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Review of categories useful in combinatorics.
Useful categories/1

Below a quick list of the categories of use in combinatorics (k is a given
field), morphisms are standard.

1 St, the category of sets

2 Mon, the category of monoids

3 CMon, the category of commutative monoids

4 Gp, the category of groups

5 Ring, the category of rings

6 CRing, the category of commutative rings

7 Vectk, the category of k-vector spaces

8 Liek, the category of k-Lie algebras

9 AAUk, the category of k-Associative Algebras with Unit

10 CAAUk, the category of k-Associative and Commutative Algebras
with Unit
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Useful categories/2

11 Mg, the category of Magmas i.e. sets with only a binary law (without
conditions)

12 Algk, the category of k-Algebras (without conditions)

13 DiffAlgk, the category of k-Associative Differential Algebras with
Unit.

14 CDiffAlgk, the category of k-Associative Commutative Differential
Algebras with Unit.

15 DiffRing, the category of Differential rings.

16 CDiffRing, the category of Commutative Differential Rings.

Remarks. –
i) All of these have a standard forgetful functor to St. They usually
compose and factor nicely. See also [19].
ii) For k = Z, one has

DiffAlgZ = DiffRing and CDiffAlgZ = CDiffRing.
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Magnus and Hausdorff groups

exp(−A)exp(−B)

exp(A)
exp(B)

1G

The Magnus group is the set of series with constant term 1X∗ , the Hausdorff

(sub)-group, is the (conc-)group of x -characters. When k is a field, these are

the group-like series for ∆x ). When k ⊃ Q these are also Lie exponentials (here

A,B are Lie series and exp(A)exp(B) = exp(H(A,B))).
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Possibly subgroups:

Lie Group G

Magnus, Hausdorff
Continuous, Algebraic

L(G ) (Lie algebra)
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Closed subgroups (Cartan theorem)

of Gl(n, k) Zariski U(n, k),D(n, k)
N(n, k)

of Gl(n, k) Topology (k = R,C) Gl+(n,R)

of Mag(n,C) Topology (Formal) (Hausxϕ(n,C))

U(n, k) Equations k = C, X ∗X = I

O(n, k) Equations k = R, (tX )X = I

D(n, k) Equations ai ,j = 0, i 6= j

N(n, k) Equations ai ,j = 0, i > j
aii = 1

Remarks

i) Here, the formal topology is defined by summability conditions.
ii) For formal aspects of DE, have a look at the chapter “Combinatorial
differential equations” in [1].
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Wei-Norman theorem

  
8 / 49



Theorem (Wei-Norman theorem)

Let G be a k-Lie group (of finite dimension) ( k = R or k = C) and let g
be its k-Lie algebra. Let B = {bi}1≤i≤n be a (linear) basis of it. Then,
there is a neighbourhood W of 1G (within G) and n analytic functions
(local coordinates)

W → k, (ti )1≤i≤n

such that, for all g ∈W

g =
→∏

1≤i≤n
eti (g)bi = et1(g)b1et2(g)b2 . . . etn(g)bn .
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Example

Example

We take G = Gl+(2,R) (Gl+(2,R), connected component of 1 within
Gl(2,R)),

M =

(
a11 a12

a21 a22

)
(1)

We will practically compute the Wei-Norman coefficients through an
Iwasawa decomposition

M = unitary x diagonal x unitriangular

and compute MTDU = I2 through the following elementary operations

1 (Orthogonalisation)

2 (Normalisation)

3 (Unitarisation)
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M =

(
a11 a12

a21 a22

)
= (C1,C2) = (C

(1)
1 ,C

(1)
2 )e

〈C1|C2〉
||C1||2

(
0 1
0 0

)

= e
arctan(

a21
a11

)
(

0 1
−1 0

)︸ ︷︷ ︸
unitary

e
log(||C (1)

1 ||)
(

1 0
0 0

)
e
log(||C (1)

2 ||)
(

0 0
0 1

)︸ ︷︷ ︸
diagonal (two exps)

e
〈C1|C2〉
||C1||2

(
0 1
0 0

)︸ ︷︷ ︸
triangular

We then get a Wei-Norman decomposition w.r.t. the following basis of

gl(2,R) :

(
0 1
−1 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
.

