Combinatorics of characters and continuation of Li.

V.C. Bùi, <u>G.H.E. Duchamp</u>, Hoang Ngoc Minh, Q.H. Ngô et al. Collaboration at various stages of the work and in the framework of the Project *Evolution Equations in Combinatorics and Physics* : N. Behr, K. A. Penson, C. Tollu.

> CIP-CALIN, 18 juin 2019

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 1 / 28

イロト イポト イヨト イヨト

Plan

 Plan
 Multiplicity
 Automaton (Eilenberg, Schützenberger)
 Multiplicity
 automaton (linear representation) & behaviour
 Operations and

definitions on series

6 Rational series (Sweedler & Schützenberger)

- 7 Sweedler's duals
- 8 From theory to

practice: Schützenberger's calculus 9 Examples From theory to 10 practice: construction starting from S. Link with 11 conc-bialgebras (CAP 17)12 I ink with conc-bialgebras/2 Some dual laws 13 14 A useful property 15 A useful

property/2 16 A useful property/3 Properties of the 18 extended Li The arrow $Li^{(1)}$ 20 Sketch of the 21 proof for vi. 23 End of the ladder: pushing coefficients to $\mathcal{C}_{\mathbb{C}}$ 25 Concluding remarks/1 26 Concluding remarks/2

CIP-CALIN, 18 juin 2019 2 / 28

Multiplicity Automaton (Eilenberg, Schützenberger)

1 S. Eilenberg, Automata, Languages, and Machines (Vol. A) Acad. Press, New York, 1974

2 M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4 (1961), 245-270.

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 3 / 28

Multiplicity automaton (linear representation) & behaviour

Linear representation

Behaviour

$$\mathcal{A}(w) = \nu \, \mu(w) \, \eta = \sum_{\substack{i,j \\ \text{states}}} \nu(i) \underbrace{\left(\sum_{\substack{w \in ight(p) \\ w \in ight \text{ of all paths }(1) \\ with \text{ label } w}} \eta(j)$$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation

Operations and definitions on series

Addition, Scaling: as for functions because $R\langle\langle X \rangle\rangle = R^{X^*}$ Concatenation: $f.g(w) = \sum_{w=uv} f(u)g(v)$ Polynomials: Series s.t. $supp(f) = \{w\}_{f(w) \neq 0}$ is finite. The set of polynomials will be denoted $R\langle X \rangle$. Pairing: $\langle S | P \rangle = \sum_{w \in X^*} S(w)P(w)$ (S series, P polynomial) Summation: $\sum_{i \in I} S_i$ summable iff f or all $w \in X^*$, $i \mapsto \langle S_i | w \rangle$ is finitely supported. This corresponds to the product topology (with R discrete). In particular, we have

$$\sum_{i\in I} S_i := \sum_{w\in X^*} (\sum_{i\in I} \langle S_i \mid w \rangle) w$$

Star: For all series *S* s.t. $\langle S \mid 1_{X^*} \rangle = 0$, the family $(S^n)_{n \ge 0}$ is summable and we set $S^* := \sum_{n \ge 0} S^n = 1 + S + S^2 + \cdots = (1 - S)^{-1}$. **Shifts**: $\langle u^{-1}S \mid w \rangle = \langle S \mid uw \rangle$, $\langle Su^{-1} \mid w \rangle = \langle S \mid wu \rangle$

Rational series (Sweedler & Schützenberger)

Theorem A

Let $S \in k\langle\!\langle X \rangle\!\rangle$ TFAE i) The family $(Su^{-1})_{u \in X^*}$ is of finite rank. ii) The family $(u^{-1}S)_{u \in X^*}$ is of finite rank. iii) The family $(u^{-1}Sv^{-1})_{u,v \in X^*}$ is of finite rank. iv) It exists $n \in \mathbb{N}$, $\lambda \in k^{1 \times n}$, $\mu : X^* \to k^{n \times n}$ (a multiplicative morphism) and $\gamma \in k^{n \times 1}$ such that, for all $w \in X^*$

$$(S, w) = \lambda \mu(w) \gamma \tag{1}$$

6 / 28

v) The series S is in the closure of $k\langle X \rangle$ for (+, conc, *) within $k\langle\!\langle X \rangle\!\rangle$.

Definition

A series which fulfill one of the conditions of Theorem A will be called *rational*. The set of these series will be denoted by $k^{rat}\langle\langle X \rangle\rangle$.

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019

Sweedler's duals

Remarks

• (i \leftrightarrow iii) needs k to be a field.

