Combinatorics of characters and continuation of Li .

V.C. Bùi, G.H.E. Duchamp,

Hoang Ngoc Minh, Q.H. Ngô et al.
Collaboration at various stages of the work and in the framework of the Project Evolution Equations in Combinatorics and Physics : N. Behr, K. A. Penson, C. Tollu.

CIP-CALIN,
18 juin 2019

Plan

Plan	practice:	property/2
Multiplicity	Schützenberger's	16 A useful
Automaton (Eilenberg,	calculus	property/3
Schützenberger)	9 Examples	18 Properties of the
4 Multiplicity	10 From theory to	extended Li
automaton (linear	practice: construction	20 The arrow $\mathrm{Li}^{(1)}$
representation) \&	starting from S.	21 Sketch of the
behaviour	11 Link with	proof for vi.
5 Operations and	conc-bialgebras (CAP	23 End of the ladder:
definitions on series	17)	pushing coefficients to
Rational series	12 Link with	$\mathcal{C}_{\mathbb{C}}$
(Sweedler \&	conc-bialgebras/2	25 Concluding
Schützenberger)	13 Some dual laws	remarks/1
Sweedler's duals	14 A useful property	26 Concluding
From theory to	15 A useful	remarks/2

Multiplicity Automaton (Eilenberg, Schützenberger)

1 S. Eilenberg, Automata, Languages, and Machines (Vol. A) Acad. Press, New York, 1974
2 M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4 (1961), 245-270.

Multiplicity automaton (linear representation) \& behaviour

Linear representation

$$
\begin{aligned}
\nu & =\left(\begin{array}{lllll}
\nu_{2} & \nu_{1} & 0 & 0 & 0
\end{array}\right), \quad \eta=\left(\begin{array}{llll}
0 & 0 & \eta_{1} & 0 \\
\eta_{2}
\end{array}\right)^{T} \\
\mu(a) & =\left(\begin{array}{ccccc}
\alpha_{9} & \alpha_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha_{8} \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \mu(b)=\left(\begin{array}{ccccc}
0 & 0 & 0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mu(c) & =\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha_{5} \\
0 & 0 & 0 & 0 & \alpha_{7} \\
0 & \alpha_{4} & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Behaviour

$$
\mathcal{A}(w)=\nu \mu(w) \eta=\sum_{\substack{i, j \\
\text { states }}} \nu(i) \underbrace{\left(\sum \text { weight }(p)\right)}_{\begin{array}{c}
\text { weight of all paths (i) } \\
\text { with label } w
\end{array}} \eta(j)
$$

Operations and definitions on series

Addition, Scaling: as for functions because $R\langle\langle X\rangle\rangle=R^{X^{*}}$
Concatenation: $f . g(w)=\sum_{w=u v} f(u) g(v)$
Polynomials: Series s.t. $\operatorname{supp}(f)=\{w\}_{f(w) \neq 0}$ is finite.
The set of polynomials will be denoted $R\langle X\rangle$.
Pairing: $\langle S \mid P\rangle=\sum_{w \in X^{*}} S(w) P(w)(S$ series, P polynomial)
Summation: $\sum_{i \in I} S_{i}$ summable iff f or all $w \in X^{*}, i \mapsto\left\langle S_{i} \mid w\right\rangle$ is finitely supported. This corresponds to the product topology (with R discrete). In particular, we have

$$
\sum_{i \in I} S_{i}:=\sum_{w \in X^{*}}\left(\sum_{i \in I}\left\langle S_{i} \mid w\right\rangle\right) w
$$

Star: For all series S s.t. $\left\langle S \mid 1_{X^{*}}\right\rangle=0$, the family $\left(S^{n}\right)_{n \geq 0}$ is summable and we set $S^{*}:=\sum_{n \geq 0} S^{n}=1+S+S^{2}+\cdots\left(=(1-\bar{S})^{-1}\right)$. Shifts: $\left\langle u^{-1} S \mid w\right\rangle=\langle S \mid u w\rangle,\left\langle S u^{-1} \mid w\right\rangle=\langle S \mid w u\rangle$

Rational series (Sweedler \& Schützenberger)

