Lazard's elimination in presented Lie algebras

Vu Nguyen Dinh LIPN - Université Sorbonne Paris Nord This talk is based on some joint work with Prof. V. Hoang Ngoc Minh and Prof. Gérard Duchamp from Université Sorbonne Paris Nord, France.

LIPN, 01 November, 2022

Contents

- Knizhnik-Zamolodchikov equation
- Drinfeld-Kohno Lie algebra
- Quotients of Lazard's eliminations
- Applications
- Upcoming works
- Some references

Knizhnik-Zamolodchikov equation (KZn)

Knizhnik-Zamolodchikov equation

- Assume that k is a commutative ring with unit.
- For $n \ge 2$, we denoted by $\mathcal{T}_n = \{t_{i,j}\}_{1 \le i < j \le n}$ the set of noncommutative variables.
- The *Knizhnik-Zamolodchikov equation* (see for instance Drinfeld [1], Minh [5])

$$(\mathsf{KZ}_n) \quad \mathsf{d}\,\mathsf{F}(z) = \Omega_n(z)\,\mathsf{F}(z) \tag{1}$$

defined over the complex configuration space

$$\mathbb{C}^n_* = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n | z_i \neq z_j \text{ for } i \neq j \},$$

where the system (so called the KZ connection)

$$\Omega_n(z) = \sum_{1 \le i < j \le n} \frac{t_{i,j}}{2i\pi} d\log(z_i - z_j), \qquad (2)$$

where the logarithmic function is relative to some section of \mathbb{C}_*^n , for example $\mathbb{C}\setminus]-\infty, 0]$.

Drinfeld-Kohno Lie algebra

Drinfeld-Kohno Lie algebra

• As a consequence of Arnold's theorem, the system (2) is completely integrable i.e. $d\Omega_n - \Omega_n \wedge \Omega_n = 0$, it is equivalent to the fact that $\mathcal{T}_n = \{t_{i,j}\}_{1 \le i < j \le n}$ satisfy the infinitesimal pure braid relations

$$\mathsf{R}[\mathsf{n}] = \begin{cases} \mathsf{R}_1[\mathsf{n}] & [t_{i,j}, t_{i,k} + t_{j,k}] & \text{for } 1 \le i < j < k \le n, \\ \mathsf{R}_2[\mathsf{n}] & [t_{i,j} + t_{i,k}, t_{j,k}] & \text{for } 1 \le i < j < k \le n, \\ \mathsf{R}_3[\mathsf{n}] & [t_{i,j}, t_{k,l}] & \text{for } 1 \le i < j \le n, \\ 1 \le k < l \le n, & \text{and } |\{i, j, k, l\}| = 1 \end{cases}$$

• The Drinfeld-Kohno Lie algebra DK_{k,n} is presented as

$$\mathcal{L}_{k}(\mathcal{T}_{n}) \Big/_{\mathcal{J}_{\mathsf{R}[n]}}$$
 (4)

where $\mathcal{J}_{R[n]}$ is the Lie ideal of $\mathcal{L}_k(\mathcal{T}_n)$ generated by R[n] (3).

- By using the Knizhnik-Zamolodchikov equations, Kohno proved in [2] that $DK_{k,n}$ can be identified with $\mathfrak{gr}_k(\mathcal{PB}_n)$ the graded Lie algebra of the pure braid group \mathcal{PB}_n . Thus, Drinfeld-Kohno Lie algebra $DK_{k,n}$ is also called the *Lie algebra of infinitesimal braids*.
- By some steps, we can construct a commutative diagram of k-modules with split short exact rows

In particular, we obtain an isomorphism of k-modules

$$\mathsf{DK}_{\mathsf{k},n+1} \simeq \mathcal{L}_{\mathsf{k}}(x_1,\ldots,x_n) \oplus \mathsf{DK}_{\mathsf{k},n}.$$
 (5)

• A natural question is how to construct a Lie isomorphism from the Drinfeld-Kohno Lie algebra to a semidirect product of Lie algebras

$$\mathsf{DK}_{\mathsf{k},n+1} \xrightarrow{\simeq} \mathcal{L}_{\mathsf{k}}(x_1,\ldots,x_n) \rtimes \mathsf{DK}_{\mathsf{k},n}.$$

- We call the phenomenon by "the decomposition of Drinfeld-Kohno Lie algebra".
- In this talk, we will give a proof for the existence of the decomposition of Drinfeld-Kohno Lie algebra as a corollary of our main theorem and Proposition 2.

