general

https://ncatlab.org/nlab/show/semisimple+category

Definition

Let R be a ring. We note R-Mod the category of R-modules (whatever
the size) the arrows being that of R-linear mappings between objects.

Remarks

1 This is a category with direct sums (coproducts) and products.

2 Subcategory of finite length modules (ex. finite dim when R is a k algebra)
admit (finite) decompositions (Krull) in indecomposables. Another example
will be subcategory of semi-simple modules (see below).

3 In the preceding case (finite dim when R is a k algebra) it is a subcategory

4 Link with non-degenerate bilinear forms + examples
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Semisimple categories of modules/3

Definition: Simple and semi-simple modules

1 A module M ∈ R-Mod is said simple if it is not (0) and if its set of
submodules is

{

(0),M
}

2 A module M ∈ R-Mod is said semi-simple iff M = ⊕i∈IMi where Mi are
simple submodules of M .

Proposition [A]

Let M ∈ R-Mod

1 If M is such that M =
∑

i∈I Mi where Mi are simple submodules of M and
N ⊂submod M , then it exists J ⊂ I such that M = (⊕i∈JMi)⊕ N .

2 In particular a submodule or a quotient of a semi-simple module is
semi-simple.
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Proof

A.1) Let S ⊂ 2I defined on 2I

S = {J ⊂ I |(⊕i∈JMi)⊕ N is well defined} (3)

The set of S is non-empty and of finite character. Then, by
Tukey-Teichmüller theorem it admits at least a maximal element foor
inclusion. Let J0 be such an element. If J0 = I we are done, otherwise let
i ∈ Ir J0 and set T =

(

(⊕i∈J0Mi )⊕ N
)

. We cannot have Mi ∩ T = (0)
otherwise we would get J0 ∪ {i} ∈ S and i ∈ J0, a contradiction. Remains
Mi ⊂ T because Mi is simple. Hence (∀i ∈ Ir J0)(Mi ⊂ T ) and this entails
M = T .
Remark that, setting N to (0), one obtains that if a module is a sum (direct
or not) of simple submodules, then it is semi-simple.

A.2) We suppose M = ⊕i∈IMi to be semi-simple. Let f : M ։ Q, .
Setting N = ker(f ) in the preceding situation, we get a subfamily (Mi)i∈J

such that M = (⊕i∈JMi )⊕ N . Then, by f , (⊕i∈JMi) ≃ Q and we are done.
Now, if N is any submodule of M , by (A.1), it is direct summand and we can
write M = N ⊕N1 with projectors pN , pN1 . From pN : M ։ N we are done.
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Case when Rs itself is semi-simple

Any ring R can be considered as a R − R bimodule by the left and right
actions (for a, b ∈ R), λa(m) = a.m, ρb(m) = m.b. these two actions
commute. By definition Rs is the left-module defined by the action λa(m).
We have the following

Proposition [B]

If Rs is semi-simple, all R-module is so.

Proof.

We suppose that Rs is semi-simple. Let M be a R-module, then for all
x ∈ M the (principal) R-submodule R .x is a semi-simple image (that of
t → t.x), hence semisimple. The result is then a consequence of
Proposition [A].1 in view of the fact that M =

∑

x∈M R .x .
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A sufficient condition for Rs to be semi-simple

Proposition [C]

Under the preceding conditions

1 If Rs is semi-simple then every left ideal is direct summand of Rs

within the lattice of left ideals.

2 The converse is true in the case when this latticea satisfies
ACC+DCC chain conditions.

https://en.wikipedia.org/wiki/Ascending_chain_condition

aThe lattice of left ideals.

For hilbertian traces, see Dieudonné XV.6 [4].
In the category of modules, ACC is Noetherian, DCC is Artinian.
Next steps: Frobenius characteristics, characters, case of finite groups, the
symmetric group, Kronecker, Littlewood-Richardson and Clebsch–Gordan
coefficients.
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Proof of Proposition [C]

1) In fact this is true of every semi-simple module by Proposition [A].1.
2) As in (1), this converse is true for every module satisfying the same conditions
(i.e. every submodule is direct summand + ACC + DCC). Let M be such a
module, we build the following double sequence

1 (Init.) C0 = ((0),M)