Theorem A

Let $S \in k\langle\langle X\rangle\rangle$ TFAE
i) The family $\left(S u^{-1}\right)_{u \in X^{*}}$ is of finite rank.
ii) The family $\left(u^{-1} S\right)_{u \in X^{*}}$ is of finite rank.
iii) The family $\left(u^{-1} S v^{-1}\right)_{u, v \in X^{*}}$ is of finite rank.
iv) It exists $n \in \mathbb{N}, \lambda \in k^{1 \times n}, \mu: X^{*} \rightarrow k^{n \times n}$ (a multiplicative morphism) and $\gamma \in k^{n \times 1}$ such that, for all $w \in X^{*}$

$$
\begin{equation*}
(S, w)=\lambda \mu(w) \gamma \tag{1}
\end{equation*}
$$

v) The series S is in the closure of $k\langle X\rangle$ for $\left(+\right.$, conc,$\left.{ }^{*}\right)$ within $k\langle\langle X\rangle\rangle$.

Definition

A series which fulfill one of the conditions of Theorem A will be called rational. The set of these series will be denoted by $k^{r a t}\langle\langle X\rangle\rangle$.

Sweedler's duals

Remarks

(1) ($\mathrm{i} \leftrightarrow \mathrm{iii}$) needs k to be a field.
(2) (iv) needs X to be finite, (iv $\leftrightarrow v$) is known as the theorem of Kleene-Schützenberger (M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4 (1961), 245-270.)
(3) For the sake of Combinatorial Physics (where the alphabets can be infinite), (iv) has been extended to infinite alphabets and replaced by iv') The series S is in the rational closure of k^{X} (linear series) within $k\langle\langle X\rangle\rangle$.
(9) This theorem is linked to the following: Representative functions on X^{*} (see Eichii Abe, Chari \& Pressley), Sweedler's duals \&c.
(5) In the vein of (v) expressions like $a b^{*}$ or identities like $\left(a b^{*}\right)^{*} a^{*}=(a+b)^{*}$ (Lazard's elimination) will be called rational.

From theory to practice: Schützenberger's calculus

From series to automata

Starting from a series S, one has a way to construct an automaton (finite-stated iff the series is rational) providing that we know how to compute on shifts and one-letter-shifts will be sufficient due to the formula $u^{-1} v^{-1} S=(v u)^{-1} S$.

Calculus on rational expressions

In the following, x is a letter, E, F are rational expressions (i.e. expressions built from letters by scalings, concatenations and stars)
(1) x^{-1} is (left and right) linear
(2) $x^{-1}(E . F)=x^{-1}(E) \cdot F+\left\langle E \mid 1_{x^{*}}\right\rangle x^{-1}(F)$
(3) $x^{-1}\left(E^{*}\right)=x^{-1}(E) \cdot E^{*}$

Examples

With $(2 a)^{*}(3 b)^{*} ; \quad X=\{a, b\}$

With $\left(t^{2} x_{0} x_{1}\right)^{*} ; X=\left\{x_{0}, x_{1}\right\}$

From theory to practice: construction starting from S.

- States $u^{-1} S$ (constructed step by step)
- Edges We shift every state by letters (length) level by level (knowing that $\left.x^{-1}\left(u^{-1} S\right)=(u x)^{-1} S\right)$. Two cases:
Returning state: The state is a linear combination of the already created ones i.e. $x^{-1}\left(u^{-1} S\right)=\sum_{v \in F} \alpha(u x, v) v^{-1} S$ (with F finite), then we set the edges

$$
u^{-1} S \xrightarrow{x \mid \alpha_{v}} v^{-1} S
$$

The created state is new: Then

$$
u^{-1} S \xrightarrow{x \mid 1} x^{-1}\left(u^{-1} S\right)
$$

- Input S with the weight 1
- Outputs All states T with weight $\left\langle T \mid 1_{X^{*}}\right\rangle$

Link with conc-bialgebras (CAP 17)