Quotients of Lazard's eliminations

Quotients of Lazard's eliminations

Let us recall briefly Lazard's elimination theorem in our setting.

Lazard elimination theorem

Let $X = B \sqcup Z$ be a set partitioned in two blocks. We have an isomorphism of split short exact sequences

with

•
$$u = b_1 \dots b_k \in B^*$$
 and $z \in Z$ for

$$rn(uz) = \left(\operatorname{ad}_{b_1}^{\mathcal{L}_k(X)} \circ \dots \circ \operatorname{ad}_{b_k}^{\mathcal{L}_k(X)} \right)(z) =: \operatorname{ad}_{(u)}^{\mathcal{L}_k(X)}(z)$$

Lazard elimination theorem

- bracketing and \overline{rn} is the restriction of rn to its image as in the diagram.
- if $j_B : \mathcal{L}_k(B) \to \mathcal{L}_k(X)$ is the subalphabet embedding, (so that the restriction to its image is the isomorphism $\overline{j_B}$) then $\overline{j_B} \circ p_{B|Z}$ is the projector on

$$\mathcal{L}_{\mathsf{k}}(X)_{B} = \bigoplus_{\substack{\alpha \in \mathbb{N}^{(X)} \\ |\alpha|_{Z} = \mathsf{0}}} \mathcal{L}_{\mathsf{k}}(X)_{\alpha}$$

The kernel of $p_{B|Z}$ is

$$\mathcal{L}_{\mathsf{k}}(X)_{BZ} = \bigoplus_{\substack{\alpha \in \mathbb{N}^{(X)} \\ |\alpha|_{Z} > 0}} \mathcal{L}_{\mathsf{k}}(X)_{\alpha}$$

• The above diagram is a split SES, its section is given by j_B .

Quotients of Lazard's eliminations

Main results: Quotients of Lazard's eliminations

- Observation and ideas: Put $\mathcal{T}_{n+1} = \mathcal{T}_n \sqcup \mathcal{T}_{n+1}$ a set partitioned in two blocks, then the infinitesimal pure braid relator $R[n+1] \subset \mathcal{L}_k(\mathcal{T}_{n+1})$ is compatible with the alphabet partition (see Example 1). Thus we deal with a special kind of relators i.e. relators being compatible with an elimination scheme.
- In general, let $X = B \sqcup Z$ be a set partitioned in two blocks. We suppose given a relator $r = \{r_j\}_{j \in J} \subset \mathcal{L}_k(X)$ which is compatible with the alphabet partition i.e. there exists a partition of the set of indices $J = J_Z \sqcup J_B$ such that $r_B = \{r_j\}_{j \in J_B} = r \cap \mathcal{L}_k(X)_B$ and $r_Z = \{r_j\}_{j \in J_Z} = r \cap \mathcal{L}_k(X)_{BZ}$. The notations being as above, we construct the following ideals
 - J_B is the Lie ideal of L_k(X)_B generated by {r_j}_{j∈J_B}
 J, J_Z and J_{BZ} are the Lie ideals of L_k(X) generated respectively by r, r_Z and r_{BZ} := {ad_Q z}_{Q∈J_B,z∈Z}.

Example 1.

A typical example is for the partitioned $X := \mathcal{T}_{n+1} = \mathcal{T}_n \sqcup \mathcal{T}_{n+1} := B \sqcup Z$ and the infinitesimal pure braid relator $r := R[n+1] \subset \mathcal{L}_k(\mathcal{T}_{n+1})$. In this case, we observe that the relator $r_{\mathcal{T}_n} = R[n+1] \cap \mathcal{L}_k(\mathcal{T}_{n+1})_{\mathcal{T}_n} = R[n]$ and the relator $r_{\mathcal{T}_{n+1}} = R[n+1] \cap \mathcal{L}_k(\mathcal{T}_{n+1})_{\mathcal{T}_n \mathcal{T}_{n+1}} =$