2 (Running) Cn = (⊕n
i=1Ni ,Qn) with Ni simple submodules of M and

⊕n
i=1Ni ⊕ Qn = M

3 (Halt) Qn = (0) (then we are done)

4 (Next Step) Suppose Cn = (⊕n
i=1Ni ,Qn) with Qn 6= (0) (non-halting step)

then we choose a minimal submodule Qmin of M among those such that
(0) ( Q ⊂ Qn (it is possible because M satisfies DCC). We set Nn+1 = Qmin

and remark that the family (Ni )1≤i≤n+1 is in direct sum and, by hypothesis,
it exists Qn+1 such that ⊕n+1

i=1 Ni ⊕ Qn+1 = M then set
Cn+1 = (⊕n+1

i=1 Ni ,Qn+1)
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Proof of Proposition [C]/2 and first applications

Proof that this algorithm halts) unless M = (0) there is at least one step.
Let n+ 1 be any valid rank of a step. By construction ⊕n

i=1Ni ( ⊕n+1
i=1 Ni , a

strictly increasing sequence of submodules. By ACC this sequence must be
finite.

Semi-simplicity) Let m is the last index of the sequence Cn. We have
Qm = (0) and then M = ⊕m

i=1Ni . CQFD

Applications

1 Applies to Every finite dimensional ∗-algebra which admits a SPS (then is
semi-simple). See exercise below (todo)

2 and in particular to A = C[G ] where G is a finite group. With

(

∑

g∈G

α(g) g
)∗

:=
(

∑

g∈G

α(g) g−1
)

and ϕ(Q) = 〈1G |Q〉
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An example: Non-degenerate states in star-algebras

Let A be an ∗-algebra (x → x∗ is semi-linear, involutive and an
anti-automorphism)

C+(A), generated by elements of the form
∑

i∈F xix
∗
i F finite) is an

hermitian (self-dual) convex cone

State(A) is the set of linear forms f ∈ A∗ such that
z ∈ C+(A) =⇒ f (z) ≥ 0

A non degenerate state (SPS) is such that

z ∈ C+(A) and f (z) = 0 =⇒ z = 0

Proposition [D]

A finite dimensional star-algebra with a non-degenerate state is
semi-simple.
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Applications cont’d

Unfolding 1-2

1 Let ϕ be one of these SPS (strictly positive state) states and set

〈x |y〉 = ϕ(x∗y)

it is a non-degenerate hermitian form such that, identically 〈x |a.y〉 = 〈a∗.x |y〉.
Let J be a left-ideal of the algebra A, then it is easy to prove that J ⊥ is a left
ideal
2 In particular with the preceding setting (A = C[G ] where G is a finite group,
star-structure and state) we have the result.

3 We decompose A into minimal left ideals A = ⊕j∈FJj and then
1A =

∑

i∈F pi

4 One can prove that Ji = A pj and pjpi = pipj = δijpi (complete orthogonal
family of minimal idempotents)

5 The lemma HomA(A.e,A.f ) ≃ e.A.f (sandwich) gives Wedderburn’s
decomposition.

24 / 60



Construction of the matrix units.

1 For e, f idempotents then eaf → (x → xeaf ) is an iso of k-spaces
between e.A.f and HomA(A.e,A.f ) the inverse being f → f (e)
(note that f (e) ∈ e.A.f ).

2 Return to 1A =
∑

i∈F pi (each pi is minimal) and set
i ∼ j ⇐⇒ ei .A.ej 6= (0) (block equivalence)

3 Take a block C , order C = {i1 < i2 < · · · < im} totally.

4 For 1 ≤ j < m choose aij ∈ eij .A.eij+1
r (0)
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Faithful state

The fact that A be a star-algebra of finite dimension, sum of matrix
algebras is by no means sufficient to imply that the projectors on the
blocks are *-invariant nor A ≃ C as shows the following counterexample.
Take B = Cn×n (algebra of complex square matrices of dimension n > 0)
and A = B ⊕ B with the anti-automorphism (X ,Y )⋆ = (Y ∗,X ∗). Then
(A, ⋆) is easily checked to be a star algebra. It is of finite dimension, sum
of matrix algebras but dimC = 2n2 6= 1. Indeed, the existence of a faithful
state is crucial as there is none over A.