We call here conc-bialgebras, structures such that $\mathcal{B}=\left(k\langle X\rangle\right.$, conc, $\left.1_{X^{*}}, \Delta, \epsilon\right)$ is a bialgebra and $\Delta(X) \subset\left(k . X \oplus k .1_{X^{*}}\right)^{\otimes 2}$. For this, as $k\langle X\rangle$ is a free algebra, it suffices to define Δ and check the axioms on letters. Below, some examples
Shuffle: X is arbitrary $\Delta(x)=x \otimes 1+1 \otimes x$ and

$$
\Delta(w)=\sum_{I+J=[1 \cdots|w|]} w[I] \otimes w[J]
$$

Stuffle: $Y=\left\{y_{i}\right\}_{i \geq 1}, \Delta\left(y_{k}\right)=y_{k} \otimes 1+1 \otimes y_{k}+\sum_{i+j=k} y_{i} \otimes y_{j}$ q-infiltration: X is arbitrary, $\Delta(x)=x \otimes 1+1 \otimes x+q x \otimes x$ and

$$
\Delta(w)=\sum_{I \cup J=[1 \cdots|w|]} q^{|I \cap J|} w[I] \otimes w[J]
$$

Link with conc-bialgebras/2

In case $\epsilon(P)=\left\langle P \mid 1_{X^{*}}\right\rangle^{\text {a }}$, the restricted (graded) dual is $\mathcal{B}^{\vee}=\left(k\langle X\rangle, *, 1_{X^{*}}, \Delta_{\text {conc }}, \epsilon\right)$ and we can write, for $x \in X$

$$
\begin{equation*}
\Delta(x)=x \otimes 1_{X^{*}}+1_{X^{*}} \otimes x+\Delta_{+}(x) \tag{2}
\end{equation*}
$$

then, the dual law $*\left(=^{t} \Delta\right)$ can be defined by recursion

$$
\begin{align*}
w * 1_{X^{*}} & =1_{X^{*} *} * w=w \\
a u * b v & =a(u * b v)+b(a u * v)+\varphi(a, b)(u * v) \tag{3}
\end{align*}
$$

where $\varphi={ }^{t} \Delta_{+}: k . X \otimes k . X \rightarrow k . X$ is an associative law.
${ }^{a}$ which covers all usual combinatorial cases, save Hadamard

Some dual laws

Name	Formula（recursion）	φ	Type
Shuffle［21］	$a u ш b v=a(u ш b v)+b(a u ш v)$	$\varphi \equiv 0$	I
Stuffle［19］	$\begin{gathered} x_{i} u ゅ x_{j} v=x_{i}\left(u \pm x_{j} v\right)+x_{j}\left(x_{i} u \pm v\right) \\ +x_{i+j}(u ゅ v) \end{gathered}$	$\varphi\left(x_{i}, x_{j}\right)=x_{i+j}$	I
Min－stuffle［7］		$\varphi\left(x_{i}, x_{j}\right)=-x_{i+j}$	III
Muffle［14］	$\begin{gathered} x_{i} u \bullet x_{j} v=x_{i}\left(u \bullet x_{j} v\right)+x_{j}\left(x_{i} u \hookleftarrow v\right) \\ +x_{i \times j}(u \bullet v) \end{gathered}$	$\varphi\left(x_{i}, x_{j}\right)=x_{i \times j}$	I
q－shuffle［3］	$\begin{gathered} \hline x_{i} u \uplus_{q} x_{j} v=x_{i}\left(u \uplus_{q} x_{j} v\right)+x_{j}\left(x_{i} u \uplus_{q} v\right) \\ +q x_{i+j}\left(u \uplus_{q} v\right) \end{gathered}$	$\varphi\left(x_{i}, x_{j}\right)=q x_{i+j}$	III
q－shuffle ${ }_{2}$	$\begin{gathered} \hline x_{i} u \uplus_{q} x_{j} v=x_{i}\left(u \uplus_{q} x_{j} v\right)+x_{j}\left(x_{i} u \uplus_{q} v\right) \\ \\ +q^{i \cdot j} x_{i+j}\left(u \uplus_{q} v\right) \\ \hline \end{gathered}$	$\varphi\left(x_{i}, x_{j}\right)=q^{i . j} x_{i+j}$	II
$\begin{gathered} \hline \text { LDIAG }\left(1, q_{s}\right)[10] \\ \text { (non-crossed, } \\ \text { non-shifted) } \\ \hline \end{gathered}$	$\begin{array}{r} a u ш b v=a(u ш b v)+b(a u ш v) \\ +q_{s}^{\|a\|\|b\|} a . b(u ш v) \end{array}$	$\varphi(a, b)=q_{s}^{\|a\|\|b\|}(a . b)$	II
q－Infiltration［12］	$\begin{gathered} a u \uparrow b v=a(u \uparrow b v)+b(a u \uparrow v) \\ +q \delta_{a, b} a(u \uparrow v) \end{gathered}$	$\varphi(a, b)=q \delta_{a, b} a$	III
AC－stuffle	$\begin{gathered} a u \omega_{\varphi} b v=a\left(u \omega_{\varphi} b v\right)+b\left(a u \omega_{\varphi} v\right) \\ +\varphi(a, b)\left(u \omega_{\varphi} v\right) \end{gathered}$	$\begin{aligned} \varphi(a, b) & =\varphi(b, a) \\ \varphi(\varphi(a, b), c) & =\varphi(a, \varphi(b, c)) \end{aligned}$	IV
Semigroup－ stuffle	$\begin{gathered} \hline x_{t} u 山_{\perp} x_{s} v=x_{t}\left(u \omega_{\perp} x_{s} v\right)+x_{s}\left(x_{t} u \omega_{\perp} v\right) \\ +x_{t \perp s}\left(u \omega_{\perp} v\right) \\ \hline \end{gathered}$	$\varphi\left(x_{t}, x_{s}\right)=x_{t \perp s}$	I
φ－shuffle	$\begin{gathered} a u \omega_{\varphi} b v=a\left(u w_{\varphi} b v\right)+b\left(a u w_{\varphi} v\right) \\ +\varphi(a, b)\left(u \omega_{\varphi} v\right) \end{gathered}$	$\varphi(a, b)$ law of AAU	V