- (iv) needs X to be finite, (iv ↔ v) is known as the theorem of Kleene-Schützenberger (M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4 (1961), 245-270.)
- For the sake of Combinatorial Physics (where the alphabets can be infinite), (iv) has been extended to infinite alphabets and replaced by iv') The series S is in the rational closure of k^X (linear series) within k((X)).
- This theorem is linked to the following: Representative functions on X* (see Eichii Abe, Chari & Pressley), Sweedler's duals &c.
- In the vein of (v) expressions like ab^* or identities like $(ab^*)^*a^* = (a+b)^*$ (Lazard's elimination) will be called rational.

From series to automata

Starting from a series S, one has a way to construct an automaton (finite-stated iff the series is rational) providing that we know how to compute on shifts and one-letter-shifts will be sufficient due to the formula $u^{-1}v^{-1}S = (vu)^{-1}S$.

Calculus on rational expressions

In the following, x is a letter, E, F are rational expressions (i.e. expressions built from letters by scalings, concatenations and stars)

•
$$x^{-1}$$
 is (left and right) linear

2
$$x^{-1}(E.F) = x^{-1}(E).F + \langle E \mid 1_{X^*} \rangle x^{-1}(F)$$

3
$$x^{-1}(E^*) = x^{-1}(E).E^*$$

CIP-CALIN, 18 juin 2019 8 / 28

8/28

2

イロト 不得下 イヨト イヨト

Examples

With $(t^2 x_0 x_1)^*$; $X = \{x_0, x_1\}$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation

From theory to practice: construction starting from S.

- **States** $u^{-1}S$ (constructed step by step)
- Edges We shift every state by letters (length) level by level (knowing that $x^{-1}(u^{-1}S) = (ux)^{-1}S$). Two cases: Returning state: The state is a linear combination of the already created ones i.e. $x^{-1}(u^{-1}S) = \sum_{v \in F} \alpha(ux, v)v^{-1}S$ (with F finite), then we set the edges

$$u^{-1}S \xrightarrow{x|\alpha_v} v^{-1}S$$

The created state is new: Then

$$u^{-1}S \xrightarrow{x|1} x^{-1}(u^{-1}S)$$

• Input *S* with the weight 1

• **Outputs** All states T with weight $\langle T \mid 1_{X^*} \rangle$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation

Link with conc-bialgebras (CAP 17)

We call here conc-bialgebras, structures such that $\mathcal{B} = (k\langle X \rangle, conc, 1_{X^*}, \Delta, \epsilon)$ is a bialgebra and $\Delta(X) \subset (k.X \oplus k.1_{X^*})^{\otimes 2}$. For this, as $k\langle X \rangle$ is a free algebra, it suffices to define Δ and check the axioms on letters. Below, some examples

Shuffle: X is arbitrary $\Delta(x) = x \otimes 1 + 1 \otimes x$ and

$$\Delta(w) = \sum_{I+J=[1\cdots|w|]} w[I] \otimes w[J]$$

Stuffle: $Y = \{y_i\}_{i \ge 1}$, $\Delta(y_k) = y_k \otimes 1 + 1 \otimes y_k + \sum_{i+j=k} y_i \otimes y_j$ *q*-infiltration: X is arbitrary, $\Delta(x) = x \otimes 1 + 1 \otimes x + q \times x$ and

$$\Delta(w) = \sum_{I \cup J = [1 \cdots |w|]} q^{|I \cap J|} w[I] \otimes w[J]$$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019

11 / 28

In case $\epsilon(P) = \langle P \mid 1_{X^*} \rangle^a$, the restricted (graded) dual is $\mathcal{B}^{\vee} = (k \langle X \rangle, *, 1_{X^*}, \Delta_{conc}, \epsilon)$ and we can write, for $x \in X$

$$\Delta(x) = x \otimes 1_{X^*} + 1_{X^*} \otimes x + \Delta_+(x) \tag{2}$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

then, the dual law $* (=^t \Delta)$ can be defined by recursion

$$w * 1_{X^*} = 1_{X^*} * w = w$$

au * bv = a(u * bv) + b(au * v) + $\varphi(a, b)(u * v)$ (3)

where $\varphi = {}^t \Delta_+ : k.X \otimes k.X \to k.X$ is an associative law.