Remark. – Iwasawa decomposiion is general for Gl(n, k), k being one of
the fields R,C,H, see [4]. For R and non-Archimedean fields in the same
book, see [2].
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Bits and pieces for the BTT

Theorem (DDMS [1])

Let (A, d) be a k-commutative associative differential algebra with unit
and C be a differential subfield of A (i.e. d(C) ⊂ C). We suppose that
S ∈ A〈〈X 〉〉 is a solution of the differential equation

d(S) = MS ; 〈S |1X∗〉 = 1A (2)

where the multiplier M is a homogeneous series (a polynomial in the case
of finite X) of degree 1, i.e.

M =
∑
x∈X

ux x ∈ C〈〈X 〉〉 . (3)

[1] Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics,
M. Deneufchâtel, GHED, V. Hoang Ngoc Minh and A. I. Solomon, 4th
International Conference on Algebraic Informatics, Linz (2011). Proceedings, Lecture
Notes in Computer Science, 6742, Springer.

12 / 49



Bits and pieces for the BTT/2

Theorem (cont’d)

The following conditions are equivalent :

i) The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii) The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0) . (4)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(
(ux)x∈X

)
= {0} . (5)
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Possibly subgroups:

Lie Group G

Magnus, Hausdorff
Continuous, Algebraic

L(G ) (Lie algebra)
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Why BTT and NCDE ? : Review of the facts

ζ(s) =
∑

n≥1
1
ns (<(s) > 1)

when one multiplies two of these, one gets quantities like

ζ(s1)ζ(s2) =
∑

n1,n2≥1

1

ns1
1 n

s2
2

= ζ(s1, s2) + ζ(s1 + s2) + ζ(s2, s1)

and, with several of them, we are led to the following definition of
MultiZeta Values (MZV), converging in

Hr = {(s1, . . . , sr ) ∈ Cr | ∀m = 1, . . . , r ,<(s1) + . . .+ <(sm) > m} .

ζ(s1, . . . , sk) :=
∑

n1>...>nk≥1

1

ns1
1 . . . n

sk
k

(6)

On the other hand, one has the classical polylogarithms defined, for
k ≥ 1, |z | < 1, by

− log(1− z) = Li1 =
∑
n≥1

zn

n1
; Li2 =

∑
n≥1

zn

n2
; . . . ; Lik(z) :=

∑
n≥1

zn

nk
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Why BTT and NCDE ? : Review of the facts/2

The analogue of the classical polylogarithms for MZV reads

Liys1 ...ysk (z) :=
∑

n1>...>nk≥1

zn1

ns1
1 . . . n

sk
k

; |z | < 1

They satisfy the recursion (ladder stepdown)

z
d

dz
Liys1 ...ysk = Liys1−1...ysk

if s1 > 1

(1− z)
d

dz
Liy1ys2 ...ysk

= Liys2 ...ysk if k > 1 (7)

which, with si ∈ N≥1, k ≥ 1, ends at the “seed”

Liy1 (z) = Li1(z) = log(
1

1− z
) (8)

For the next step, we code the moves z d
dz (resp. (1− z) d

dz ) - or more

precisely sections
∫ z

0
f (s)
s ds (resp.

∫ z

0
f (s)
1−s ds) - with x0 (resp. x1).
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1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

Some coefficients with X = {x0, x1}; u0(z) = 1
z

; u1(z) = 1
1−z

, ∗0 = 0

〈S|xn1 〉 =
(−log(1− z))n

n!
; 〈S|x0x1〉 = Li2(z)︸ ︷︷ ︸

cl.not.

= Lix0x1
(z) =

∑
n≥1

zn

n2

〈S|x2
0 x1〉 = Li3(z)︸ ︷︷ ︸

cl.not.

