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Multiplicity Automaton (Eilenberg, Schützenberger)

1

2 3

4

5

a|α1

b|α2

b|α3

c|α5

c|α7

a|α8

a|α9

c |α4

ν1

ν2

η1

η2

1 S. Eilenberg, Automata, Languages, and Machines (Vol. A) Acad. Press, New York,
1974
2 M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4
(1961), 245-270.
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Multiplicity automaton (linear representation) & behaviour

Linear representation

ν =
(
ν2 ν1 0 0 0

)
, η =

(
0 0 η1 0 η2

)T

µ(a) =


α9 α1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 α8
0 0 0 0 0

 µ(b) =


0 0 0 α2 0
0 0 α3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



µ(c) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 α5
0 0 0 0 α7
0 α4 0 0 0



Behaviour

A(w) = ν µ(w) η =
∑
i,j

states

ν(i)
(∑

weight(p)
)

︸ ︷︷ ︸
weight of all paths i© → j©

with label w

η(j)
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Operations and definitions on series

Addition, Scaling: as for functions because R〈〈X 〉〉 = RX∗

Concatenation: f .g(w) =
∑

w=uv f (u)g(v)
Polynomials: Series s.t. supp(f ) = {w}f (w) 6=0 is finite.
The set of polynomials will be denoted R〈X 〉.
Pairing: 〈S | P〉 =

∑
w∈X∗ S(w)P(w) (S series, P polynomial)

Summation:
∑

i∈I Si summable iff f or all w ∈ X ∗, i 7→ 〈Si | w〉 is finitely
supported. This corresponds to the product topology (with R discrete). In
particular, we have ∑

i∈I
Si :=

∑
w∈X∗

(
∑
i∈I
〈Si | w〉)w

Star: For all series S s.t. 〈S | 1X∗〉 = 0, the family (Sn)n≥0 is summable
and we set S∗ :=

∑
n≥0 S

n = 1 + S + S2 + · · · (= (1− S)−1).

Shifts: 〈u−1S | w〉 = 〈S | uw〉, 〈Su−1 | w〉 = 〈S | wu〉
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Rational series (Sweedler & Schützenberger)

Theorem A

Let S ∈ k〈〈X 〉〉 TFAE
i) The family (Su−1)u∈X∗ is of finite rank.
ii) The family (u−1S)u∈X∗ is of finite rank.
iii) The family (u−1Sv−1)u,v∈X∗ is of finite rank.
iv) It exists n ∈ N, λ ∈ k1×n, µ : X ∗ → kn×n (a multiplicative morphism)
and γ ∈ kn×1 such that, for all w ∈ X ∗

(S ,w) = λµ(w)γ (1)

v) The series S is in the closure of k〈X 〉 for (+, conc ,∗ ) within k〈〈X 〉〉.

Definition

A series which fulfill one of the conditions of Theorem A will be called
rational. The set of these series will be denoted by k rat〈〈X 〉〉.
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Sweedler’s duals

Remarks
1 (i ↔ iii) needs k to be a field.

2 (iv) needs X to be finite, (iv ↔ v) is known as the theorem of
Kleene-Schützenberger (M.P. Schützenberger, On the definition of a
family of automata, Inf. and Contr., 4 (1961), 245-270.)

3 For the sake of Combinatorial Physics (where the alphabets can be
infinite), (iv) has been extended to infinite alphabets and replaced by

iv’) The series S is in the rational closure of kX (linear series) within
k〈〈X 〉〉.

4 This theorem is linked to the following: Representative functions on
X ∗ (see Eichii Abe, Chari & Pressley), Sweedler’s duals &c.

5 In the vein of (v) expressions like ab∗ or identities like
(ab∗)∗a∗ = (a + b)∗ (Lazard’s elimination) will be called rational.
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From theory to practice: Schützenberger’s calculus

From series to automata

Starting from a series S , one has a way to construct an automaton
(finite-stated iff the series is rational) providing that we know how to
compute on shifts and one-letter-shifts will be sufficient due to the formula
u−1v−1S = (vu)−1S .