Elements of the form a∗a need not have a positive spectrum as shows the
following counterexample. Taking n = 1 in the above we get

(

a 0
0 b

)∗(
a 0
0 b

)

=

(

b̄ 0
0 ā

)(

a 0
0 b

)

=

(

b̄a 0
0 āb

)

(4)
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We recall a few notable facts:

1 We start with a finite dimensional ∗-algebra A (a k− AAU and
remark that e∗ is neutral so that e∗ = e.

2 Now, A is equipped with a SPS ϕ as in (30). With ϕ, we build the
following 2-form

g(x , y) = 〈x |y〉 = ϕ(x∗y). (5)

3 One checks (see below) at once that (x , y) → 〈x |y〉 a positive definite
hermitian form (inner product) therefore (A, g) is an Hilbert space.
We have |〈x |y〉| ≤ ||x ||.||y || and ϕ(x∗) = ϕ(x).

4 This inner product satisfies identically
ϕ(x∗(a.y)) = 〈x |a.y〉 = 〈a∗.x |y〉 = ϕ((a∗.x)∗y) and from that, we
get that A is semi-simple.
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5 Consider a finite group H ⊂ AutC(A) of linear automorphisms of the
∗-algebra A (i.e. automorphisms of algebra which commute with the
∗-involution) such that (∀(h, a) ∈ H ×A)(ϕ(h.a) = ϕ(a)). In other
words, ϕ does not see the action of H. We check that H is a group of
isometries for g(x , y):

〈h.a|h.b〉 = ϕ((h.a)∗h.b) = ϕ((h.a∗)(h.b)) = ϕ(h.(a∗.b))
= ϕ(a∗.b) = 〈a|b〉 (6)

6 Now, we form an algebra κ(H,A) of orbits (with multiplicities)
linearly generated by the vectors H.a, for all a ∈ A:

κ(H,A) = SpanC{H.a}a∈A (7)

where

H.a :=
∑

h∈H

h.a (8)
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7 We can check (see below) that κ(H,A) is a subalgebra of A which is,
moreover ∗-closed.

8 As a consequence, if A is a C∗-algebra then κ(H,A) is a C∗-algebra.

9 In the next slide, we prove the points 3, 7 and 8, all remaining facts
are easily achieved.
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Proofs

10 Proof of 3. – Linearity on the right is straightforward. To show
hermitian symmetry, we first compute
g(x + y , x + y) = g(x , x) + [g(x , y) + g(y , x)] + g(y , y) which proves
that

ℑ(g(y , x)) = −ℑ(g(x , y)). (9)

Then, from,

g(x + iy , x + iy) = g(x , x) + [g(x , iy) + g(iy , x)] + g(iy , iy) =
g(x , x) + i [g(x , y)− g(y , x)] + g(y , y) (10)

we get i [g(x , y)− g(y , x)] ∈ R meaning ℜ([g(x , y) − g(y , x)]) = 0.
Then ℜ(g(y , x)) = ℜ(g(x , y)) with (9) shows

g(y , x) = g(x , y) (11)

therefore, with y = e, we get ϕ(x∗) = g(x , e) = g(e, x) = ϕ(x). The
inequality |g(x , y)| ≤ ||x ||.||y || is a consequence of Cauchy-Schwartz
theorem.
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Proofs/2

11 It suffices to consider that

(H.a)(H.b) =
∑

u,v∈H

(u.a)(v .b) =
∑

u,v∈H

u.
(

(a)(u−1v .b)
)

=
w=u−1v

∑

u∈H

u.

(

∑

w∈H

(a)(w .b)

)

=
∑

w∈H

H.(a(w .b)) (12)

Moreover, h.a∗ = (h.a)∗ implies (H.a)∗ = H.a∗, so κ(H,A) is
∗-closed.

12 This is the consequence of the general fact that an ∗–closed
subalgebra of a C∗-algebra is a C∗-algebra.
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A remark

Remark. –
13 The reader should be aware that (A, g) is not necessarily a

C∗-algebra1. In fact, one has the following equivalent conditions:

(A, g) is a C∗-algebra (i.e. for ||x || =
√

g(x , x))
dimC(A) = 1

14 However, we can make A a C∗-algebra in the following way. Let
ρ : A → L(A) be the left-regular representation (i.e.
ρ(a) = (ξ → a.ξ)). This representation is into as, if ρ(a) = 0, in
particular ρ(a)[a∗] = aa∗ = 0 and ϕ(aa∗) = 0 hence a = 0. Moreover

〈x |ρ(a)[y ]〉 = 〈x |a.y〉 = 〈a∗.x |y〉 = 〈ρ(a∗).x |y〉 (13)

which entails that ρ(a∗) = ρ(a)∗ and, from this A is a C∗-algebra (for
the new norm ||a||g = sup||ξ||=1 ||a.ξ||).