= Li
x2
0
x1

(z) =
∑
n≥1

zn

n3
; 〈S|x1x0x1〉 = Lix1x0x1

(z) = Li[1,2](z) =
∑

n1>n2≥1

zn1

n1n
2
2

〈S|x0x
2
1 〉 = Li

x0x
2
1

(z) = Li[2,1](z) =
∑

n1>n2≥1

zn1

n2
1n2

; above “cl. not.” stands for “classical notation”
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Why BTT and NCDE ? : Review of the facts/3

Calling S the prospective generating series

S =
∑
w∈X∗

〈S |w〉︸ ︷︷ ︸
∈H(Ω)

w ; X = {x0, x1} (9)

V. Drinfel’d [1] indirectly proposed a way to complete the tree:{
d(S) = ( x0

z + x1

1−z ).S (NCDE )

lim z→0
z∈Ω

S(z)e−x0log(z) = 1H(Ω)〈〈X〉〉 (Asympt. Init. Cond .)
(10)

from the general theory, this system has a unique solution which is precisely
Li (called G0 in [1]) ; S 7→ d(S) being the term by term derivation of the
coefficients.

Minh [2] indicated a way to effectively compute this solution through
(improper) iterated integrals.

1. V. Drinfel’d, On quasitriangular quasi-hopf algebra and a group closely
connected with Gal(Q̄/Q), Leningrad Math. J., 4, 829-860, 1991.
2. H. N. Minh, Summations of polylogarithms via evaluation transform,
Mathematics and Computers in Simulation, Vol. 42, 4-6, Nov. 1996, pp. 707-728
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Explicit construction of Drinfeld’s G0

Given a word w , we note |w |x1 the number of occurrences of x1 within w

αz
0(w) =


1Ω if w = 1X∗∫ z

0 α
s
0(u) ds

1−s if w = x1u∫ z
1 α

s
0(u)dss if w = x0u and |u|x1 = 0 (w ∈ x∗0 )∫ z

0 α
s
0(u)dss if w = x0u and |u|x1 > 0 (w ∈ x0X

∗x1x
∗
0 )

The third line of this recursion implies

αz
0(xn0 ) =

log(z)n

n!

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =

∑
w∈X∗ α

z
0(w)w is Li (G0 in [1]).
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1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

Some coefficients with X = {x0, x1}; u0(z) = 1
z

; u1(z) = 1
1−z

, t0 = 0

〈S|xn1 〉 =
(−log(1− z))n

n!
; 〈S|x0x1〉 = Li2(z)︸ ︷︷ ︸

cl.not.

= Lix0x1
(z) =

∑
n≥1

zn

n2

〈S|x2
0 x1〉 = Li3(z)︸ ︷︷ ︸

cl.not.

= Li
x2
0
x1

(z) =
∑
n≥1

zn

n3
; 〈S|x1x0x1〉 = Lix1x0x1

(z) = Li[1,2](z) =
∑

n1>n2≥1

zn1

n1n
2
2

〈S|x0x
2
1 〉 = Li

x0x
2
1

(z) = Li[2,1](z) =
∑

n1>n2≥1

zn1

n2
1n2

; 〈S|xn0 〉 =
logn(z)

n!
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General solution of NCDE and Picard’s process

The series Sz0
Pic (z0 ∈ Ω) can be computed by Picard’s process

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z

z0

M.Sn

and its limit is Sz0
Pic := limn→∞ Sn (=

∑
w∈X∗ α

z
z0

(w)w this afternoon).
One has,

Proposition

i) Series Sz0
Pic is the unique solution of{

d(S) = M.S with M =
∑n

i=1
xi

z−ai
S(z0) = 1H(Ω)〈〈X 〉〉

(11)

ii) The complete set of solutions of d(S) = M.S is Sz0
Pic .C〈〈X 〉〉.
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About solutions of NCDE

1 The set S of series satisfying (NCDE ) has a lot of nice combinatorial
properties.

Right C〈〈X 〉〉 module of rank one (S = S0.C〈〈X 〉〉, where S0 is any
solution with non-zero constant term, such a solution can be
constructed by Picard process).
Linear independence of the coefficients (when non-zero).