$$\begin{cases} \mathsf{R}_1^-[\mathsf{n}+1] & [t_{i,j}, t_{i,n+1}+t_{j,n+1}] & \text{for } 1 \le i < j \le n, \\ \mathsf{R}_2^-[\mathsf{n}+1] & [t_{i,j}+t_{i,n+1}, t_{j,n+1}] & \text{for } 1 \le i < j \le n, \\ \mathsf{R}_3^-[\mathsf{n}+1] & \pm[t_{i,j}, t_{k,n+1}] & \text{for } \frac{1 \le i < j \le n,}{1 \le k \le n,} \text{ and } |\{i, j, k\}| = 3. \end{cases}$$

Then we can construct the following Lie ideals

- $\mathcal{J}_{\mathcal{T}_n} = \mathcal{J}_{\mathsf{R}[n]}$ is the Lie ideal of $\mathcal{L}_{\mathsf{k}}(\mathcal{T}_n)$ generated by the infinitesimal pure braid relator $\mathsf{r}_{\mathcal{T}_n} = \mathsf{R}[\mathsf{n}]$.
- $\mathcal{J}_{\mathcal{T}_{n+1}}$ (resp. $\mathcal{J}_{\mathcal{T}_n\mathcal{T}_{n+1}}$) is the Lie ideal of $\mathcal{L}_k(\mathcal{T}_{n+1})$ generated by the relator $r_{\mathcal{T}_{n+1}}$ (resp. $r_{\mathcal{T}_n\mathcal{T}_{n+1}} = \{ \operatorname{ad}_Q z \}_{Q \in \mathcal{J}_{R[n]}, z \in \mathcal{T}_{n+1}}$).

•
$$\mathcal{J} = \mathcal{J}_{\mathsf{R}[\mathsf{n}+1]}$$
 is the Lie ideal of $\mathcal{L}_{\mathsf{k}}(\mathcal{T}_{\mathsf{n}+1})$ generated by $\mathsf{R}[\mathsf{n}+1]$.

Main Theorem.

With our constructions above, we get the following properties:

i) we have
$$(\mathcal{J}_Z + \mathcal{J}_{BZ}) \subset \mathcal{L}_k(X)_{BZ}$$
 (and then
 $(\mathcal{J}_Z + \mathcal{J}_{BZ}) \cap \mathcal{J}_B = \{0\}$). Moreover, $(\mathcal{J}_Z + \mathcal{J}_{BZ})$ is a Lie ideal of
 $\mathcal{L}_k(X)_{BZ}$ (and even, by definition, of $\mathcal{L}_k(X)$).

ii) the action of $\mathcal{L}_k(X)_B$ on $\mathfrak{Der}(\mathcal{L}_k(X)_{BZ})$ (by internal ad) passes to quotients as an action α : $\mathcal{L}_k(X)_B \to \mathfrak{Der}(\mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ}))$ such that $r_B \subset \ker(\alpha)$ and then, we get an action

$$\overline{\alpha}: \mathcal{L}_{\mathsf{k}}(X)_{B} / \mathcal{J}_{B} \to \mathfrak{Der}(\mathcal{L}_{\mathsf{k}}(X)_{BZ} / (\mathcal{J}_{Z} + \mathcal{J}_{BZ}))$$
(7)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

iii) we can construct an isomorphism from presented Lie algebra $\mathcal{L}_{k}(X) / \mathcal{J}$ by the set $r = \{r_{j}\}_{j \in J}$ of relators onto the semidirect product of Lie algebras $\mathcal{L}_{k}(X)_{BZ} / (\mathcal{J}_{Z} + \mathcal{J}_{BZ}) \rtimes \mathcal{L}_{k}(X)_{B} / \mathcal{J}_{B}$

Main Theorem.

iii) which will be denoted by

$$\Phi: \mathcal{L}_{\mathsf{k}}(X) / \mathcal{J} \xrightarrow{\simeq} \mathcal{L}_{\mathsf{k}}(X)_{BZ} / (\mathcal{J}_{Z} + \mathcal{J}_{BZ}) \rtimes \mathcal{L}_{\mathsf{k}}(X)_{B} / \mathcal{J}_{B}.$$
(8)

iv) In fact, one has a commutative diagram of Lie algebras with split short exact rows