Of course，the q－shuffle is equal to the（classical）shuffle when $q=0$ ．As for the q－ infiltration when $a=1$ nee rennepes the infiltration nroduct defined in｜fi｜

A useful property

Proposition B

Let $\mathcal{B}=\left(k\langle X\rangle\right.$, conc, $\left.1_{X^{*}}, \Delta, \epsilon\right)$ be a conc-bialgebra, then
(1) The space $k^{r a t}\langle X\rangle$ is closed by the convolution product $\diamond\left(\right.$ here $\left.{ }^{t} \Delta\right)$ given by

$$
\begin{equation*}
\langle S \diamond T \mid w\rangle=\langle S \otimes T \mid \Delta(w)\rangle \tag{4}
\end{equation*}
$$

(2) If k is a \mathbb{Q}-algebra and $\Delta_{+}: k . X \rightarrow k . X \otimes k . X$ cocommutative, \mathcal{B} is an enveloping algebra iff Δ_{+}is moderate ${ }^{a}$.
(3) If, moreover k is without zero divisors, the characters $\left(x^{*}\right)_{x \in X}$ are algebraically independant over $\left(k\langle X\rangle, \diamond, 1_{X^{*}}\right)$ within $\left(k\langle\langle X\rangle\rangle, \diamond, 1_{X^{*}}\right)$.

[^0]
A useful property/2

mathoverflow

Independence of characters with respect to polynomials

I came across the following property :
5 Let \mathfrak{g} be a Lie algebra over a ring k without zero divisors,
$\mathcal{U}=\mathcal{U}(\mathfrak{g})$ be its enveloping algebra. As such, \mathcal{U} is a Hopf algebra and ϵ, its counit, is the only character of $\mathcal{U} \rightarrow k$ which vanishes on \mathfrak{g}.
$\operatorname{Set} \mathcal{U}_{+}=\operatorname{ker}(\epsilon)$. We build the following filtrations $(N \geq 1)$

$$
\begin{equation*}
\mathcal{U}_{N}=\mathcal{U}_{+}^{N}=\underbrace{\mathcal{U}_{+} \ldots \ldots \mathcal{U}_{+}}_{N \text { times }} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{U}_{N}^{*}=\mathcal{U}_{N+1}^{\perp}=\left\{f \in \mathcal{U}^{*} \mid\left(\forall u \in \mathcal{U}_{N+1}\right)(f(u)=0)\right\} \tag{2}
\end{equation*}
$$

the first one is decreasing and the second one increasing. One shows easily that (with \circ as the convolution product)

$$
\mathcal{U}_{p}^{*} \diamond \mathcal{U}_{q}^{*} \subset \mathcal{U}_{p+q}^{*}
$$

so that $\mathcal{U}_{\infty}^{*}=\cup_{n \geq 1} \mathcal{U}_{n}^{*}$ is a convolution subalgebra of \mathcal{U}^{*}.
Now, we can state the