2 The ones like Li or constructed through Picard’s process (Chen series,
i.e. limit of S0 = 1X∗ ; Sn+1 = 1X∗ +

∫ z
z0
M.Sn) have moreover

Shuffle property
Factorisation
Extension to rational functions (some of them for Li, all for Sz0

Pic).
Now, as the lists are coded by words, it is possible to use the rich allowance of
notations invented by algebraists, computer scientists, combinatorialists and
physicists about NonCommutative Formal Power Series (NCFPS1).

1This was the initial intent of the series of conferences FPSAC.
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What is so special with solutions like Li and S z0

Pic .

The following general theorem explains (a) why Li and Sz0

Pic have the shuffle
property and (b) why Li is unique.

Theorem (Analyse et Géometrie, Cargèse, IESC, 21-24 Nov. 2017)

Let

(TSM) dS = M1S + SM2 . (12)

with S ∈ H(Ω)〈〈X 〉〉, Mi ∈ H(Ω)+〈〈X 〉〉

(i) Solutions of (TSM) form a C-vector space.

(ii) Solutions of (TSM) have their constant term (as coefficient of 1X∗) which
are constant functions (on Ω); there exists solutions with constant
coefficient 1Ω (hence invertible).

(iii) If two solutions coincide at one point z0 ∈ Ω (or asymptotically), they
coincide everywhere.
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What is so special with solutions like Li and S z0

Pic ./2

Theorem (cont’d)

(iv) Let be the following one-sided equations

(LM1) dS = M1S (RM2) dS = SM2. (13)

and let S1 (resp. S2) be a solution of (LM1) (resp. (LM2)),
then S1S2 is a solution of (TSM). Conversely, every solution of (TSM) can
be constructed so.

(v) Let Sz0

Pic,LM1
(resp. Sz0

Pic,RM2
) the unique solution of (LM1) (resp. (RM2)) s.t.

S(z0) = 1H(Ω)+〈〈X〉〉 then, the space of all solutions of (TSM) is

Sz0

Pic,LM1
.C〈〈X 〉〉.Sz0

Pic,RM2

(vi) If Mi , i = 1, 2 are primitive for ∆x a and if S, a solution of (TSM), is
group-like at one point (or asymptotically), it is group-like everywhere (over
Ω).

a
∆x is the canonical comultiplcation of C〈X〉 viewed as an enveloping algebra.
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The categories DiffRing,CDiffRing,DiffAlgk,CDiffAlgk

1 We begin with DiffAlgk

Let k be a ring DiffAlgk is the category of pairs (A, ∂) where
A ∈ AAUk and ∂ ∈ Der(A). An arrow f : (A, ∂A)→ (B, ∂B) is an
arrow f ∈ Homk(A,B) such that f ∂A = ∂B f .

2 For (A, ∂A) ∈ DiffAlgk, ker(∂A) is a k-subalgebra of A called that of
constants of A.

We now describe the free objects

St DiffAlgk

X A

k〈{X}〉

F

f

jX f̂

Figure: A solution of the universal problem w.r.t. the natural forgetful functor
from DiffAlgk to St.

25 / 49



Construction of k〈{X}〉 and k{X}
1 We describe the structure. Let X be an alphabet.

The free object k〈{X}〉 is:
1 a free algebra k〈X × N〉 where, for all x ∈ X , is noted (x , n) = x [n]

and, for convenience, x [0] = x . This algebra is equipped with the
derivation ∂ such that ∂(x [k]) = x [k+1]

2 Existence of ∂ as a derivation is standard (see e.g. [5], Ch I, §2.8
Extension of derivations).

3 The construction is similar to what is to be found in [20], but in the
noncommutative realm.

2 We now say a word of the construction in [20]

St CDiffAlgk

X A

k{X}

F

f

jX f̂
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Construction of k{X}

3 Construction of k{X} is very similar to that of k〈{X}〉 but
1 It is devoted to the category CDiffAlgk (commutative differential

k-algebras)
2 It uses commutative polynomials i.e. the basic algebra is k[X ×N] (and

not k〈X × N〉) with the same notations ((x , n) = x [n] and x [0] = x).
3 It is the one used for Proposition 2 in Vu’s talk (and, in fact, the

construction can be done using k{X} with Y
[j]
i = Yij and a suitable

ideal).
4 We recall Proposition 2.

