Toward Uniform Random Generation in 1-safe Petri Nets

Yi-Ting Chen (LIP6 / Sorbonne Université)

Advisor: Jean Mairesse, Samy Abbes

2019 Apr 23 - LIPN
Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
Motivation

• Complexity and scale in software systems are increasing.
• The crucial factor is related to concurrency.
• Difficulty: "Combinatorial explosion problems"
Motivation

• Complexity and scale in software systems are increasing.
• The crucial factor is related to concurrency.
• Difficulty: "Combinatorial explosion problems"
• Approach: Statistical model checking
Motivation

- Complexity and scale in software systems are increasing.
- The crucial factor is related to concurrency.
- Difficulty: "Combinatorial explosion problems"
- Approach: Statistical model checking
 → probabilistic framework in a trace monoid
Motivation

• Complexity and scale in software systems are increasing.
• The crucial factor is related to concurrency.
• Difficulty: "Combinatorial explosion problems"
• Approach: Statistical model checking → probabilistic framework in a trace monoid
• Goal: Random generation for concurrent systems → 1-safe Petri nets
Concurrent models - 1-safe Petri nets

M_0

Reachability graph
Concurrent models - 1-safe Petri nets

![Diagram of M1 and Reachability graph]

M1

Reachability graph
Concurrent models - 1-safe Petri nets

- Concurrency :
- Casuality :
- Conflit :
Concurrent models - 1-safe Petri nets

- Concurrency: a, c
- Casuality:
- Conflict:
Concurrent models - 1-safe Petri nets

- **Concurrency**: a, c
- **Casuality**: a, b
- **Conflict**:

Reachability graph
Concurrent models - 1-safe Petri nets

- **Concurrency**: a, c
- **Casuality**: a, b
- **Conflit**: b, c

Reachability graph
Concurrent models - 1-safe Petri nets

From M_0, $abacb$ is a valid firing sequence.
Concurrent models - 1-safe Petri nets

- From M_0, $abacb$ is a valid firing sequence.
- We lost the feature of concurrency by viewing the firing sequences as the sequential executions.
 ex: $abacb = abcab$
Concurrent models - trace monoids

Trace monoid \mathcal{M}
- **Alphabet**: $\Sigma = \{a, b, c\}$
- **Independent relation**: $\mathcal{I} = \{(a, c)\}$

Heap of pieces
- **Pieces**:
 - a
 - b
 - c
Concurrent models - trace monoids

Trace monoid \mathcal{M}
- Alphabet: $\Sigma = \{a, b, c\}$
- Independent relation: $\mathcal{I} = \{(a, c)\}$

Heap of pieces
- Pieces:
 - a
 - b
 - c
- Example of heap:

\[
\begin{array}{c}
 \text{abacb} = \text{abcab}
\end{array}
\]
Concurrent models - trace monoids

Trace monoid \(\mathcal{M} \)
- **Alphabet**: \(\Sigma = \{ a, b, c \} \)
- **Independent relation**: \(\mathcal{I} = \{(a, c)\} \)
- **Canonical normal form**: \(abacb = a \cdot b \cdot ac \cdot b \)

Heap of pieces
- **Pieces**:
 - \(a \)
 - \(b \)
 - \(c \)
- **Example of heap**:
 - \(abacb = abcab \)
Concurrent models - trace monoids

Trace monoid \mathcal{M}
- Alphabet: $\Sigma = \{a, b, c\}$
- Independent relation: $\mathcal{I} = \{(a, c)\}$
- Canonical normal form: $abacb = a \cdot b \cdot ac \cdot b$

Heap of pieces
- Pieces:
 \[
 \begin{array}{ccc}
 a & b & c \\
 \end{array}
 \]
- Example of heap:
 \[
 \begin{array}{ccc}
 b \\
 a & c \\
 b \\
 a \\
 \end{array}
 \]

$abacb = abcab$
Framework - random sampling from a Markov chain

- Take account of "concurrency" and "states"

traces in a trace monoid
words in an automaton
Framework - random sampling from a Markov chain

- Take account of "concurrency" and "states"

traces in a trace monoid

words in an automaton

traces in an automaton
Framework- random sampling from a Markov chain

- Take account of "concurrency" and "states"
- The executions of 1-safe Petri nets are understood up to traces.
Uniform measure on trace monoids

Trace monoid: \(\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle \)

- set of cliques \(C : \varepsilon, a, b, c, ac \)
- Möbius polynomial \(\mu(x) = \sum_{c \in C} (-1)^{|c|} x^{|c|} = 1 - 3x + x^2 \)
- Möbius inversion formula: \(G(x) = \sum_{u \in \mathcal{M}} x^{|u|} = \frac{1}{\mu(x)} \)
Uniform measure on trace monoids

Trace monoid: \(\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle \)