Calculus on rational expressions

In the following, x is a letter, E ,F are rational expressions (i.e. expressions
built from letters by scalings, concatenations and stars)

1 x−1 is (left and right) linear

2 x−1(E .F ) = x−1(E ).F + 〈E | 1X∗〉x−1(F )

3 x−1(E ∗) = x−1(E ).E ∗
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Examples

With (2a)∗(3b)∗ ; X = {a, b}

(2a)∗(3b)∗ (3b)∗

a|2

b|3

b|3

1

1

1

With (t2x0x1)∗ ; X = {x0, x1}

(t2x0x1)∗ tx1(t2x0x1)∗

x0|t

x1|t

1

1
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From theory to practice: construction starting from S .

States u−1S (constructed step by step)

Edges We shift every state by letters (length) level by level (knowing
that x−1(u−1S) = (ux)−1S). Two cases:
Returning state: The state is a linear combination of the already
created ones i.e. x−1(u−1S) =

∑
v∈F α(ux , v)v−1S (with F finite),

then we set the edges

u−1S
x |αv−→ v−1S

The created state is new: Then

u−1S
x |1−→ x−1(u−1S)

Input S with the weight 1

Outputs All states T with weight 〈T | 1X∗〉
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Link with conc-bialgebras (CAP 17)

We call here conc-bialgebras, structures such that
B = (k〈X 〉, conc , 1X∗ ,∆, ε) is a bialgebra and ∆(X ) ⊂ (k .X ⊕ k.1X∗)

⊗2.
For this, as k〈X 〉 is a free algebra, it suffices to define ∆ and check the
axioms on letters. Below, some examples

Shuffle: X is arbitrary ∆(x) = x ⊗ 1 + 1⊗ x and

∆(w) =
∑

I+J=[1···|w |]

w [I ]⊗ w [J]

Stuffle: Y = {yi}i≥1, ∆(yk) = yk ⊗ 1 + 1⊗ yk +
∑

i+j=k yi ⊗ yj
q-infiltration: X is arbitrary, ∆(x) = x ⊗ 1 + 1⊗ x + q x ⊗ x and

∆(w) =
∑

I∪J=[1···|w |]

q|I∩J|w [I ]⊗ w [J]
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Link with conc-bialgebras/2

In case ε(P) = 〈P | 1X∗〉a, the restricted (graded) dual is
B∨ = (k〈X 〉, ∗, 1X∗ ,∆conc , ε) and we can write, for x ∈ X

∆(x) = x ⊗ 1X∗ + 1X∗ ⊗ x + ∆+(x) (2)

then, the dual law ∗ (=t ∆) can be defined by recursion

w ∗ 1X∗ = 1X∗ ∗ w = w
au ∗ bv = a(u ∗ bv) + b(au ∗ v) + ϕ(a, b)(u ∗ v) (3)

where ϕ =t ∆+ : k.X ⊗ k .X → k .X is an associative law.

awhich covers all usual combinatorial cases, save Hadamard
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Some dual laws
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A useful property

Proposition B

Let B = (k〈X 〉, conc , 1X∗ ,∆, ε) be a conc-bialgebra, then

1 The space k rat〈X 〉 is closed by the convolution product � (here t∆)
given by

〈S � T | w〉 = 〈S ⊗ T | ∆(w)〉 (4)

2 If k is a Q-algebra and ∆+ : k .X → k .X ⊗ k .X cocommutative, B is
an enveloping algebra iff ∆+ is moderatea.

3 If, moreover k is without zero divisors, the characters (x∗)x∈X are
algebraically independant over (k〈X 〉, �, 1X∗) within (k〈〈X 〉〉, �, 1X∗).

aSee CAP 2017
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A useful property/2
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A useful property/3

Remark

Property (3) is no longer true if ∆ is not moderate. For example with the
Hadamard coproduct and x 6= y , one has y � (x)∗ = 0.