Theorem : The set of characters of $\left(\mathcal{U}, ., 1_{\mathcal{U}}\right)$ is linearly free w.r.t. \mathcal{U}_{∞}^{*}.
asked 1 month ago
viewed 106 times

FEATURED ON META

\square Revisiting the "Hot Network Questions" teature, what are our shared goals for.
\square Who cut the cheese?
\square Responsive design released for all Beta \& Undesigned sites

RelatedWhat does the generating function $x /\left(1-e^{-x}\right)$ count?
is there a canonical Hopf structure on the center of a universal enveloping algebra? Do stunted exponential series give projections of a cocommutative bialgebra on its coradical filtration?
quantum groups... not via presentations
3 How a unitary corepresentation of a Hopf C^{*} algebra, deals with the antipode?

14

A useful property/3

Remark

Property (3) is no longer true if Δ is not moderate. For example with the Hadamard coproduct and $x \neq y$, one has $y \odot(x)^{*}=0$.

Examples

Shuffle: $(\alpha x)^{*} ш(\beta y)^{*}=(\alpha x+\beta y)^{*}$
Stuffle: $\left(\alpha y_{i}\right)^{*} \oplus\left(\beta y_{j}\right)^{*}=\left(\alpha y_{i}+\beta y_{j}+\alpha \beta y_{i+j}\right)^{*}$
q-infiltration: $(\alpha x)^{*} \uparrow_{q}(\beta y)^{*}=\left(\alpha x+\beta y+\alpha \beta \delta_{x, y} x\right)^{*}$
Hadamard: $(\alpha a)^{*} \odot(\beta b)^{*}=1_{X^{*}}$ if $a \neq b$ and $(\alpha a)^{*} \odot(\beta a)^{*}=(\alpha \beta a)^{*}$

Starting the ladder

$$
\underset{\underset{\left(\mathbb{C}\langle X\rangle, w, 1_{X^{*}}\right)\left[x_{0}^{*},\left(-x_{0}\right)^{*}, x_{1}^{*}\right] \xrightarrow{\mathrm{Li}_{\bullet}^{(1)}}}{\substack{\mathrm{C} \mid}} \mathcal{C}_{\mathbb{Z}}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}}{\downarrow}
$$

Domain of Li (definition)

In order to extend Li to series, we define $\operatorname{Dom}(\operatorname{Li} ; \Omega)$ (or $\operatorname{Dom}(L i)$) if the context is clear) as the set of series $S=\sum_{n \geq 0} S_{n}$ (decomposition by homogeneous components) such that $\sum_{n \geq 0} \bar{L} i_{S_{n}}(z)$ converges for the compact convergence in Ω. One sets

$$
\begin{equation*}
L i_{S}(z):=\sum_{n \geq 0} L i_{S_{n}}(z) \tag{5}
\end{equation*}
$$

Examples

$$
L i_{x_{0}^{*}}(z)=z, L i_{x_{1}^{*}}(z)=(1-z)^{-1} ; L i_{\alpha x_{0}^{*}+\beta x_{1}^{*}}(z)=z^{\alpha}(1-z)^{-\beta}
$$

Properties of the extended Li

Proposition

With this definition, we have
(1) $\operatorname{Dom}(L i)$ is a shuffle subalgebra of $\mathbb{C}\langle\langle X\rangle\rangle$ and then so is $\operatorname{Dom}^{\text {rat }}(L i):=\operatorname{Dom}(L i) \cap \mathbb{C}^{r a t}\langle\langle X\rangle\rangle$
(2) For $S, T \in \operatorname{Dom}(L i)$, we have

$$
\operatorname{Li}_{S_{\amalg} T}=\operatorname{Li}_{S} \cdot \mathrm{Li}_{T}
$$