^awhich covers all usual combinatorial cases, save Hadamard

Some dual laws

Name	Formula (recursion)	φ	Type
Shuffle [21]	$au \sqcup bv = a(u \sqcup bv) + b(au \sqcup v)$	$\varphi \equiv 0$	Ι
Stuffle [19]	$x_i u \sqcup x_j v = x_i (u \sqcup x_j v) + x_j (x_i u \sqcup v)$	$\varphi(x_i, x_j) = x_{i+j}$	Ι
	$+ x_{i+j}(u \sqcup v)$		
Min-stuffle [7]	$x_i u = x_j v = x_i (u = x_j v) + x_j (x_i u = v)$	$\varphi(x_i, x_j) = -x_{i+j}$	III
	$-x_{i+j}(u = v)$		
Muffle [14]	$x_i u \sqcup x_j v = x_i (u \sqcup x_j v) + x_j (x_i u \sqcup v)$	$\varphi(x_i, x_j) = x_{i \times j}$	I
	$+ x_{i \times j}(u \sqcup v)$		
q-shuffle [3]	$x_i u \pm {}_q x_j v = x_i (u \pm {}_q x_j v) + x_j (x_i u \pm {}_q v)$	$\varphi(x_i, x_j) = q x_{i+j}$	III
	$+ q x_{i+j}(u \sqcup q v)$		
q-shuffle ₂	$x_i u \bowtie_q x_j v = x_i (u \bowtie_q x_j v) + x_j (x_i u \bowtie_q v)$	$\varphi(x_i, x_j) = q^{i \cdot j} x_{i+j}$	II
	$+ q^{i.j} x_{i+j} (u \bowtie_q v)$		
$LDIAG(1, q_s)$ [10]			
(non-crossed,	$au \sqcup bv = a(u \sqcup bv) + b(au \sqcup v)$	$\varphi(a,b) = q_s^{ a b }(a.b)$	II
non-shifted)	$+ q_s^{ a b } a.b(u \sqcup v)$		
q-Infiltration [12]	$au \uparrow bv = a(u \uparrow bv) + b(au \uparrow v)$	$\varphi(a,b) = q\delta_{a,b}a$	III
	$+ q\delta_{a,b}a(u \uparrow v)$		
AC-stuffle	$au \sqcup_{\varphi} bv = a(u \sqcup_{\varphi} bv) + b(au \sqcup_{\varphi} v)$	$\varphi(a, b) = \varphi(b, a)$	IV
	$+\varphi(a,b)(u \sqcup_{\varphi} v)$	$\varphi(\varphi(a, b), c) = \varphi(a, \varphi(b, c))$	
Semigroup-	$x_t u \sqcup_{\perp} x_s v = x_t (u \sqcup_{\perp} x_s v) + x_s (x_t u \sqcup_{\perp} v)$	$\varphi(x_t, x_s) = x_{t\perp s}$	Ι
stuffle	$+ x_{t\perp s}(u \sqcup_{\perp} v)$		
φ -shuffle	$au \sqcup_{\varphi} bv = a(u \sqcup_{\varphi} bv) + b(au \sqcup_{\varphi} v)$	$\varphi(a, b)$ law of AAU	V
	$+ \varphi(a,b)(u \sqcup_{\varphi} v)$		

Of course, the q-shuffle is equal to the (classical) shuffle when q = 0. As for the q-infiltration when q = 1 one recovers the infiltration product defined in [6]

か q C 13/28

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation

Proposition B

Let $\mathcal{B} = (k\langle X \rangle, \textit{conc}, 1_{X^*}, \Delta, \epsilon)$ be a conc-bialgebra, then

The space k^{rat} (X) is closed by the convolution product ◊ (here ^tΔ) given by

$$\langle S \diamond T \mid w \rangle = \langle S \otimes T \mid \Delta(w) \rangle$$
 (4)

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

- ② If k is a \mathbb{Q} -algebra and Δ_+ : $k.X \rightarrow k.X \otimes k.X$ cocommutative, \mathcal{B} is an enveloping algebra iff Δ_+ is moderate^a.
- If, moreover k is without zero divisors, the characters (x*)_{x∈X} are algebraically independant over (k⟨X⟩, ◊, 1_{X*}) within (k⟨X⟩, ◊, 1_{X*}).

^aSee CAP 2017

A useful property/2

5

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation

CIP-CALIN, 18 juin 2019 15 / 28

A useful property/3 $% \left(A_{1}^{2}\right) =0$

Remark

Property (3) is no longer true if Δ is not moderate. For example with the Hadamard coproduct and $x \neq y$, one has $y \odot (x)^* = 0$.

