Toward Uniform Random Generation in 1-safe Petri Nets

Yi-Ting Chen (LIP6 / Sorbonne Université)
Advisor: Jean Mairesse, Samy Abbes

$$
2019 \text { Apr } 23 \text { - LIPN }
$$

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty: "Combinatorial explosion problems"

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty: "Combinatorial explosion problems"
- Approach : Statistical model checking

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty: "Combinatorial explosion problems"
- Approach: Statistical model checking \rightarrow probabilistic framework in a trace monoid

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty: "Combinatorial explosion problems"
- Approach: Statistical model checking \rightarrow probabilistic framework in a trace monoid
- Goal : Random generation for concurrent systems \rightarrow 1-safe Petri nets

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

Concurrent models - 1-safe Petri nets

M_{1}

Reachability graph

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

- Concurrency :
- Casuality :
- Conflit:

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

- Concurrency: a, c
- Casuality :
- Conflit :

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

- Concurrency: a, c
- Casuality : a, b
- Conflit :

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

- Concurrency: a, c
- Casuality : a, b
- Conflit: b, c

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

- From M_{0}, abacb is a valid firing sequence.

Concurrent models - 1-safe Petri nets

M_{0}

Reachability graph

- From M_{0}, abacb is a valid firing sequence.
- We lost the feature of concurrency by viewing the firing sequences as the sequential executions. ex : $a b a c b=a b c a b$

Concurrent models - trace monoids

Trace monoid \mathcal{M}

- Alphabet: $\Sigma=\{a, b, c\}$
- Independent relation :
$\mathcal{I}=\{(a, c)\}$

Heap of pieces

- Pieces:

Concurrent models - trace monoids

Trace monoid \mathcal{M}

- Alphabet : $\Sigma=\{a, b, c\}$
- Independent relation :
$\mathcal{I}=\{(a, c)\}$

Heap of pieces

- Pieces:

- Example of heap :

$a b a c b=a b c a b$

Concurrent models - trace monoids

Trace monoid \mathcal{M}

- Alphabet : $\Sigma=\{a, b, c\}$
- Independent relation:
$\mathcal{I}=\{(a, c)\}$
- Canonical normal form : $a b a c b=a \cdot b \cdot a c \cdot b$

Heap of pieces

- Pieces:

- Example of heap :

$a b a c b=a b c a b$

Concurrent models - trace monoids

Trace monoid \mathcal{M}

- Alphabet : $\Sigma=\{a, b, c\}$
- Independent relation :
$\mathcal{I}=\{(a, c)\}$
- Canonical normal form : $a b a c b=a \cdot b \cdot a c \cdot b$

Heap of pieces

- Pieces:

- Example of heap :

$a b a c b=a b c a b$

Framework- random sampling from a Markov chain

- Take account of "concurrency" and "states"

traces in a trace monoid

words in an
automaton

Framework- random sampling from a Markov chain

- Take account of "concurrency" and "states"

traces in a trace monoid

words in an automaton

traces in an automaton

Framework- random sampling from a Markov chain

- Take account of "concurrency" and "states"
- The executions of 1 -safe Petri nets are understood up to traces.

traces in a trace monoid

words in an automaton

traces in an automaton

Uniform measure on trace monoids

Trace monoid: $\mathcal{M}=\langle a, b, c \mid a \cdot c=c \cdot a\rangle$

- set of cliques $\mathscr{C}: \varepsilon, a, b, c, a c$
- Möbius polynomial $\mu(x)=\sum_{c \in \mathscr{C}}(-1)^{|c|} x^{|c|}=1-3 x+x^{2}$
- Möbius inversion formula : $G(x)=\sum_{u \in \mathcal{M}} x^{|u|}=\frac{1}{\mu(x)}$

Uniform measure on trace monoids

Trace monoid: $\mathcal{M}=\langle a, b, c \mid a \cdot c=c \cdot a\rangle$

- set of cliques $\mathscr{C}: \varepsilon, a, b, c, a c$
- Möbius polynomial $\mu(x)=\sum_{c \in \mathscr{C}}(-1)^{|c|} x^{|c|}=1-3 x+x^{2}$
- Möbius inversion formula : $G(x)=\sum_{u \in \mathcal{M}} x^{|u|}=\frac{1}{\mu(x)}$

Theorem (Abbes, Mairesse 2015)
There exists a unique uniform measure ν on $\partial \mathcal{M}$, satisfying:
$\forall u \in \mathcal{M}, \quad \nu(\uparrow u)=p_{0}^{|u|}$
p_{0} : the root of smallest modulus of $\mu(x)$.

Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)
Let ν be the uniform measure on $\partial \mathcal{M}$. Then the canonical normal decomposition of a trace is a realization of the Markov chain with initial probability measure h which is the Möbius transform of ν.

Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)
Let ν be the uniform measure on $\partial \mathcal{M}$. Then the canonical normal decomposition of a trace is a realization of the Markov chain with initial probability measure h which is the Möbius transform of ν.

- \# paths with length k in the automaton
= \# traces with height k in a trace monoid

Uniform measure for actions on trace monoids Theorem (Abbes 2015)
Let $X \times \mathcal{M} \rightarrow X$ be an irreducible partial action. Then there exists a uniform Markov measure, satisfying :

$$
\forall \alpha \in X \quad \forall x \in \mathcal{M}_{\alpha}, \quad \nu_{\alpha}(\uparrow x)=p_{0}^{|x|} \Gamma(\alpha, \alpha \cdot x) .
$$

- $G_{\alpha}(x)=\sum_{u \in \mathcal{M}_{\alpha}} x^{|u|}$
- $\Gamma(\alpha, \beta)=\lim _{x \rightarrow p_{0}} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$
- $\mu_{\alpha, \beta}(x)=\sum_{\gamma \in \mathscr{C}_{\alpha, \beta}}(-1)^{|\gamma| x^{|\gamma|}}$
- Möbius matrix:

$$
\mu(x)=\left(\mu_{\alpha, \beta}\right)(x)
$$

Properties of Γ function

- Define $\Gamma(\alpha, \beta)=\lim _{x \rightarrow p_{0}} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$

Properties of Γ function

- Define $\Gamma(\alpha, \beta)=\lim _{x \rightarrow p_{0}} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$
- cocycle relation: $\Gamma(\alpha, \gamma)=\Gamma(\alpha, \beta) \Gamma(\beta, \gamma)$

$$
\Gamma(\alpha, \alpha)=1
$$

Properties of Γ function

- Define $\Gamma(\alpha, \beta)=\lim _{x \rightarrow p_{0}} \frac{G_{B}(x)}{G_{\alpha}(x)}$
- cocycle relation: $\Gamma(\alpha, \gamma)=\Gamma(\alpha, \beta) \Gamma(\beta, \gamma)$

$$
\Gamma(\alpha, \alpha)=1
$$

- Fix a state α_{0},

$$
\left(\Gamma\left(\alpha_{0}, \beta\right)\right)_{\beta} \in \operatorname{ker} \mu\left(p_{0}\right)
$$

Calculation of Γ function

$$
\begin{array}{ll}
M_{0} \rightarrow M_{0}: \varepsilon, c, & M_{0} \rightarrow M_{1}: a, a c, \\
M_{1} \rightarrow M_{0}: b, & M_{1} \rightarrow M_{1}: \varepsilon, c .
\end{array}
$$

Calculation of Γ function

$$
\begin{aligned}
& M_{0} \rightarrow M_{0}: \varepsilon, c, \quad M_{0} \rightarrow M_{1}: a, a c, \\
& M_{1} \rightarrow M_{0}: b, \quad M_{1} \rightarrow M_{1}: \varepsilon, c . \\
& \mu(x)=M_{0} M_{1}\left(\begin{array}{cc}
-x & -x+x^{2} \\
-x & 1-x
\end{array}\right) . \\
& p_{0}=\frac{\sqrt{5}+1}{2}
\end{aligned}
$$