Examples

Shuffle: (αx)∗tt(βy)∗ = (αx + βy)∗

Stuffle: (αyi )
∗ (βyj)

∗ = (αyi + βyj + αβyi+j)
∗

q-infiltration: (αx)∗ ↑q (βy)∗ = (αx + βy + αβδx ,yx)∗

Hadamard: (αa)∗ � (βb)∗ = 1X∗ if a 6= b and (αa)∗ � (βa)∗ = (αβa)∗
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Starting the ladder

(C〈X 〉, tt , 1X∗) C{Liw}w∈X∗

(C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

Li•

Li
(1)
•

Domain of Li (definition)

In order to extend Li to series, we define Dom(Li ; Ω) (or Dom(Li)) if the
context is clear) as the set of series S =

∑
n≥0 Sn (decomposition by

homogeneous components) such that
∑

n≥0 LiSn(z) converges for the
compact convergence in Ω. One sets

LiS(z) :=
∑
n≥0

LiSn(z) (5)

Examples

Lix∗0 (z) = z , Lix∗1 (z) = (1− z)−1 ; Liαx∗0 +βx∗1
(z) = zα(1− z)−β
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Properties of the extended Li

Proposition

With this definition, we have

1 Dom(Li) is a shuffle subalgebra of C〈〈X 〉〉 and then so is
Domrat(Li) := Dom(Li) ∩ Crat〈〈X 〉〉

2 For S ,T ∈ Dom(Li), we have

LiSttT = LiS .LiT

Examples and counterexamples

For |t| < 1, one has (tx0)∗x1 ∈ Dom(Li ,D) (D is the open unit slit disc),
whereas x∗0x1 /∈ Dom(Li ,D).
Indeed, we have to examine the convergence of

∑
n≥0 Lixn0 x1(z), but, for

z ∈]0, 1[, one has 0 < z < Lixn0 x1(z) ∈ R and therefore, for these values∑
n≥0 Lixn0 x1(z) = +∞.
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Coefficients in the Ladder

(C〈X 〉, tt , 1X∗) C{Liw}w∈X∗

(C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

C〈X 〉 tt Crat〈〈x0〉〉 tt Crat〈〈x1〉〉 CC{Liw}w∈X∗

Li•

Li
(1)
•

Li
(2)
•

Were, for every additive subgroup (H,+) ⊂ (C,+), CH has been set to the
following subring of C

CH := C{zα(1− z)−β}α,β∈H . (6)

Examples

Lix∗0 (z) = z , Lix∗1 (z) = (1− z)−1 ; Liαx∗0 +βx∗1
(z) = zα(1− z)−β
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The arrow Li(1)
•

Proposition

i. The family {x∗0 , x∗1} is algebraically independent over (C〈X 〉, tt , 1X∗)
within (C〈〈X 〉〉rat, tt , 1X∗).

ii. (C〈X 〉, tt , 1X∗)[x∗0 , x
∗
1 , (−x0)∗] is a free module over C〈X 〉, the family

{(x∗0 )tt k tt(x∗1 )tt l}(k,l)∈Z×N is a C〈X 〉-basis of it.

iii. As a consequence, {w tt(x∗0 )tt k tt(x∗1 )tt l} w∈X∗
(k,l)∈Z×N

is a C-basis of it.

iv. Li
(1)
• is the unique morphism from (C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] to
H(Ω) such that

x∗0 → z , (−x0)∗ → z−1 and x∗1 → (1− z)−1

v. Im(Li
(1)
• ) = CZ{Liw}w∈X∗ .

vi. ker(Li
(1)
• ) is the (shuffle) ideal generated by x∗0 tt x

∗
1 − x∗1 + 1X∗ .
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Sketch of the proof for vi.