Examples

Shuffle:
$$(\alpha x)^* \sqcup (\beta y)^* = (\alpha x + \beta y)^*$$

Stuffle: $(\alpha y_i)^* \sqcup (\beta y_j)^* = (\alpha y_i + \beta y_j + \alpha \beta y_{i+j})^*$
q-infiltration: $(\alpha x)^* \uparrow_q (\beta y)^* = (\alpha x + \beta y + \alpha \beta \delta_{x,y} x)^*$
Hadamard: $(\alpha a)^* \odot (\beta b)^* = 1_{X^*}$ if $a \neq b$ and $(\alpha a)^* \odot (\beta a)^* = (\alpha \beta a)^*$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 16 / 28

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E り < ○ 16/28

Starting the ladder

Domain of Li (definition)

In order to extend Li to series, we define $Dom(Li; \Omega)$ (or Dom(Li)) if the context is clear) as the set of series $S = \sum_{n \ge 0} S_n$ (decomposition by homogeneous components) such that $\sum_{n \ge 0} Li_{S_n}(z)$ converges for the compact convergence in Ω . One sets

$$Li_{S}(z) := \sum_{n \ge 0} Li_{S_n}(z)$$
(5)

Examples

$$Li_{x_0^*}(z) = z, \ Li_{x_1^*}(z) = (1-z)^{-1}; \ Li_{\alpha x_0^* + \beta x_1^*}(z) = z^{\alpha}(1-z)^{-\beta}$$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 17 / 28

Properties of the extended Li

Proposition

With this definition, we have

- Dom(Li) is a shuffle subalgebra of C(⟨X⟩⟩ and then so is Dom^{rat}(Li) := Dom(Li) ∩ C^{rat}⟨⟨X⟩⟩
- **2** For $S, T \in Dom(Li)$, we have

$$\operatorname{Li}_{S \sqcup J} T = \operatorname{Li}_S . \operatorname{Li}_T$$

Examples and counterexamples

For |t| < 1, one has $(tx_0)^* x_1 \in Dom(Li, D)$ (*D* is the open unit slit disc), whereas $x_0^* x_1 \notin Dom(Li, D)$. Indeed, we have to examine the convergence of $\sum_{n\geq 0} \operatorname{Li}_{x_0^n x_1}(z)$, but, for $z \in]0, 1[$, one has $0 < z < \operatorname{Li}_{x_0^n x_1}(z) \in \mathbb{R}$ and therefore, for these values $\sum_{n\geq 0} \operatorname{Li}_{x_0^n x_1}(z) = +\infty$.

Coefficients in the Ladder

Were, for every additive subgroup $(H, +) \subset (\mathbb{C}, +)$, C_H has been set to the following subring of \mathbb{C}

$$\mathcal{C}_{H} := \mathbb{C}\{z^{\alpha}(1-z)^{-\beta}\}_{\alpha,\beta\in H}.$$
(6)

Examples

$$Li_{x_0^*}(z) = z, \ Li_{x_1^*}(z) = (1-z)^{-1}; \ Li_{lpha x_0^* + eta x_1^*}(z) = z^lpha (1-z)^{-eta}$$

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 19 / 28

The arrow $Li^{(1)}_{\bullet}$

Proposition

- i. The family $\{x_0^*, x_1^*\}$ is algebraically independent over $(\mathbb{C}\langle X \rangle, \sqcup, 1_{X^*})$ within $(\mathbb{C}\langle\!\langle X \rangle\!\rangle^{\mathrm{rat}}, \sqcup, 1_{X^*})$.
- ii. $(\mathbb{C}\langle X \rangle, \sqcup, 1_{X^*})[x_0^*, x_1^*, (-x_0)^*]$ is a free module over $\mathbb{C}\langle X \rangle$, the family $\{(x_0^*)^{\sqcup \sqcup \ k} \sqcup (x_1^*)^{\sqcup \sqcup \ l}\}_{(k,l) \in \mathbb{Z} \times \mathbb{N}}$ is a $\mathbb{C}\langle X \rangle$ -basis of it.
- iii. As a consequence, $\{w \sqcup (x_0^*)^{\sqcup \sqcup k} \sqcup (x_1^*)^{\sqcup \sqcup l}\}_{\substack{w \in X^* \\ (k,l) \in \mathbb{Z} \times \mathbb{N}}}$ is a \mathbb{C} -basis of it.
- iv. $\operatorname{Li}_{\bullet}^{(1)}$ is the unique morphism from $(\mathbb{C}\langle X \rangle, \dots, 1_{X^*})[x_0^*, (-x_0)^*, x_1^*]$ to $\mathcal{H}(\Omega)$ such that

$$x_0^*
ightarrow z, \ (-x_0)^*
ightarrow z^{-1}$$
 and $x_1^*
ightarrow (1-z)^{-1}$

v.
$$\operatorname{Im}(\operatorname{Li}_{\bullet}^{(1)}) = \mathcal{C}_{\mathbb{Z}}\{\operatorname{Li}_{w}\}_{w \in X^{*}}.$$

vi. $\operatorname{ker}(\operatorname{Li}_{\bullet}^{(1)})$ is the (shuffle) ideal generated by $x_{0}^{*} \sqcup x_{1}^{*} - x_{1}^{*} + 1_{X^{*}}.$

Sketch of the proof for vi.