Calculation of Γ function

$$
\begin{array}{ll}
& M_{0} \rightarrow M_{0}: \varepsilon, c, \quad M_{0} \rightarrow M_{1}: a, a c, \\
& M_{1} \rightarrow M_{0}: b, \quad M_{1} \rightarrow M_{1}: \varepsilon, c . \\
& \\
\mu(x)=M_{0}\left(\begin{array}{cc}
1-x & -x+x^{2} \\
-x & 1-x
\end{array}\right) . \\
\\
p_{0}=\frac{\sqrt{5}+1}{2} \\
\hline
\end{array}
$$

Calculation of Γ function

$$
\begin{aligned}
& M_{0} \rightarrow M_{0}: \varepsilon, c, \quad M_{0} \rightarrow M_{1}: a, a c, \\
& M_{1} \rightarrow M_{0}: b, \quad M_{1} \rightarrow M_{1}: \varepsilon, c . \\
& \mu(x)=M_{0} M_{1}\left(\begin{array}{cc}
1-x & -x+x^{2} \\
-x & 1-x
\end{array}\right) . \\
& p_{0}=\frac{\sqrt{5}+1}{2} \\
& \text { Let }\left(\Gamma\left(M_{0}, M_{0}\right) \quad \Gamma\left(M_{0}, M_{1}\right)\right)^{T}=\left(\begin{array}{ll}
1 & \lambda
\end{array}\right)^{T} \in \operatorname{ker} \mu\left(p_{0}\right) \\
& -p_{0}+\left(1-p_{0}\right) \cdot \lambda=0
\end{aligned}
$$

Calculation of Γ function

$$
\begin{aligned}
& M_{0} \rightarrow M_{0}: \varepsilon, c, \quad M_{0} \rightarrow M_{1}: a, a c, \\
& M_{1} \rightarrow M_{0}: b, \quad M_{1} \rightarrow M_{1}: \varepsilon, c . \\
& \mu(x)=M_{0} M_{1}\left(\begin{array}{cc}
1-x & -x+x^{2} \\
-x & 1-x
\end{array}\right) . \\
& p_{0}=\frac{\sqrt{5}+1}{2} \\
& \text { Let }\left(\Gamma\left(M_{0}, M_{0}\right) \quad \Gamma\left(M_{0}, M_{1}\right)\right)^{T}=\left(\begin{array}{ll}
1 & \lambda
\end{array}\right)^{T} \in \operatorname{ker} \mu\left(p_{0}\right) \\
& -p_{0}+\left(1-p_{0}\right) \cdot \lambda=0 \Longrightarrow \lambda=\frac{p_{0}}{1-p_{0}}=\frac{1}{p_{0}}=\frac{\sqrt{5}-1}{2} .
\end{aligned}
$$

Uniqueness of uniform measure on trace monoids
New proof from the linear algebra point of view

- Construct the expanded automaton of cliques

$$
\mathcal{M}=\langle a, b, c \mid a \cdot c=c \cdot a\rangle
$$

Uniqueness of uniform measure on trace monoids
New proof from the linear algebra point of view

- Construct the expanded automaton of cliques

$$
\mathcal{M}=\langle a, b, c \mid a \cdot c=c \cdot a\rangle
$$

$$
\begin{aligned}
& (a, 1) \\
& (b, 1) \\
& (c, 1) \\
& (a c, 1) \\
& (a c, 2)
\end{aligned}\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Uniqueness of uniform measure on trace monoids New proof from the linear algebra point of view

- Construct the expanded automaton of cliques

$$
\mathcal{M}=\langle a, b, c \mid a \cdot c=c \cdot a\rangle
$$

$(a, 1)$
$(b, 1)$
$(c, 1)$
$(a c, 1)$
$(a c, 2)$$\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right)$

- Find the Perron eigenvector of the incidence matrix of this automaton
- Find the Perron eigenvector of the incidence matrix of this automaton

$$
v_{(c, i)}=\frac{1}{p^{i-1}} h(c) .
$$

$(a, 1)$
$(b, 1)$
$(c, 1)$
$(a c, 1)$
$(a c, 2)$$\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right)$