Proposition 2

Let F be a differential field with algebraically closed field of constants CF and
L(Y ) = Y (n) + an−1Y

(n−1) + ...+ a1Y
′ + a0Y = 0 be defined over F . Then

there exists a Picard-Vessiot extension L of F for L, that is unique up to
differential F -isomorphism.
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Application: Cartan theorem in Banach algebras (without
transversality nor Lipschitz condition)

See https://mathoverflow.net/questions/356531 for motivation.
Theorem Let B be a Banach algebra (with unit e) and G be a closed
subgroup of B−1 (the group of multiplicative inverses). Let L(G ) be the
tangent space of G and m : I → L(G ) be a continuous function (I ⊂ R is
an open interval containing 0R), then
i) The following system

y ′(t) = m(t)y(t) ; y(0) = e

admits a unique solution, say s(t).
ii) The trajectory of s is entirely in G (in other words t 7→ s(t) is a path
drawn on G ). My questions are the following:
Q1) Is it known? (I expect so, at least of the specialists)
Q2) If yes, is there a sound reference? (not general, but about this very
simple and precise property).

28 / 49

https://mathoverflow.net/questions/356531


Magnus and Hausdorff groups

exp(−A)
exp(−B)

exp(A)
exp(B)

1G

The Magnus group is the set of series with constant term 1X∗ , the Hausdorff

(sub)-group, is the group of group-like series for ∆x . These are also Lie

exponentials (here A,B are Lie series and exp(A)exp(B) = exp(H(A,B))).
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About Magnus expansion and Poincaré-Hausdorff
formula/1

Let (C〈{X}〉, ∂) be the differential algebra freely generated by X (a single formal
variable). We define a comultiplication ∆ by asking that all X [k] be primitive note

that ∆ commutes with the derivation. Setting, in Ĉ〈{X}〉, D = ∂(eX )e−X , direct
computation shows that D is primitive and hence a Lie series2, which can
therefore be written as a sum of (evaluations of) Dynkin trees.
On the other hand, the formula

D =
∑
k≥1

1

k!

k−1∑
l=0

X l(∂X )X k−1−l ·
∑
n≥0

(−X )n

n!
(14)

suggests that all bidegrees, in (X , ∂X ), are of the form [n, 1] and thus, there
exists an univariate series Φ(Y ) =

∑
n≥0 anY

n such that D = Φ(adX )[∂X ].

2Which would be trivial,if we were in C{X} (i.e. X commutes with ∂X , as there
D = ∂(X ), but this is not the case within C〈{X}〉 as shows the computation (14).
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About Magnus expansion and Poincaré-Hausdorff
formula/2

Using left and right multiplications by X (resp. noted g , d), we can
rewrite (14) as

D =
(∑

k≥1

1

k!

k−1∑
l=0

g ldk−1−l [∂X ]
)
e−X (15)

but, from the fact that g , d commute, the inner sum
∑k−1

l=0 g ldk−1−l is
ruled out by the the following identity (in C[Y ,Z ], but computed within
C(Y ,Z )) and

k−1∑
l=0

Y lZ k−1−l =
Y k − Z k

Y − Z
=

(
(Y − Z ) + Z

)k − Z k

Y − Z
=

k∑
j=1

(
k

j

)
(Y − Z )jZ k−j
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k−1∑
l=0

Y lZ k−1−l =
Y k − Z k

Y − Z
=

(
(Y − Z ) + Z

)k − Z k

Y − Z
=

k∑
j=1

(
k

j

)
(Y − Z )jZ k−j

(16)
Taking notice that (g − d) = adX and pluging (16) into (14), one gets

D =
(∑

k≥1

1

k!