Examples and counterexamples

For $|t|<1$, one has $\left(t x_{0}\right)^{*} x_{1} \in \operatorname{Dom}(L i, D)$ (D is the open unit slit disc), whereas $x_{0}^{*} x_{1} \notin \operatorname{Dom}(L i, D)$.
Indeed, we have to examine the convergence of $\sum_{n \geq 0} \operatorname{Li}_{x_{0}^{n} x_{1}}(z)$, but, for $z \in] 0,1\left[\right.$, one has $0<z<\operatorname{Li}_{x_{0}^{n} x_{1}}(z) \in \mathbb{R}$ and therefore, for these values $\sum_{n \geq 0} \operatorname{Li}_{x_{0}^{n} x_{1}}(z)=+\infty$.

Coefficients in the Ladder

$$
\begin{aligned}
& \left(\mathbb{C}\langle X\rangle, ш, 1_{X^{*}}\right) \xrightarrow{\text { Li. }} \mathbb{C}\left\{\operatorname{Li}_{w}\right\}_{w \in X^{*}} \\
& \underset{\left(\mathbb{C}\langle X\rangle, \omega, 1_{X^{*}}\right)\left[x_{0}^{*},\left(-x_{0}\right)^{*}, x_{1}^{*}\right] \xrightarrow{\downarrow} \xrightarrow{\mathrm{Li}^{(1)}} \mathcal{C}_{\mathbb{Z}}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}}{ } \\
& \underset{\mathbb{C}\langle X\rangle ш \mathbb{C}^{\mathrm{rat}}\left\langle\left\langle x_{0}\right\rangle\right\rangle, \mathbb{C}^{\mathrm{rat}}\left\langle\left\langle x_{1}\right\rangle\right\rangle \xrightarrow{\mathrm{Li}^{\left.()^{2}\right)}} \mathcal{C}_{\mathbb{C}}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}}{ }
\end{aligned}
$$

Were, for every additive subgroup $(H,+) \subset(\mathbb{C},+), \mathcal{C}_{H}$ has been set to the following subring of \mathbb{C}

$$
\begin{equation*}
\mathcal{C}_{H}:=\mathbb{C}\left\{z^{\alpha}(1-z)^{-\beta}\right\}_{\alpha, \beta \in H} . \tag{6}
\end{equation*}
$$

Examples

$$
L i_{x_{0}^{*}}(z)=z, L i_{x_{1}^{*}}(z)=(1-z)^{-1} ; L i_{\alpha x_{0}^{*}+\beta x_{1}^{*}}(z)=z^{\alpha}(1-z)^{-\beta}
$$

The arrow $\mathrm{Li}_{\bullet}^{(1)}$

Proposition

i. The family $\left\{x_{0}^{*}, x_{1}^{*}\right\}$ is algebraically independent over $\left(\mathbb{C}\langle X\rangle, ш, 1_{X^{*}}\right)$ within $\left(\mathbb{C}\langle\langle X\rangle\rangle^{\text {rat }}, ш, 1_{X^{*}}\right)$.
ii. $\left(\mathbb{C}\langle X\rangle, w, 1_{X^{*}}\right)\left[x_{0}^{*}, x_{1}^{*},\left(-x_{0}\right)^{*}\right]$ is a free module over $\mathbb{C}\langle X\rangle$, the family $\left\{\left(x_{0}^{*}\right)^{\amalg k} ш\left(x_{1}^{*}\right)^{\amalg \prime}\right\}_{(k, l) \in \mathbb{Z} \times \mathbb{N}}$ is a $\mathbb{C}\langle X\rangle$-basis of it.
iii. As a consequence, $\left\{w ш\left(x_{0}^{*}\right)^{\omega^{k}} w^{*}\left(x_{1}^{*}\right)^{{ }^{\prime}}\right\} \underset{\substack{w \in X^{*} \\(k, l) \in \mathbb{Z} \times \mathbb{N}}}{ }$ is a \mathbb{C}-basis of it.
iv. $\mathrm{Li}_{\bullet}^{(1)}$ is the unique morphism from $\left(\mathbb{C}\langle X\rangle, ш, 1_{X^{*}}\right)\left[x_{0}^{*},\left(-x_{0}\right)^{*}, x_{1}^{*}\right]$ to $\mathcal{H}(\Omega)$ such that

