Toward Uniform Random Generation in 1-safe Petri Nets

Yi-Ting Chen (LIP6 / Sorbonne Université)

Advisor: Jean Mairesse, Samy Abbes

2019 Apr 23 - LIPN

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty : "Combinatorial explosion problems"

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty : "Combinatorial explosion problems"
- Approach : Statistical model checking

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty : "Combinatorial explosion problems"
- Approach : Statistical model checking
 - \rightarrow probabilistic framework in a trace monoid

Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty : "Combinatorial explosion problems"
- Approach : Statistical model checking
 → probabilistic framework in a trace monoid
- <u>Goal</u> : Random generation for concurrent systems \rightarrow 1-safe Petri nets

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

 M_0

Reachability graph

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

 M_1

Reachability graph

Introduction 0000

Uniform measure Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Concurrent models - 1-safe Petri nets

Reachability graph

 M_0

- Concurrency :
- Casuality :
- Conflit :

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

 M_0

Reachability graph

- Concurrency : a, c
- Casuality :
- Conflit :

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

 M_0

Reachability graph

- Concurrency : a, c
- Casuality : a, b
- Conflit :

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

 M_0

Reachability graph

- Concurrency : a, c
- Casuality : a, b
- Conflit : b, c

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure 0000

Ongoing directions

Concurrent models - 1-safe Petri nets

 M_0

Reachability graph

• From M_0 , *abacb* is a valid firing sequence.

 Introduction
 Uniform measure
 Uniform measure for actions
 Uniqueness of uniform measure

 000
 00
 000
 0000

Ongoing directions

Concurrent models - 1-safe Petri nets

Reachability graph

- From M_0 , *abacb* is a valid firing sequence.
- We lost the feature of concurrency by viewing the firing sequences as the sequential executions.
 ex : abacb = abcab

IntroductionUniform measureUniform measure for actionsUniqueness of uniform measureOngoing directions0000000000000

Concurrent models - trace monoids

Trace monoid ${\cal M}$

- Alphabet : $\Sigma = \{a, b, c\}$
- Independent relation : $\mathcal{I} = \{(a, c)\}$

Heap of pieces

• Pieces:

IntroductionUniform measureUniform measure for actionsUniqueness of uniform measureOngoing directions0000000000000

Concurrent models - trace monoids

Trace monoid ${\cal M}$

- Alphabet : $\Sigma = \{a, b, c\}$
- Independent relation : $\mathcal{I} = \{(a, c)\}$

Heap of pieces

• Pieces:

• Example of heap :

abacb = abcab

Introduction
0000Uniform measure
000Uniform measure for actions
000Uniqueness of uniform measure
0000Ongoing directions
000

Concurrent models - trace monoids

Trace monoid ${\cal M}$

- Alphabet : $\Sigma = \{a, b, c\}$
- Independent relation : $\mathcal{I} = \{(a, c)\}$
- Canonical normal form : $abacb = a \cdot b \cdot ac \cdot b$

Heap of pieces

• Pieces:

• Example of heap :

abacb = abcab

Introduction
0000Uniform measure
000Uniform measure for actions
000Uniqueness of uniform measure
0000Ongoing directions
000

Concurrent models - trace monoids

Trace monoid ${\cal M}$

- Alphabet : $\Sigma = \{a, b, c\}$
- Independent relation : $\mathcal{I} = \{(a, c)\}$
- Canonical normal form :

$$abacb = a \cdot b \cdot ac \cdot b$$

Heap of pieces

• Pieces:

• Example of heap :

abacb = abcab

Framework- random sampling from a Markov chain

• Take account of "concurrency" and "states"

traces in a trace monoid

words in an automaton

Framework- random sampling from a Markov chain

Take account of "concurrency" and "states"

Framework- random sampling from a Markov chain

- Take account of "concurrency" and "states"
- The executions of 1-safe Petri nets are understood up to traces.

traces in a trace monoid

words in an automaton

traces in an automaton

Uniform measure on trace monoids

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Trace monoid : $\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle$

set of cliques C : ε, a, b, c, ac

Introduction Uniform measure

.