- set of cliques \(\mathcal{C} : \varepsilon, a, b, c, ac \)
- Möbius polynomial \(\mu(x) = \sum_{c \in \mathcal{C}} (-1)^{|c|} x^{|c|} = 1 - 3x + x^2 \)
- Möbius inversion formula: \(G(x) = \sum_{u \in \mathcal{M}} x^{|u|} = \frac{1}{\mu(x)} \)

Theorem (Abbes, Mairesse 2015)

There exists a unique uniform measure \(\nu \) on \(\partial\mathcal{M} \), satisfying:

\[\forall u \in \mathcal{M}, \quad \nu(\uparrow u) = p_0^{|u|} \]

\(p_0 \): the root of smallest modulus of \(\mu(x) \).
Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)

Let ν be the uniform measure on $\partial \mathcal{M}$. Then the canonical normal decomposition of a trace is a realization of the Markov chain with initial probability measure h which is the Möbius transform of ν.
Uniform measure on trace monoids

Theorem (Abbes, Mairesse 2015)

Let ν be the uniform measure on ∂M. Then the canonical normal decomposition of a trace is a realization of the Markov chain with initial probability measure h which is the Möbius transform of ν.

- $\#$ paths with length k in the automaton
 $\quad = \#$ traces with height k in a trace monoid
Uniform measure for actions on trace monoids

Theorem (Abbes 2015)

Let $X \times \mathcal{M} \to X$ be an irreducible partial action. Then there exists a uniform Markov measure, satisfying:

$$\forall \alpha \in X \quad \forall x \in \mathcal{M}_\alpha, \quad \nu_\alpha(\uparrow x) = p_0^{|x|} \Gamma(\alpha, \alpha \cdot x).$$

- $G_\alpha(x) = \sum_{u \in \mathcal{M}_\alpha} x^{|u|}$
- $\Gamma(\alpha, \beta) = \lim_{x \to p_0} \frac{G_\beta(x)}{G_\alpha(x)}$
- $\mu_{\alpha,\beta}(x) = \sum_{\gamma \in \mathcal{C}_{\alpha,\beta}} (-1)^{|\gamma|} x^{|\gamma|}$
- Möbius matrix:

$$\mu(x) = (\mu_{\alpha,\beta})(x)$$
Properties of Γ function

- Define $\Gamma(\alpha, \beta) = \lim_{x \to p_0} \frac{G_\beta(x)}{G_\alpha(x)}$
Properties of Γ function

- Define $\Gamma(\alpha, \beta) = \lim_{x \to p_0} \frac{G_{\beta}(x)}{G_{\alpha}(x)}$

- cocycle relation: $\Gamma(\alpha, \gamma) = \Gamma(\alpha, \beta) \Gamma(\beta, \gamma)$
 $\Gamma(\alpha, \alpha) = 1$
Properties of Γ function

- Define $\Gamma(\alpha, \beta) = \lim_{x \to p_0} \frac{G_\beta(x)}{G_\alpha(x)}$
- Cocycle relation: $\Gamma(\alpha, \gamma) = \Gamma(\alpha, \beta) \Gamma(\beta, \gamma)$
- $\Gamma(\alpha, \alpha) = 1$
- Fix a state α_0,

 $$(\Gamma(\alpha_0, \beta))_\beta \in \ker \mu(p_0)$$
Calculation of Γ function

$\Gamma(M_0, M_0) = \Gamma(M_0, M_1) \in \ker \mu(p_0) - p_0 + (1 - p_0) \cdot \lambda = \lambda = p_0 = 1 - p_0 = \frac{\sqrt{5} - 1}{2}$.

$M_0 \rightarrow M_0 : \varepsilon, c, \quad M_0 \rightarrow M_1 : a, ac,
M_1 \rightarrow M_0 : b, \quad M_1 \rightarrow M_1 : \varepsilon, c$.

\[\mu(x) = M_0 \rightarrow M_1 \left(1 - x - x + x^2 - x^3 - x^4 \right) \]
Calculation of Γ function

Let $\left(\Gamma\left(\mathcal{M}_0, \mathcal{M}_0\right), \Gamma\left(\mathcal{M}_0, \mathcal{M}_1\right)\right) \in \ker \mu(p_0) - p_0 + (1 - p_0) \cdot \lambda = 0 \Rightarrow \lambda = p_0 = 1 - p_0 = \frac{\sqrt{5} + 1}{2}$.

$\mathcal{M}_0 \to \mathcal{M}_0 : \varepsilon, c, \quad \mathcal{M}_0 \to \mathcal{M}_1 : a, ac,$
$\mathcal{M}_1 \to \mathcal{M}_0 : b, \quad \mathcal{M}_1 \to \mathcal{M}_1 : \varepsilon, c.$

$\mu(x) = \begin{pmatrix} M_0 & \begin{pmatrix} 1 - x & -x + x^2 \\ -x & 1 - x \end{pmatrix} \\ M_1 & \end{pmatrix}.$
Calculation of Γ function

Let $(\Gamma(M_0, M_0), \Gamma(M_0, M_1))^T = (1 - x - x + x^2, -x)
\in \ker\mu(p_0)$.
Calculation of Γ function