$$
x_{0}^{*} \rightarrow z,\left(-x_{0}\right)^{*} \rightarrow z^{-1} \text { and } x_{1}^{*} \rightarrow(1-z)^{-1}
$$

v. $\operatorname{Im}\left(\mathrm{Li}_{\bullet}^{(1)}\right)=\mathcal{C}_{\mathbb{Z}}\left\{\operatorname{Li}_{w}\right\}_{w \in X^{*}}$.
vi. $\operatorname{ker}\left(\mathrm{Li}_{\bullet}^{(1)}\right)$ is the (shuffle) ideal generated by $x_{0}^{*} ш x_{1}^{*}-x_{1}^{*}+1_{X^{*}}$.

Sketch of the proof for vi．

Let \mathcal{J} be the ideal generated by $x_{0}^{*} ш x_{1}^{*}-x_{1}^{*}+1_{X^{*}}$ ．It is easily checked， from the following formulas ${ }^{a}$ ，for $k \geq 1$ ，

$$
\begin{aligned}
& w ш x_{0}^{*} ш\left(x_{1}^{*}\right)^{\amalg k} \equiv w ш\left(x_{1}^{*}\right)^{\amalg k}-w ш\left(x_{1}^{*}\right)^{\amalg k-1}[\mathcal{J}], \\
& w ш\left(-x_{0}\right)^{*} ш\left(x_{1}^{*}\right)^{\amalg k} \equiv w ゅ\left(-x_{0}\right)^{*} ш\left(x_{1}^{*}\right)^{\amalg k-1}+w ш\left(x_{1}^{*}\right)^{\amalg k}[\mathcal{J}],
\end{aligned}
$$

 linear combination of such monomials with $k l=0$ ．Observing that the image，through $\mathrm{Li}_{\bullet}^{(1)}$ ，of the following family is free in $\mathcal{H}(\Omega)$

$$
\begin{equation*}
\left\{w ш\left(x_{1}^{*}\right)^{\amalg I^{\prime}} ш\left(x_{0}^{*}\right)^{\amalg k}\right\}_{(w, l, k) \in\left(X^{*} \times \mathbb{N} \times\{0\}\right) \sqcup\left(X^{*} \times\{0\} \times \mathbb{Z}\right)} \tag{7}
\end{equation*}
$$

we get the result．
${ }^{a}$ In the Figure below，(w, I, k) codes the element $w ш\left(x_{0}^{*}\right)^{w^{\prime}} w^{\left.\left(x_{1}^{*}\right)\right)^{*}}$.

End of the ladder: pushing coefficients to $\mathcal{C}_{\mathbb{C}}$

$$
\underset{\mathbb{C}}{\substack{\left.\mathbb{C}\langle X\rangle, w, 1_{X^{*}}\right)}} \underset{\substack{\mathrm{Li}_{\bullet}}}{ } \mathbb{C}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}
$$

Exchangeable (rational) series

The power series S belongs to $\mathbb{C}_{\text {exc }}\langle X\rangle$, iff

$$
\begin{equation*}
\left(\forall u, v \in X^{*}\right)\left((\forall x \in X)\left(|u|_{x}=|v|_{x}\right) \Rightarrow\langle S \mid u\rangle=\langle S \mid v\rangle\right) \tag{8}
\end{equation*}
$$

We will note $\mathbb{C}_{\text {exc }}^{r a t}\langle X\rangle$, the set of exchangeable rational series i.e.

$$
\begin{equation*}
\mathbb{C}_{e x c}^{r a t}\langle X\rangle:=\mathbb{C}_{\text {exc }}\langle X\rangle \cap \mathbb{C}^{r a t}\langle X\rangle \tag{9}
\end{equation*}
$$

Lemma (D., HNM, Ngô, 2016)