3

Vu Nguyen Dinh LIPN - Université SorboLazard's elimination in presented Lie alge LIPN, 01 November, 2022 12/25

Applications

Elimination of the subalphabet Z

• In certain cases (which is that of the Lie algebras $\mathsf{DK}_{k,n}$), it can happen that the left factor of the semidirect product (8) be isomorphic to $\mathcal{L}_k(Z)$. We start from the previous commutative diagram with an additional arrow

$$\begin{array}{c} \mathcal{L}_{\mathbf{k}}(Z) \\ & \downarrow^{j_{Z}} \\ 0 \longrightarrow \mathcal{L}_{\mathbf{k}}(X)_{BZ} \xleftarrow{j} \mathcal{L}_{\mathbf{k}}(X) \xrightarrow{p} \mathcal{L}_{\mathbf{k}}(X)_{B} \longrightarrow 0 \\ & \downarrow^{s_{\mathcal{J}_{Z}+\mathcal{J}_{BZ}}} & \downarrow^{s_{\mathcal{J}}} & \downarrow^{s_{\mathcal{J}_{B}}} \\ 0 \longrightarrow \mathcal{L}_{\mathbf{k}}(X)_{BZ} / (\mathcal{J}_{Z} + \mathcal{J}_{BZ}) \longrightarrow \mathcal{L}_{\mathbf{k}}(X) / \mathcal{J} \longrightarrow \mathcal{L}_{\mathbf{k}}(X)_{B} / \mathcal{J}_{B} \longrightarrow 0 \end{array}$$

where j_Z is the subalphabet embedding such that

$$Im(j_Z) = \mathcal{L}_{\mathsf{k}}(X)_Z = \bigoplus_{\substack{\alpha \in \mathbb{N}^{(X)} \\ |\alpha|_B = 0}} \mathcal{L}_{\mathsf{k}}(X)_{\alpha}.$$
 (9)

We are now in the position to state the following

Proposition 2.

With the notations as in Main Theorem, let us consider the composite map $\beta=s_{\mathcal{J}_Z+\mathcal{J}_{BZ}}\circ j_Z$, then

- a. In order that β be injective, it is necessary and sufficient that $(\mathcal{J}_Z + \mathcal{J}_{BZ}) \cap \mathcal{L}_k(X)_Z = \{0\}.$
- b. In order that β be surjective, it is necessary and sufficient that, for all $(b,z)\in B imes Z$, we had

$$s_{\mathcal{J}_{Z}+\mathcal{J}_{BZ}}([b, z]) \in s_{\mathcal{J}_{Z}+\mathcal{J}_{BZ}}(\mathcal{L}_{k}(X)_{Z}).$$
(10)

Applications

The existence of the decomposition of Drinfeld-Kohno Lie algebra

Recall in Example 1, we denoted by $\mathcal{T}_{n+1} = \mathcal{T}_n \sqcup \mathcal{T}_{n+1}$ and the infinitesimal pure braid relator $R[n+1] \subset \mathcal{L}_k(\mathcal{T}_{n+1})$. In this case, the existence of the decomposition of Drinfeld-Kohno Lie algebra can be obtained as a consequence of our main theorem and by Proposition 2.

Corollary 3.

There is the decomposition of Drinfeld-Kohno Lie algebra i.e. in the category k-Lie,

$$\mathsf{DK}_{k,n+1} \simeq \mathcal{L}_k(X_n) \rtimes \mathsf{DK}_{k,n} \tag{11}$$

where X_n is any alphabet of cardinality n.

Applications

About M.-P. Schützenberger's questions on the Partially Commutative Free Lie algebra

- Let X ∈ Set be a set viewed as a alphabet. A commutation relation on X is a reflexive and symmetric graph θ ⊂ X² (i.e. θ = θ⁻¹ and {(x, x)}_{x∈X}, the diagonal of X, is a subset of θ).
- Firstly, the free partially commutative monoid M(X, θ) is the quotient of X* by the congruence generated by the family (xy = yx)_{(x,y)∈θ}.
- We will consider the canonical surjection $s_{\theta}: X^* \to M(X, \theta)$ as well as $j_{\theta}: M(X, \theta) \to X^*$ an arbitrary set-theoretical section of it.
- The terminal alphabet TAlph(t) (where $t \in M(X, \theta)$) can be characterized as the set of last letters of preimages of t w.r.t. s_{θ} , it means that TAlph $(t) = \{x \in X \mid t \in M(X, \theta).x\}$.
- Secondly, the free partially commutative Lie algebra L_k(X, θ) is the quotient of L_k(X) by the ideal generated by the relator r_θ = {[x, y]}_{(x,y)∈θ}.