- Möbius polynomial $\mu(x) = \sum_{c \in \mathscr{C}} (-1)^{|c|} x^{|c|} = 1 3x + x^2$
- Möbius inversion formula : $G(x) = \sum_{u \in \mathcal{M}} x^{|u|} = \frac{1}{\mu(x)}$

Uniform measure on trace monoids

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Trace monoid : $\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle$

set of cliques C : ε, a, b, c, ac

Introduction Uniform measure

.

- Möbius polynomial $\mu(x) = \sum_{c \in \mathscr{C}} (-1)^{|c|} x^{|c|} = 1 3x + x^2$
- Möbius inversion formula : $G(x) = \sum_{u \in \mathcal{M}} x^{|u|} = \frac{1}{\mu(x)}$

Theorem (Abbes, Mairesse 2015)

There exists a unique uniform measure ν on $\partial \mathcal{M}$, satisfying: $\forall u \in \mathcal{M}, \quad \nu(\uparrow u) = p_0^{|u|}$ p_0 : the root of smallest modulus of $\mu(x)$.

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)

Let ν be the uniform measure on $\partial \mathcal{M}$. Then the canonical normal decomposition of a trace is a realization of the Markov chain with initial probability measure h which is the Möbius transform of ν .

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)

Let ν be the uniform measure on ∂M . Then the canonical normal decomposition of a trace is a realization of the Markov chain with initial probability measure h which is the Möbius transform of ν .

• # paths with length k in the automaton

= # traces with height k in a trace monoid

 Introduction
 Uniform measure
 Uniform measure for actions
 Uniqueness of uniform measure
 Ongoing directions

 0000
 00
 000
 000
 00
 00

Uniform measure for actions on trace monoids Theorem (Abbes 2015)

Let $X \times \mathcal{M} \to X$ be an irreducible partial action. Then there exists a uniform Markov measure, satisfying :

$$\forall \alpha \in X \quad \forall x \in \mathcal{M}_{\alpha}, \quad \nu_{\alpha}(\uparrow x) = p_{0}^{|x|} \Gamma(\alpha, \alpha \cdot x).$$

•
$$G_{\alpha}(x) = \sum_{u \in \mathcal{M}_{\alpha}} x^{|u|}$$

•
$$\Gamma(\alpha,\beta) = \lim_{x \to p_0} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$$

•
$$\mu_{lpha,eta}(\mathbf{x}) = \sum_{\gamma\in\mathscr{C}_{lpha,eta}} (-1)^{|\gamma|} \mathbf{x}^{|\gamma|}$$

• Möbius matrix:

 $\mu(x) = (\mu_{\alpha,\beta})(x)$

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure Ongoing directions

Properties of Γ function

• Define
$$\Gamma(\alpha,\beta) = \lim_{x \to p_0} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$$

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Properties of Γ function

• Define
$$\Gamma(\alpha,\beta) = \lim_{x \to p_0} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$$

• cocycle relation: $\Gamma(\alpha, \gamma) = \Gamma(\alpha, \beta)\Gamma(\beta, \gamma)$ $\Gamma(\alpha, \alpha) = 1$

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Properties of Γ function

• Define
$$\Gamma(\alpha,\beta) = \lim_{x \to p_0} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$$

- cocycle relation: $\Gamma(\alpha, \gamma) = \Gamma(\alpha, \beta)\Gamma(\beta, \gamma)$ $\Gamma(\alpha, \alpha) = 1$
- Fix a state α_0 ,

 $(\Gamma(\alpha_0,\beta))_{\beta} \in \ker \mu(p_0)$

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure Ongoing directions

000

$$\begin{array}{ll} M_0 \to M_0 : \varepsilon, c, & M_0 \to M_1 : a, ac, \\ M_1 \to M_0 : b, & M_1 \to M_1 : \varepsilon, c. \end{array}$$

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure Ongoing directions

000

$$egin{aligned} M_0 &
ightarrow M_0 : arepsilon, c, & M_0
ightarrow M_1 : a, ac, \ M_1 &
ightarrow M_0 : b, & M_1
ightarrow M_1 : arepsilon, c. \end{aligned}$$

$$\mu(x) = \begin{array}{cc} M_0 \\ M_1 \end{array} \begin{pmatrix} 1 - x & -x + x^2 \\ -x & 1 - x \end{pmatrix}.$$
$$p_0 = \frac{\sqrt{5} + 1}{2}$$