Let $(\Gamma(M_0, M_0) \quad \Gamma(M_0, M_1))^T = \begin{pmatrix} 1 - x & -x + x^2 \\ -x & 1 - x \end{pmatrix}$.

$$\mu(x) = M_0 \begin{pmatrix} 1 - x & -x + x^2 \\ -x & 1 - x \end{pmatrix}.$$

$$p_0 = \frac{\sqrt{5}+1}{2} \in \ker \mu(p_0)$$

$$-p_0 + (1 - p_0) \cdot \lambda = 0$$
Calculation of Γ function

Let \(\left(\Gamma(M_0, M_0) \quad \Gamma(M_0, M_1) \right)^T = \left(1 \quad \lambda \right)^T \in \ker \mu(p_0) \)

\[-p_0 + (1 - p_0) \cdot \lambda = 0 \implies \lambda = \frac{p_0}{1 - p_0} = \frac{1}{p_0} = \frac{\sqrt{5} - 1}{2}.\]
Uniqueness of uniform measure on trace monoids

New proof from the linear algebra point of view

- Construct the expanded automaton of cliques
 \[\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle \]
Uniqueness of uniform measure on trace monoids

New proof from the linear algebra point of view

- Construct the expanded automaton of cliques
 \[\mathcal{M} = \langle a, b, c \mid a \cdot c = c \cdot a \rangle \]
Uniqueness of uniform measure on trace monoids

New proof from the linear algebra point of view

- Construct the expanded automaton of cliques
 \[M = \langle a, b, c \mid a \cdot c = c \cdot a \rangle \]

- Find the Perron eigenvector of the incidence matrix of this automaton
Uniqueness of uniform measure on trace monoids

- Find the Perron eigenvector of the incidence matrix of this automaton

\[
v_{(c,i)} = \frac{1}{p^{i-1}} h(c).
\]

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]
Uniqueness of uniform measure on trace monoids

- Find the **Perron eigenvector** of the incidence matrix of this automaton

\[
v_{(c,i)} = \frac{1}{p^{i-1}} h(c).\]

\[
v = \begin{pmatrix}
 h(a) \\
 h(b) \\
 h(c) \\
 h(ac) \\
 \frac{1}{p} h(ac)
\end{pmatrix}
\]
Uniqueness of uniform measure on trace monoids

- Find the **Perron eigenvector** of the incidence matrix of this automaton

\[
v(c,i) = \frac{1}{p^{i-1}} h(c).
\]

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]

- Since the incidence matrix is irreducible and aperiodic
- Apply **Perron-Frobenius Theorem**
Uniqueness of uniform measure on trace monoids

- Find the **Perron eigenvector** of the incidence matrix of this automaton

\[
v_{(c,i)} = \frac{1}{p^{i-1}} h(c).
\]

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\end{pmatrix}
\]

- Since the incidence matrix is irreducible and aperiodic
- Apply **Perron-Frobenius** Theorem
- Get the **uniqueness** of the uniform measure
Uniqueness of uniform measure on actions

Example for 1-safe petri net

\[\nu_{M_0}(C_1 = c) = \nu_{M_0}(\uparrow c) - \nu_{M_0}(\uparrow (ac)) \]
Uniqueness of uniform measure on actions

Example for 1-safe petri net

\[
\nu_{M_0}(C_1 = c) = \nu_{M_0}(\uparrow c) - \nu_{M_0}(\uparrow (ac))
\]
\[
= p_0 \cdot \Gamma(M_0, M_0) - p_0^2 \cdot \Gamma(M_0, M_1)
\]
Uniqueness of uniform measure on actions

Example for 1-safe petri net

\[\nu_{M_0}(C_1 = c) = \nu_{M_0}(\uparrow c) - \nu_{M_0}(\uparrow (ac)) \]
\[= p_0 \cdot \Gamma(M_0, M_0) - p_0^2 \cdot \Gamma(M_0, M_1) \]
\[= p_0 \cdot 1 - p_0^2 \cdot \frac{1}{p_0} = 0 \]
Uniqueness of uniform measure on actions

Example for 1-safe petri net

- The automaton is NOT strongly connected
 → can not apply Perron-Frobenius Theorem
Uniqueness of uniform measure on actions

Example for 1-safe petri net

- The automaton is NOT strongly connected
 \[\rightarrow\text{ can not apply Perron-Frobenius Theorem}\]
- Some state never go through under \(\nu_{M_0}\)
Ongoing directions

- A systematic way to calculate Γ function
Ongoing directions

- A systematic way to calculate Γ function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid
Ongoing directions

- A systematic way to calculate Γ function
- Complete the proof of the **uniqueness** of uniform measure on actions in a trace monoid
- **Random generation** for actions on a trace monoid
Ongoing directions

- A systematic way to calculate Γ function
- Complete the proof of the uniqueness of uniform measure on actions in a trace monoid
- Random generation for actions on a trace monoid
- For the purpose of model checking (application of this theory)
Thank you!