k∑
j=1

(
k

j

)
(adX )j−1dk−j [∂X ]

)
e−X =

1

adX

(∑
k≥1

k∑
j=1

1

j!(r − j)!
(adX )jdk−j [∂X ]

)
e−X =

eadX − 1

adX
[X ′] (17)

which is Poincaré-Hausdorff formula (of course
eadX − 1

adX
stands for the

substitution of adX in the formal series corresponding to the entire function
ez − 1

z
).
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Abstract BTT theorem towards localisation

Theorem (DDMS.1 “Linz”)

Let (A, d) be a k-commutative associative differential algebra with unit
(ker(d) = k is a field) and C be a differential subfield of A (i.e. d(C) ⊂ C). We
suppose that S ∈ A〈〈X 〉〉 is a solution of the differential equation

d(S) = MS ; 〈S |1X∗〉 = 1A (18)

where the multiplier M is a homogeneous series (a polynomial in the case of finite
X) of degree 1, i.e.

M =
∑
x∈X

uxx ∈ C〈〈X 〉〉 . (19)

The following conditions are equivalent :

[1] Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics,
M. Deneufchâtel, GHED, V. Hoang Ngoc Minh and A. I. Solomon, 4th
International Conference on Algebraic Informatics, Linz (2011). Proceedings, Lecture
Notes in Computer Science, 6742, Springer.
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Abstract BTT theorem towards localisation/2

Theorem (cont’d)

i) The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii) The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0) . (20)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(
(ux)x∈X

)
= {0} . (21)
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Need for localization

In practical cases, we only have a differential subalgebra of C0 ⊂ H(Ω) (as
image, through Li, of a shuffle subalgebra of Dom(Li)).

C[z ]

C[z , z−1, (1− z)−1]

C[zα(1− z)−β]α,β∈C = CC
Realizing the fraction field Fr(C0) as (differential) field of germs makes the
computation difficult to handle. It is easier to check the freeness of the “
basic triangle” directly with the algebra. For instance, for the
polylogarithms, we just have to show that, given Pi ∈ CC,

P1(z) + P2(z) log(z) + P3(z)(log(
1

1− z
)) = 0Ω =⇒ Pi ≡ 0 (22)

which can be done using deck transformations (see below).
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Localization

Theorem (Thm1 in “Linz”, Localized form)

Let (A, d) be a commutative associative differential ring (ker(d) = k
being a field) and C be a differential subring (i.e. d(C) ⊂ C) of A which is
an integral domain containing the field of constants.
We suppose that, for all x ∈ X, ux ∈ C and that S ∈ A〈〈X 〉〉 is a solution
of the differential equation (18) and that (ux)x∈X ∈ CX .
The following conditions are equivalent :

i) The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii) The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii’) For all f1, f2 ∈ C, f2 6= 0 and α ∈ k(X ), we have the property

W (f1, f2) = f 2
2 (
∑
x∈X

αxux) =⇒ (∀x ∈ X )(αx = 0) . (23)

where W (f1, f2), the wronskian, stands for d(f1)f2 − f1d(f2).
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Discussion

In fact, in the localized form and with C not a differential field, (iii) is
strictly weaker than (iii ′), as shows the following family of
counterexamples

1 Ω = Cr (]−∞, 0])

2 X = {x0}, u0 = zβ, β /∈ Q
3 C0 = C{{zβ}} = C.1Ω ⊕ spanC{z(k+1)β−l}k,l≥0

4 S = 1Ω + (
∑

n≥1
zn(β+1)

(β+1)nn! )