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

$$-p_0+(1-p_0)\cdot\lambda=0$$

Uniform measure for actions Uniqueness of uniform measure

Ongoing directions

Uniqueness of uniform measure on trace monoids New proof from the linear algebra point of view

• Construct the expanded automaton of cliques $\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle$

Uniqueness of uniform measure on trace monoids New proof from the linear algebra point of view

0000

Ongoing directions

• Construct the expanded automaton of cliques $\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle$

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

Uniqueness of uniform measure on trace monoids New proof from the linear algebra point of view

0000

Ongoing directions

• Construct the expanded automaton of cliques $\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle$

Introduction Uniform measure Uniform measure for actions Uniqueness of uniform measure

• Find the Perron eigenvector of the incidence matrix of this automaton

Uniqueness of uniform measure on trace monoids

• Find the Perron eigenvector of the incidence matrix of this automaton

$$v_{(c,i)}=\frac{1}{p^{i-1}}h(c).$$

$$\begin{array}{c} (a,1)\\ (b,1)\\ (c,1)\\ (ac,1)\\ (ac,2) \end{array} \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array} \right)$$

Uniqueness of uniform measure on trace monoids

• Find the Perron eigenvector of the incidence matrix of this automaton

 $\begin{array}{c} (a,1)\\ (b,1)\\ (c,1)\\ (ac,1)\\ (ac,2) \end{array} \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array} \right)$

$$v_{(c,i)} = \frac{1}{p^{i-1}}h(c).$$
$$v = \begin{pmatrix} h(a) \\ h(b) \\ h(c) \\ h(ac) \\ \frac{1}{p}h(ac) \end{pmatrix}$$

Uniqueness of uniform measure on trace monoids

• Find the Perron eigenvector of the incidence matrix of this automaton

- Since the incidence matrix is irreducible and aperiodic
- Apply Perron-Frobenius Theorem

Uniqueness of uniform measure on trace monoids

• Find the Perron eigenvector of the incidence matrix of this automaton

- Since the incidence matrix is irreducible and aperiodic
- Apply Perron-Frobenius Theorem
- Get the uniqueness of the uniform measure

Ongoing directions

Uniqueness of uniform measure on actions Example for 1-safe petri net

 $\nu_{M_{0}}(C_{1}=c)=\nu_{M_{0}}(\uparrow c)-\nu_{M_{0}}(\uparrow (ac))$

Ongoing directions

Uniqueness of uniform measure on actions Example for 1-safe petri net

$$\begin{split} \nu_{M_0}(C_1 = c) &= \nu_{M_0}(\uparrow c) - \nu_{M_0}(\uparrow (ac)) \\ &= p_0 \cdot \Gamma(M_0, M_0) - p_0^2 \cdot \Gamma(M_0, M_1) \end{split}$$

Ongoing directions

Uniqueness of uniform measure on actions Example for 1-safe petri net

$$egin{aligned}
u_{M_0}(C_1=c) &=
u_{M_0}(\uparrow c) -
u_{M_0}(\uparrow (ac)) \ &=
u_0 \cdot \Gamma(M_0,M_0) -
u_0^2 \cdot \Gamma(M_0,M_1) \ &=
u_0 \cdot 1 -
u_0^2 \cdot rac{1}{
u_0} = 0 \end{aligned}$$

Uniqueness of uniform measure on actions

Example for 1-safe petri net

 The automaton is NOT strongly connected → can not apply Perron-Frobenius Theorem

Uniqueness of uniform measure on actions

Example for 1-safe petri net

- The automaton is NOT strongly connected
 → can not apply Perron-Frobenius Theorem
- Some state never go through under ν_{M_0}

Ongoing directions •0

Ongoing directions

• A systematic way to calculate Γ function

Ongoing directions .

Ongoing directions

- A systematic way to calculate [function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid

Ongoing directions .

Ongoing directions

- A systematic way to calculate [function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid
- Random generation for actions on a trace monoid

Ongoing directions .

Ongoing directions

- A systematic way to calculate [function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid
- Random generation for actions on a trace monoid
- For the purpose of model checking (application of this theory)

Thank you!