1See discussion in https://math.stackexchange.com/questions/3964927.
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Universal problem without functor: Coproducts

All here is stated within the same category C.

X
Z

Y

X
∐

Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X
∐

Y ).

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X
∐

Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(14)
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Coproducts: Sets

All here is stated within the category Set.

X
Z

Y

X ⊔ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊔ Y ).

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ⊔ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(15)
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Coproducts: Vector Spaces

All here is stated within the same category k− Vect.

X
Z

Y

X ⊕ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊕ Y ) here h(f ; g) = f ⊕ g .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ⊕ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(16)
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Coproducts: k− CAAU

All here is stated within the same category k− CAAU.

X
Z

Y

X ⊗ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊗ Y ) here h(f ; g) = f ⊗ g .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ⊗ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(17)
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Coproducts: Augmented k− AAU

All here is stated within the same category Augmented k− AAU.

X
Z

Y

X ∗ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ∗ Y ) here h(f ; g) = f ∗ g .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ∗ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(18)
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Non-coproducts: Tensor products of k− AAU
Tensor product of k−AAU described as in [14] Prop. 11.4.1.

15 All here is stated within the same category k− AAU.

X
Z

Y

X ⊗ Y

f

jX

g

jY

h(f ;g)

Figure: Tensor product (jX , jY ;X ⊗ Y ), the condition is that f (X ) commutes
pairwise elementarily with g(Y ) within Z .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

(∀(x , y) ∈ X × Y )(f (x)g(y) = g(y)f (x))
)

(

∃! h(f ; g) ∈ Hom(X ⊗ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(19)
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Non-coproduct: the same, but categorized
was [14] Prop. 11.4.1.

16 We construct a derived category C2(X ,Y ) as follows
1 Objects: Pairs (f , g) of morphisms of k− AAU such that

1 codom(f ) = codom(g)
2 (∀(x , y) ∈ X × Y )(f (x)g(y) = g(y)f (x))

2 Arrows: h ∈ Hom[(f1, g1), (f2, g2)] is such that

1 h ∈ Arr(k − AAU)
2 f2 = hf1 and g2 = hg1

17 Little training. –
1) Make precise what (jX , jY ,X ⊗ Y ) is in the case above
(Hint: Use [14] Prop. 11.4.1).
2) Prove that this triple is a solution of one universal problem from
C2(X ,Y ) as an initial element.
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Non-coproducts: Coloured tensor products of k− grAAU
Deformation theory: Colour (or commutation) factor, see [7].

Some bibliographical elements

Colour factors were introduced by R. Ree [19], and the theory was developed or
used in [8, 9]. In fact, some of them (“Commutation factors”, with values in
{−1, 1} and an [anti]symmetry condition) are already considered in [1]. See
Section 10 (Dérivations) of Chapter III and §4.7.

Deformed and shifted laws

We begin by a very general version of the “shifting lemma” (similar but
more general than the one given and needed in [9])

Shifting lemma. – Let A = ⊕α∈D be an algebra decomposed (as a vector
space) over a semigroup D (A is then graded as a vector space, not as an
algebra). Let α 7→ Tα be a semigroup homomorphism D → Endgr (A).
We suppose that the shifted law defined, for x ∈ Aα, by x ∗̄y = x ∗ Tα(y) is
D-graded. Then, if the law ∗ is associative, so is the law ∗̄.
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Non-coproducts: Coloured tensor products of k− grAAU
Tensor product of k− grAAU with commutation factor (deformation).

18 All here is stated within the same category k− grAAU.

X
Z

Y

X ⊗ Y

f

jX

g

jY

h(f ;g)

Figure: Tensor product (jX , jY ;X ⊗ Y ), the condition is that f (X ) commutes
pairwise elementarily with g(Y ) with commutation factor χ and within Z .