Theorem 4.

Let (X, θ) be an alphabet with commutations. We consider a partition of $X, X = B \sqcup Z$ such that Z is totally non-commutative i.e. no two letters of Z commute between themselves $(\theta \cap Z^2 = \Delta_Z)$ and the code

$$C_B(Z) = \{s_\theta(uz) | u \in B^*, z \in Z, \mathsf{TAlph}(s_\theta(uz)) = \{z\}\}$$
(12)

Let $C = j_{\theta}(C_B(Z))$ and j_C be the subalphabet embedding, we have the diagram

Applications

Theorem 4.

$$\begin{array}{c} \mathcal{L}_{\mathbf{k}}(\mathbf{C}) \\ & \downarrow^{jc} \\ 0 \longrightarrow \mathcal{L}_{\mathbf{k}}(X)_{BZ} \xleftarrow{j} \mathcal{L}_{\mathbf{k}}(X) \xrightarrow{p} \mathcal{L}_{\mathbf{k}}(X)_{B} \longrightarrow 0 \\ & \downarrow^{s_{\mathcal{J}_{Z}+\mathcal{J}_{BZ}}} & \downarrow^{s_{\mathcal{J}}} & \downarrow^{s_{\mathcal{J}_{B}}} \\ 0 \longrightarrow \mathcal{L}_{\mathbf{k}}(X)_{BZ} / (\mathcal{J}_{Z} + \mathcal{J}_{BZ}) \longrightarrow \mathcal{L}_{\mathbf{k}}(X) / \mathcal{J} \longrightarrow \mathcal{L}_{\mathbf{k}}(X)_{B} / \mathcal{J}_{B} \longrightarrow 0 \end{array}$$

Then, with the above hypotheses (Z totally non-commutative and $C = j_{\theta}(C_B(Z))$), $s_{\mathcal{J}_Z + \mathcal{J}_{BZ}} \circ j_C$ is an isomorphism. In particular, the left factor of the semi-direct product (8), here $\mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ})$ is a free Lie algebra.

It would be interesting to have alternative proofs for answers to Schützenberger's questions about the Partially Commutative Free Lie algebra (cf. Duchamp and Krob [4], Thm. III.3) as a consequence of our main theorem.

Corollary 5. (Lazard's Partially Commutative Elimination)

Let X be a set equipped with a commutation relation θ and B be a subset of X such that Z = X - B is totally non-commutative. Then there is an isomorphism from the free partially commutative Lie algebra $\mathcal{L}_k(X, \theta)$ to the semidirect of product of Lie algebras, namely

$$\mathcal{L}_{\mathsf{k}}(X,\theta) \simeq_{\mathsf{k-Lie}} \mathcal{L}_{\mathsf{k}}(C) \rtimes \mathcal{L}_{\mathsf{k}}(B,\theta_B).$$
(13)

- 4 回 ト 4 回 ト

Upcoming works

• Suppose that a commutative ring k of characteristic zero (hence $\mathbb{Q} \hookrightarrow k$) and $X = B \sqcup Z$ is a set partitioned in two blocks, where $B = \{b_1, \ldots, b_n\}$ and $Z = \{z_1, z_2, z_3, \ldots\}$. Let us consider the polynomial algebra

$$\mathsf{k}\langle X\rangle = \mathsf{k}\langle b_1,\ldots,b_n,z_1,z_2,z_3,\ldots\rangle.$$

The collection (called by Magnus polynomials (cf. Nakamura [3]))

$$u. \operatorname{ad}_{(w_1)} z_{i_1} \dots \operatorname{ad}_{(w_k)} z_{i_k}, \qquad (14)$$

A (1) < A (1) < A (1) < A (1) </p>

where $k \ge 0$, $w_1, \ldots, w_k \in B^*$, $i_1, \ldots, i_k \ge 1$ and $u \in B^*$, are k-linear basis of $k\langle X \rangle$.

