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Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure Ongoing directions

Motivation

• Complexity and scale in software systems are increasing.
• The crucial factor is related to concurrency.

• Difficulty : "Combinatorial explosion problems"
• Approach : Statistical model checking

→ probabilistic framework in a trace monoid

• Goal : Random generation for concurrent systems
→ 1-safe Petri nets
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• Independent relation :
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• Canonical normal form :
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Framework- random sampling from a Markov chain
• Take account of "concurrency" and "states"

• The executions of 1-safe Petri nets are understood up to
traces.
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Uniform measure on trace monoids

Trace monoid : M = 〈a, b, c | a · c = c · a〉
• set of cliques C : ε, a, b, c , ac

• Möbius polynomial µ(x) =
∑
c∈C

(−1)|c|x |c| = 1− 3x + x2

• Möbius inversion formula : G (x) =
∑
u∈M

x |u| = 1
µ(x)

Theorem (Abbes, Mairesse 2015)
There exists a unique uniform measure ν on ∂M, satisfying:
∀u ∈M, ν(↑ u) = p

|u|
0

p0 : the root of smallest modulus of µ(x).
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Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)
Let ν be the uniform measure on ∂M. Then the canonical
normal decomposition of a trace is a realization of the Markov
chain with initial probability measure h which is the Möbius
transform of ν.

• # paths with length k in the
automaton
= # traces with height k in a
trace monoid

a c

b ac
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Uniform measure for actions on trace monoids
Theorem (Abbes 2015)
Let X ×M→ X be an irreducible partial action. Then there
exists a uniform Markov measure, satisfying :

∀α ∈ X ∀x ∈Mα, να(↑ x) = p
|x |
0 Γ(α, α · x).

a

b c

• Gα(x) =
∑

u∈Mα

x |u|

• Γ(α, β) = lim
x→p0

Gβ(x)

Gα(x)

• µα,β(x) =
∑

γ∈Cα,β

(−1)|γ|x |γ|

• Möbius matrix:

µ(x) = (µα,β)(x)
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Properties of Γ function

• Define Γ(α, β) = lim
x→p0

Gβ(x)

Gα(x)

• cocycle relation: Γ(α, γ) = Γ(α, β)Γ(β, γ)

Γ(α, α) = 1
• Fix a state α0,

(Γ(α0, β))β ∈ ker µ(p0)
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Calculation of Γ function

a

b c

M0 → M0 : ε, c , M0 → M1 : a, ac ,

M1 → M0 : b, M1 → M1 : ε, c .

µ(x) =
M0

M1

(
1− x −x + x2

−x 1− x

)
.

p0 =
√

5+1
2

Let
(
Γ(M0,M0) Γ(M0,M1)

)T
=
(
1 λ

)T ∈ ker µ(p0)

−p0 + (1− p0) · λ = 0 =⇒ λ =
p0

1− p0
=

1
p0

=

√
5− 1
2

.
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Uniqueness of uniform measure on trace monoids
New proof from the linear algebra point of view

• Construct the expanded automaton of cliques
M = 〈a, b, c | a · c = c · a〉

a b c

ac1 ac2

(a, 1)
(b, 1)
(c , 1)

(ac , 1)
(ac , 2)


1 1 0 0 0
1 1 1 1 0
0 1 1 0 0
0 0 0 0 1
1 1 1 1 0



• Find the Perron eigenvector of the incidence matrix of
this automaton
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Uniqueness of uniform measure on trace monoids
• Find the Perron eigenvector of the incidence matrix of

this automaton

(a, 1)
(b, 1)
(c , 1)

(ac , 1)
(ac , 2)


1 1 0 0 0
1 1 1 1 0
0 1 1 0 0
0 0 0 0 1
1 1 1 1 0



v(c,i) =
1

pi−1h(c).

v =


h(a)
h(b)
h(c)
h(ac)
1
p
h(ac)


• Since the incidence matrix is irreducible and aperiodic
• Apply Perron-FrobeniusTheorem
• Get the uniqueness of the uniform measure
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Uniqueness of uniform measure on actions
Example for 1-safe petri net

a

b c

M0, a

M1, b M1, c

M0, ac

M0, c

νM0(C1 = c) = νM0(↑ c)− νM0(↑ (ac))

= p0 · Γ(M0,M0)− p2
0 · Γ(M0,M1)

= p0 · 1− p2
0 ·

1
p0

= 0
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Uniqueness of uniform measure on actions

Example for 1-safe petri net
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M0, c

• The automaton is NOT strongly connected
→ can not apply Perron-Frobenius Theorem

• Some state never go through under νM0
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Ongoing directions

• A systematic way to calculate Γ function

• Complete the proof of the uniqueness of uniform measure
on actions in a trace monoid
• Random generation for actions on a trace monoid
• For the purpose of model checking (application of this

theory)
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Thank you!


	Introduction
	Uniform measure
	Uniform measure for actions
	Uniqueness of uniform measure 
	Ongoing directions