Let us show that, for these data (iii) holds but not (i).
Firstly, we show that C0 = C{{zβ}} corresponds to the given direct sum.
We remark that the family (zα)α∈C is C-linearly free (within H(Ω)), which
is a consequence of the fact that they are eigenfunctions, for different
eigenvalues, of the Euler operator z d

dz .
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Then

C{{zβ}} = C1Ω ⊕ spanC{z(k+1)β−l}k,l≥0 = spanC{z(k ′)β−l}k ′,l≥0

comes from the fact that the RHS is a subset of the LHS as, for all,
k , l ≥ 0, z(k+1)β−l ∈ C{{zβ}}. Finally 1Ω ∈ C{{zβ}} by definition (C{{X}}
is a C-AAU).
(iii) is fulfilled. Here

u0(z) = zβ is such that, for any f ∈ C0 and c0 in C, we have

c0u0 = ∂z(f ) =⇒ (c0 = 0) (24)

But (i) is not Because we have the following relation

(β + 1)zβ−1〈S |x0〉 − z2β.1Ω = 0
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Sketch of the proof

After some technicalities, we show that (18) can be transported in
A[(C×)−1] by means of the following commutative diagram and back.

C Fr(C)

A A[(C×)−1]

C Fr(C)

A A[(C×)−1]

ϕC

j

d

dfrac

jfrac

ϕA

dfrac
ϕC

j jfrac
ϕA

d
(25)
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Proof that [1Ω, log(z), log( 1
1−z )] is CC-free.

Let us suppose Pi , i = 1 . . . 3 such that

P1(z) + P2(z) log(z) + P3(z)(log(
1

1− z
)) = 0Ω

We first prove that P2 =
∑

i∈F ciz
αi (1− z)βi is zero using the deck

transformation D0 of index one around zero.
One has Dn

0 (
∑

i∈F ciz
αi (1− z)βi ) =

∑
i∈F ciz

αi (1− z)βi e2iπ.nαi , the same
calculation holds for all Pi which proves that all Dn

0 (Pi ) are bounded. But
one has Dn

0 (log(z)) = log(z) + 2iπ.n and then

Dn
0 (P1(z) + P2(z) log(z) + P3(z)(log(

1

1− z
))) =

Dn
0 (P1(z)) + Dn

0 (P2(z))(log(z) + 2iπ.n) + Dn
0 (P3(z)) log(

1

1− z
) = 0

It suffices to build a sequence of integers nj → +∞ such that
limj→∞D

nj
0 (P2(z)) = P2(z) which is a consequence of the following

lemma.
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Lemma

Let us consider a homomorphism ϕ : N→ G where G is a compact
(Hausdorff) group, then it exists uj → +∞ such that

lim
j→∞

ϕ(uj) = e

Proof.

First of all, due to the compactness of G , the sequence ϕ(n) admits a
subsequence ϕ(nk) convergent to some ` ∈ G . Now one can refine the
sequence as nkj such that

0 < nk1 − nk0 < . . . < nkj+1
− nkj < nkj+2

− nkj+1
< . . .

With uj = nkj+1
− nkj one has limj→∞ ϕ(uj) = e.

End of the proof One applies the lemma to the morphism

n 7→ (e2iπ.nαi )i∈F ∈ UF
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Conclusion

For Series with variable coefficients, we have a theory of
Noncommutative Evolution Equation sufficiently powerful to cover
iterated integrals and multiplicative renormalisation

Use of combinatorics on words gives a necessary and sufficient
condition on the “inputs” to have linear independance of the solutions
over higher function fields.

Picard (Chen) solutions admit enlarged indexing w.r.t. compact
convergence on Ω (polylogarithmic case) but Drinfeld’s G0 has a
domain which includes only some rational series.

Localization is possible (under certain conditions).

Local BTT theorem allows to explore linear and algebraic
independences w.r.t. subalgebras of Dom(Li).
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Thank you for your attention.
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Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphisms

https://ncatlab.org/nlab/show/heteromorphism

D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside.
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Links/2

5 https://en.wikipedia.org/wiki/Category_of_modules

6 https://ncatlab.org/nlab/show/Grothendieck+group

7 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

8 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

9 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module

45 / 49



[1] F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and
Tree-like Structures, Cambridge University Press, 1998.

[2] D. Bump, Automorphic Forms and Representations, Cambridge
University Press (1998).
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