(

∀(f , g) ∈ Homgr (X ,Z )× Homgr (Y ,Z )
)

(

(∀(x , y) ∈ Xp × Yq)(g(y)f (x) = χ(q, p)f (x)g(y))
)

(

∃! h(f ; g) ∈ Hom(X ⊗ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(20)
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Continuation: An immediate (and although rich)
example/5
Words and Lyndon words, details.

Algebraic structure

Concatenation: This law is noted conc

With the empty word as neutral, the set of words is the free monoid
(X ∗, conc , 1X∗)

The pairing between series and polynomials is defined by

〈S |P〉 =
∑

w∈X ∗

〈S |w〉〈P |w〉

Coding by words gives access to a welter of structures, studies, relations
and results (algebra, geometry, topology, probability, combinatorics on
words, on polynomials and series). We will use in particular their complete
factorisation by Lyndon words.
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An immediate (and although rich) example/6
Words and classes

Example with X = {a, b}, a < b, in red Lyndon words (= LynX ).

Length words
0 1X∗

1 a, b
2 aa, ab, ba, bb
3 aaa, aab, aba, abb, baa, bab, bba, bbb
4 a4, a3b, a2ba, a2b2, aba2, abab, ab2a, ab3

ba3, ba2b, baba, babb, b2a2, b2ab, b3a, b4

Two properties of Lyndon words

1 All ℓ ∈ LynXrX factorises (not uniquely in general) as
ℓ = ℓ1ℓ2, ℓ1 ≺ ℓ2, ℓi ∈ LynX
(ex. a3ba2bab = a3b|a2bab = a3ba2b|ab), the one with the longest right
factor will be called standard σ(ℓ) = (ℓ1, ℓ2).

2 Every word w ∈ X ∗ factorises uniquely w = ℓi11 . . . ℓ
ik
k with

ℓ1 ≻ . . . ≻ ℓk , (ℓi ∈ LynX )
44 / 60



An immediate (and although rich) example/7
Shuffle product(s)

Non deformed case

Coming from the route where k〈X 〉 = U(Liek〈X 〉), we have a structure of
coalgebra on k〈X 〉 its comultiplication is given by its value on letters

∆x (x) = x ⊗ 1X ∗ + 1X ∗ ⊗ x (21)

Then shuffle product is defined as a dual law, for each w ∈ X ∗ by

〈P xQ|w〉 = 〈P ⊗ Q|∆x (w)〉 (22)

We get the following recursion for shuffle products

w x 1X ∗ = 1X ∗ xw = w for any word w ∈ X ∗; (23)

aux bv = a(ux bv) + b(aux v) (24)
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An immediate (and although rich) example/8
Two bases in duality/1: Combinatorial constructions

Lyndon basis

Px = x for x ∈ X ,
Pℓ = [Ps ,Pr ] for ℓ ∈ LynXrX and σ(ℓ) = (s, r),
Pw = P i1

ℓ1
. . .P ik

ℓk
for w = ℓi11 . . . ℓikk , ℓ1 ≻ . . . ≻ ℓk , (ℓi ∈ LynX ).

where ≻ stands for the lexicographic (strict) ordering defined from x0 ≺ x1.

Triangular property

Indeed {Pw}w∈X∗ is lower unitriangular w.r.t. words (this property, joined
with the fact that this family is finely homogeneous, implies that
{Pw}w∈X∗ is a basis of k〈X 〉)

Pw = w +
∑

v≻w ,β(v)=β(w)

cvv with cv ∈ Z (25)
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Dual bases

Construction of (Sw )w∈Xα

For each multidegree α, let Xα be the (finite) set of words with
multidegree α and Tα be the lower unitriangular matrix of {Pw}β(w)=α

w.r.t. words of Xα then, the matrix transpose(T−1) defines a family
(Sw )w∈Xα such that

1 Sw = w +
∑

v≺w ,β(v)=β(w) dvv with dv ∈ Z

2 For all u, v ∈ Xα, 〈Su|Pv 〉 = δu,v .

3 The quantification of the preceding property can be extended to all
u, v ∈ X ∗ due to the fact that the decomposition (1) is, in fact,
orthogonal.
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Schützenberger’s basis (k is a Q-algebra)

M. -P. Schützenberger proved that, when k is a Q-algebra, the basis
(Sw )w∈X ∗ can be computed recursively as follows

Sx = x for x ∈ X ,
Sl = xSu, for l = xu ∈ LynXrX ,

Sw =
S x i1
l1

x . . . x S x ik
lk

i1! . . . ik!
for w = l i11 . . . l ikk , l1 ≻ . . . ≻ lk .