Let J be the ideal generated by x∗0 tt x
∗
1 − x∗1 + 1X∗ . It is easily checked,

from the following formulasa, for k ≥ 1,

w tt x∗0 tt(x∗1 )tt k ≡ w tt(x∗1 )tt k − w tt(x∗1 )tt k−1 [J ],
w tt(−x0)∗ tt(x∗1 )tt k ≡ w tt(−x0)∗ tt(x∗1 )tt k−1 + w tt(x∗1 )tt k [J ],

that one can rewrite [modJ ] any monomial w tt(x∗0 )tt l tt(x∗1 )tt k as a
linear combination of such monomials with kl = 0. Observing that the

image, through Li
(1)
• , of the following family is free in H(Ω)

{w tt(x∗1 )tt l tt(x∗0 )tt k}(w ,l ,k)∈(X∗×N×{0})t(X∗×{0}×Z) (7)

we get the result.

aIn the Figure below, (w , l , k) codes the element w tt(x∗0 )
tt l

tt(x∗1 )
tt k .
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(w, l, k)

©

k
·

·

(w,−l, k)

l
−l

/

.

(w, l − 1, k)

(w, l − 1, k − 1)

.

O

(w,−l + 1, k)

(w,−l, k − 1)

Figure: Rewriting mod J of {w tt(x∗0 )tt l tt(x∗1 )tt k}k∈N,l∈Z,w∈X∗ .
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End of the ladder: pushing coefficients to CC

(C〈X 〉, tt , 1X∗) C{Liw}w∈X∗

(C〈X 〉, tt , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

C〈X 〉 tt Crat〈〈x0〉〉 tt Crat〈〈x1〉〉 CC{Liw}w∈X∗

Li•

Li
(1)
•

Li
(2)
•

Exchangeable (rational) series

The power series S belongs to Cexc〈X 〉, iff

(∀u, v ∈ X ∗)((∀x ∈ X )(|u|x = |v |x) ⇒ 〈S |u〉 = 〈S |v〉). (8)

We will note Crat
exc〈X 〉, the set of exchangeable rational series i.e.

Crat
exc〈X 〉 := Cexc〈X 〉 ∩ Crat〈X 〉 (9)
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Lemma (D., HNM, Ngô, 2016)

1 Crat
exc〈〈X 〉〉 := Crat〈〈X 〉〉

⋂
Cexc〈〈X 〉〉 = Crat〈〈x0〉〉 tt Crat〈〈x1〉〉.

2 For any x ∈ X , from a theorem by Kronecker, one has
Crat〈〈x〉〉 = spanC{(ax)∗ tt C〈x〉|a ∈ C} and

{(ax)∗ tt xn}(a,n)∈C×N (10)

is a basis of it. When restricted to (C∗ × N) ∪ {(0, 0)} this family
spans Crat

const〈〈x〉〉 (fractions being constant at infinity)

3 C〈X 〉 tt Crat
exc〈〈X 〉〉 ' C〈X 〉 ⊗C Crat

const〈〈x0〉〉 ⊗C Crat
const〈〈x1〉〉

4 Im(Li
(2)
• ) = CC{Liw}w∈X∗ .

5 ker(Li
(2)
• ) is the (shuffle) ideal generated by x∗0 tt x

∗
1 − x∗1 + 1X∗

(prospective).
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Concluding remarks/1

1 We have coded classical (and extended) polylogarithms with words
obtaining a Noncommutative generating series which is a shuffle
character

2 This character can be extended by continuity to certain series forming
a shuffle subalgebra of Noncommutative formal power series.

3 We have found some remarkable subalgebras of Domrat(Li), given
their bases and described the kernel of the so extended Li•.

4 Definition of Dom(Li) and Domrat(Li) have to be refined and their
exploration pushed further.

5 Combinatorics of discrete Dyson integrals for various sets of
differential forms has to be implemented
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Concluding remarks/2

6 Drinfeld-Kohno Lie algebras i.e. algebras presented by

DK (A; k) = 〈A× A ; RA 〉 k−Lie algebras (11)

with RA, the relator

RA =


(a, a) = 0 for a ∈ A
(a, b) = (b, a) for a, b ∈ A

[(a, c), (a, b) + (b, c)] = 0 for |{a, b, c}| = 3,
[(a, b), (c , d)] = 0 for |{a, b, c , d}| = 4

(12)

can be decomposed in several ways as a direct sum of Free Lie algebras
giving rise to product of MRS factorisations

χ =

↘∏
l∈Lyn(X )

eχ(Sl ) Pl (13)
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THANK YOU FOR YOUR ATTENTION !
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