 We introduce the *half-shuffle* in the polynomial algebra k(X) as the linear extension of the binary product on words given by

$$(x_1 \dots x_p)^{\stackrel{\sqcup}{\square}} (x_{p+1} \dots x_n) = x_1 (x_2 \dots x_p \dots x_{p+1} \dots x_n),$$

$$1_{X^*}^{\stackrel{\sqcup}{\square}} (x_{p+1} \dots x_n) = 0,$$

$$(x_1 \dots x_p)^{\stackrel{\sqcup}{\square}} 1_{X^*} = x_1 \dots x_p$$

and then elements arising by the half-shuffle of ZB^* :

$$z_{i_1}w_1\frac{\omega}{2}(z_{i_2}w_2\frac{\omega}{2}(\ldots\frac{\omega}{2}(z_{i_{k-1}}w_{k-1}\frac{\omega}{2}z_{i_k}w_k)\ldots),$$
 (15)

where $k \ge 0, w_1, \ldots, w_k \in B^*, i_1, \ldots, i_k \ge 1$ (if k = 0 then (15) will be denoted by 1_{X^*}). Henceforth we write simply $z_{i_1}w_1 \frac{\square}{2} \ldots \frac{\square}{2} z_{i_k}w_k$ instead of (15).

The purpose of the following theorem is to describe the dual of Magnus basis under the standard pairing

$$\langle \bullet | \bullet \rangle : \ \mathsf{k} \langle X \rangle^{\vee} \otimes \mathsf{k} \langle X \rangle = \mathsf{k} \langle \! \langle X \rangle \! \rangle \otimes \mathsf{k} \langle X \rangle \to \mathsf{k}$$

with respect to the monomials of $k\langle X \rangle$ (here for all $S \in k\langle\!\langle X \rangle\!\rangle$ and $P \in k\langle\!\langle X \rangle\!\rangle$ then the pairing $\langle S|P \rangle = \sum_{w \in X^*} \langle S|w \rangle \langle P|w \rangle$).

Theorem 6.

The collections

$$\{u.(-1)^{|w_1|}\operatorname{\mathsf{ad}}_{(w_1)}z_{i_1}\dots(-1)^{|w_k|}\operatorname{\mathsf{ad}}_{(w_k)}z_{i_k}\}_{i_1,\dots,i_k\geq 1, u\in B^*}^{k\geq 0,w_1,\dots,w_k\in B^*}$$

and

$$\{u \sqcup (z_{i_1}\widetilde{w_1}\frac{\amalg}{2}\ldots\frac{\amalg}{2}z_{i_k}\widetilde{w_k})\}_{i_1,\ldots,i_k\geq 1, u\in B^*}^{k\geq 0,w_1,\ldots,w_k\in B^*}$$

are dual bases of, respectively $k\langle X \rangle$ and $k\langle X \rangle^{\vee}$, where $\widetilde{w} = b_{i_k} b_{i_{k-1}} \dots b_{i_1}$ reverses the order of letters in the word $w = b_{i_1} b_{i_2} \dots b_{i_k} \in B^*$.

- Describe the dual basis in a suitable algebraic framework.
- Applying the dual basis to provide finally solutions for Knizhnik-Zamolodchikov equations given in (1) with asymptotic conditions by *dévissage*.

Some references

- V. Drinfeld, On quasitriangular quasi-hopf algebra and a group closely connected with $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, Leningrad Math. J., 4, 829-860; (1991).
- T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math., 82, 57-75; (1985).
- H. Nakamura, Demi-shuffle duals of Magnus polynomials in free associative algebra, https://arxiv.org/abs/2109.14070
- G. Duchamp and D. Krob, *Free partially commutative structures*, Journal of Algebra, 156, 318-359 (1993).
- V. Hoang Ngoc Minh, On the solutions of universal differential equation with three singularities, in Confluentes Mathematici, Tome 11 (2019) no. 2, p. 25-64.

< □ > < 同 > < 回 > < 回 > < 回 >

3

Thank you very much for your attention!

▲ 国 ト → 国 ト

3