Triangular properties (recall)

Pw = w +
∑

v≻w ,β(v)=β(w)

cvv and Sw = w +
∑

v≺w ,β(v)=β(w)

dvv .(26)

We recall that the bases {Sw}w∈X∗ and {Pw}w∈X∗ are lower and upper
triangular respectively and that they are (finely) graded (all the monomials
have the same partial degrees).
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Table of these bases

Example (First values)

Let X = {x0, x1} with x0 ≺ x1.

l Pl Sl
x0 x0 x0
x1 x1 x1
x0x1 [x0, x1] x0x1
x20 x1 [x0, [x0, x1]] x20 x1
x0x

2
1 [[x0, x1], x1] x0x

2
1

x30 x1 [x0, [x0, [x0, x1]]] x30 x1
x20 x

2
1 [x0, [[x0, x1], x1]] x20 x

2
1

x0x
3
1 [[[x0, x1], x1], x1] x0x

3
1

x40 x1 [x0, [x0, [x0, [x0, x1]]]] x40 x1
x30 x

2
1 [x0, [x0, [[x0, x1], x1]]] x30 x

2
1

x20x1x0x1 [[x0, [x0, x1]], [x0, x1]] 2x30 x
2
1 + x20 x1x0x1

x20 x
3
1 [x0, [[[x0, x1], x1], x1]] x20 x

3
1

x0x1x0x
2
1 [[x0, x1], [[x0, x1], x1]] 3x20 x

3
1 + x0x1x0x

2
1

x0x
4
1 [[[[x0, x1], x1], x1], x1] x0x

4
1
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Factorisation of the diagonal as a resolution of identity.

Resolution of identity as an infinite product

Now we are in the position of writing the principal factorisation of the
diagonal series. In here, series multiply by shuffle on the left and
concatenation on the right.

DX :=
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

ց
∏

l∈LynX

exp(Sl ⊗ Pl) (27)

Application to factorisation of characters

If we have a shuffle-character χ : (k〈X 〉, x , 1X ∗) → A, we act on the left

χ =
∑

w∈X∗

χ(w)⊗ w =

ց
∏

l∈LynX

exp(χ(Sl )⊗ Pl) (28)

But with a conc-character χ : (k〈X 〉, conc , 1X ∗) → A, we act on the right

χ =
∑

w∈X∗

w ⊗ χ(w) =

ց
∏

l∈LynX

exp(Sl ⊗ χ(Pl )) (29)
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Conclusion

1 The values of iterated integrals (standard of regularized) are
shuffle-characters, then we have factorisations and they constitute
multiplicative regularizations.

2 The values of matrix representations of the free monoid (as the
transitions of rational series for instance) are conc-characters and we
get useful factorizations of them.

3 In the next talk (friday morning ?), we will see the deformed case
through CQMM and applications to harmonic sums.

Thank you for your attention.
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Exercises/1

Ex1: States and pre-states

Let A be a complex finite-dimensional ∗-algebra. A SPS (Strictly Positive State)
is a linear form ϕ ∈ A∗ such that

(∀x ∈ Ar {0})(ϕ(x∗x) > 0) (30)

1 Prove that the bilinear form 〈x |y〉 := 1
2

(

ϕ(x∗y) + ϕ(y∗x)
)

is a
non-degenerate hermitian scalar producta such that, identically

〈x |a.y〉 = 〈a∗.x |y〉

2 Prove that a complex finite-dimensional ∗-algebra admitting a SPS is
semi-simple.

aI take the convention of semi-linearity on the left (see the link “Hilbert
modules” below).
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Exercises/2

Ex1: States and pre-states/2

Let G be a finite group, set A = C[G ] and, for a =
∑

g∈G α(g) g , set

a∗ =
∑

g∈G α(g) g−1

3 Prove that (A, ∗) is an ∗-algebra

4 Prove that ϕ ∈ A∗ defined by ϕ(a) = α(1) is a SPS on A.
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Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphism

https://ncatlab.org/nlab/show/heteromorphism

5 D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside
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Links/2

6 https://en.wikipedia.org/wiki/Category_of_modules

7 https://ncatlab.org/nlab/show/Grothendieck+group

8 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

9 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

10 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module
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