(1) $\mathbb{C}_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle X\rangle\rangle:=\mathbb{C}^{\mathrm{rat}}\langle\langle X\rangle\rangle \cap \mathbb{C}_{\mathrm{exc}}\langle\langle X\rangle\rangle=\mathbb{C}^{\mathrm{rat}}\left\langle\left\langle x_{0}\right\rangle\right\rangle$ ш $\mathbb{C}^{\mathrm{rat}}\left\langle\left\langle x_{1}\right\rangle\right\rangle$.
(2) For any $x \in X$, from a theorem by Kronecker, one has $\mathbb{C}^{\text {rat }}\langle\langle x\rangle\rangle=\operatorname{span}_{\mathbb{C}}\left\{(a x)^{*} ш \mathbb{C}\langle x\rangle \mid a \in \mathbb{C}\right\}$ and

$$
\begin{equation*}
\left\{(a x)^{*} ш x^{n}\right\}_{(a, n) \in \mathbb{C} \times \mathbb{N}} \tag{10}
\end{equation*}
$$

is a basis of it. When restricted to $\left(\mathbb{C}^{*} \times \mathbb{N}\right) \cup\{(0,0)\}$ this family spans $\mathbb{C}_{\text {const }}^{r a t}\langle\langle x\rangle\rangle$ (fractions being constant at infinity)
(3) $\mathbb{C}\langle X\rangle$ ш $\mathbb{C}_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle \simeq \mathbb{C}\langle X\rangle \otimes_{\mathbb{C}} \mathbb{C}_{\text {const }}^{\text {rat }}\left\langle\left\langle x_{0}\right\rangle\right\rangle \otimes_{\mathbb{C}} \mathbb{C}_{\text {const }}^{\text {rat }}\left\langle\left\langle x_{1}\right\rangle\right\rangle$
(9) $\operatorname{Im}\left(\mathrm{Li}_{\bullet}^{(2)}\right)=\mathcal{C}_{\mathbb{C}}\left\{\operatorname{Li}_{w}\right\}_{w \in X^{*}}$.
(5) $\operatorname{ker}\left(\mathrm{Li}_{\bullet}^{(2)}\right)$ is the (shuffle) ideal generated by x_{0}^{*} ш $x_{1}^{*}-x_{1}^{*}+1_{X^{*}}$ (prospective).

Concluding remarks/1

(1) We have coded classical (and extended) polylogarithms with words obtaining a Noncommutative generating series which is a shuffle character
(2) This character can be extended by continuity to certain series forming a shuffle subalgebra of Noncommutative formal power series.
(3) We have found some remarkable subalgebras of $\operatorname{Dom}^{r a t}(\mathrm{Li})$, given their bases and described the kernel of the so extended Li .
(9) Definition of $\operatorname{Dom}(L i)$ and $D o m^{r a t}(L i)$ have to be refined and their exploration pushed further.
(3) Combinatorics of discrete Dyson integrals for various sets of differential forms has to be implemented

Concluding remarks/2

(0) Drinfeld-Kohno Lie algebras i.e. algebras presented by

$$
\begin{equation*}
D K(A ; k)=\left\langle A \times A ; \mathbf{R}_{\mathbf{A}}\right\rangle_{k-\text { Lie algebras }} \tag{11}
\end{equation*}
$$

with $\mathbf{R}_{\mathbf{A}}$, the relator

$$
\mathbf{R}_{\mathbf{A}}=\left\{\begin{align*}
(a, a) & =0 \text { for } a \in A \tag{12}\\
(a, b) & =(b, a) \text { for } a, b \in A \\
{[(a, c),(a, b)+(b, c)] } & =0 \text { for }|\{a, b, c\}|=3, \\
{[(a, b),(c, d)] } & =0 \text { for }|\{a, b, c, d\}|=4
\end{align*}\right.
$$

can be decomposed in several ways as a direct sum of Free Lie algebras giving rise to product of MRS factorisations

$$
\begin{equation*}
\chi=\prod_{I \in \mathcal{L} y n(X)}^{\searrow} e^{\chi\left(S_{I}\right) P_{I}} \tag{13}
\end{equation*}
$$

THANK YOU FOR YOUR ATTENTION!

[^0]: ${ }^{a}$ See CAP 2017