- Find the Perron eigenvector of the incidence matrix of this automaton

$$
\begin{aligned}
& (a, 1) \\
& (b, 1) \\
& (c, 1) \\
& (a c, 1) \\
& (a c, 2)
\end{aligned}\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& v_{(c, i)}=\frac{1}{p^{i-1}} h(c) . \\
& v=\left(\begin{array}{c}
h(a) \\
h(b) \\
h(c) \\
h(a c) \\
\frac{1}{p} h(a c)
\end{array}\right)
\end{aligned}
$$

Uniqueness of uniform measure on trace monoids

- Find the Perron eigenvector of the incidence matrix of this automaton

$$
v_{(c, i)}=\frac{1}{p^{i-1}} h(c)
$$

$(a, 1)$
$(b, 1)$
$(c, 1)$
$(a c, 1)$
$(a c, 2)$$\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right)$

$$
v=\left(\begin{array}{c}
h(a) \\
h(b) \\
h(c) \\
h(a c) \\
\frac{1}{p} h(a c)
\end{array}\right)
$$

- Since the incidence matrix is irreducible and aperiodic
- Apply Perron-FrobeniusTheorem

Uniqueness of uniform measure on trace monoids

- Find the Perron eigenvector of the incidence matrix of this automaton

$$
\begin{aligned}
& (a, 1) \\
& (b, 1) \\
& (c, 1) \\
& (a c, 1) \\
& (a c, 2)
\end{aligned}\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& v_{(c, i)}=\frac{1}{p^{i-1}} h(c) . \\
& v=\left(\begin{array}{c}
h(a) \\
h(b) \\
h(c) \\
h(a c) \\
\frac{1}{p} h(a c)
\end{array}\right)
\end{aligned}
$$

- Since the incidence matrix is irreducible and aperiodic
- Apply Perron-FrobeniusTheorem
- Get the uniqueness of the uniform measure

Uniqueness of uniform measure on actions

Example for 1-safe petri net

$$
\nu_{M_{0}}\left(C_{1}=c\right)=\nu_{M_{0}}(\uparrow c)-\nu_{M_{0}}(\uparrow(a c))
$$

Uniqueness of uniform measure on actions

Example for 1-safe petri net

$$
\begin{aligned}
\nu_{M_{0}}\left(C_{1}=c\right) & =\nu_{M_{0}}(\uparrow c)-\nu_{M_{0}}(\uparrow(a c)) \\
& =p_{0} \cdot \Gamma\left(M_{0}, M_{0}\right)-p_{0}^{2} \cdot \Gamma\left(M_{0}, M_{1}\right)
\end{aligned}
$$

Uniqueness of uniform measure on actions

Example for 1-safe petri net

$$
\begin{aligned}
\nu_{M_{0}}\left(C_{1}=c\right) & =\nu_{M_{0}}(\uparrow c)-\nu_{M_{0}}(\uparrow(a c)) \\
& =p_{0} \cdot \Gamma\left(M_{0}, M_{0}\right)-p_{0}^{2} \cdot \Gamma\left(M_{0}, M_{1}\right) \\
& =p_{0} \cdot 1-p_{0}^{2} \cdot \frac{1}{p_{0}}=0
\end{aligned}
$$

Uniqueness of uniform measure on actions

Example for 1-safe petri net

- The automaton is NOT strongly connected \rightarrow can not apply Perron-Frobenius Theorem

Uniqueness of uniform measure on actions

Example for 1-safe petri net

- The automaton is NOT strongly connected \rightarrow can not apply Perron-Frobenius Theorem
- Some state never go through under $\nu_{M_{0}}$

Ongoing directions

- A systematic way to calculate Γ function

Ongoing directions

- A systematic way to calculate 「 function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid

Ongoing directions

- A systematic way to calculate 「 function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid
- Random generation for actions on a trace monoid

Ongoing directions

- A systematic way to calculate「 function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid
- Random generation for actions on a trace monoid
- For the purpose of model checking (application of this theory)