Let \mathcal{J} be the ideal generated by $x_0^* \sqcup x_1^* - x_1^* + 1_{X^*}$. It is easily checked, from the following formulas^a, for $k \ge 1$,

$$\begin{array}{rcl} w \sqcup x_0^* \sqcup (x_1^*)^{\sqcup \ k} &\equiv & w \sqcup (x_1^*)^{\sqcup \ k} - w \sqcup (x_1^*)^{\sqcup \ k-1} \ [\mathcal{J}], \\ w \sqcup (-x_0)^* \sqcup (x_1^*)^{\sqcup \ k} &\equiv & w \sqcup (-x_0)^* \sqcup (x_1^*)^{\sqcup \ k-1} + w \sqcup (x_1^*)^{\sqcup \ k} \ [\mathcal{J}], \end{array}$$

that one can rewrite $[\mod \mathcal{J}]$ any monomial $w \sqcup (x_0^*)^{\sqcup l} \sqcup (x_1^*)^{\sqcup l} k$ as a linear combination of such monomials with kl = 0. Observing that the image, through $\operatorname{Li}_{\bullet}^{(1)}$, of the following family is free in $\mathcal{H}(\Omega)$

$$\{w \sqcup (x_1^*)^{\sqcup l} \sqcup (x_0^*)^{\sqcup l} k\}_{(w,l,k) \in (X^* \times \mathbb{N} \times \{0\}) \sqcup (X^* \times \{0\} \times \mathbb{Z})}$$
(7)

we get the result.

all the Figure below, (w, I, k) codes the element $w \sqcup (x_0^*)^{\sqcup I} \sqcup (x_1^*)^{\sqcup I} k$.

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 21 / 28

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 22 / 28

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ @ 22/28

End of the ladder: pushing coefficients to $\mathcal{C}_{\mathbb{C}}$

Exchangeable (rational) series

The power series S belongs to $\mathbb{C}_{exc}\langle X \rangle$, iff

$$(\forall u, v \in X^*)((\forall x \in X)(|u|_x = |v|_x) \Rightarrow \langle S|u \rangle = \langle S|v \rangle).$$
 (8)

We will note $\mathbb{C}_{exc}^{rat}\langle X \rangle$, the set of exchangeable rational series i.e.

$$\mathbb{C}_{exc}^{rat}\langle X\rangle := \mathbb{C}_{exc}\langle X\rangle \cap \mathbb{C}^{rat}\langle X\rangle \tag{9}$$

Lemma (D., HNM, Ngô, 2016)

2 For any $x \in X$, from a theorem by Kronecker, one has $\mathbb{C}^{\operatorname{rat}}\langle\!\langle x \rangle\!\rangle = \operatorname{span}_{\mathbb{C}}\{(ax)^* \sqcup \mathbb{C}\langle x \rangle| a \in \mathbb{C}\}$ and

$$\{(ax)^* \sqcup x^n\}_{(a,n) \in \mathbb{C} \times \mathbb{N}}$$

$$(10)$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

is a basis of it. When restricted to $(\mathbb{C}^* \times \mathbb{N}) \cup \{(0,0)\}$ this family spans $\mathbb{C}_{const}^{rat}\langle\langle x \rangle\rangle$ (fractions being constant at infinity)

$$Im(\mathrm{Li}_{\bullet}^{(2)}) = \mathcal{C}_{\mathbb{C}}\{\mathrm{Li}_w\}_{w \in X^*}.$$

Ser(Li_•⁽²⁾) is the (shuffle) ideal generated by x₀^{*} □ x₁^{*} - x₁^{*} + 1_{X*} (prospective).

$Concluding \ remarks/1$

- We have coded classical (and extended) polylogarithms with words obtaining a Noncommutative generating series which is a shuffle character
- This character can be extended by continuity to certain series forming a shuffle subalgebra of Noncommutative formal power series.
- We have found some remarkable subalgebras of Dom^{rat}(Li), given their bases and described the kernel of the so extended Li_•.
- Objective Definition of Dom(Li) and Dom^{rat}(Li) have to be refined and their exploration pushed further.
- Ombinatorics of discrete Dyson integrals for various sets of differential forms has to be implemented

イロト 不良 トイヨト イヨト

크

Concluding remarks/2

Orinfeld-Kohno Lie algebras i.e. algebras presented by

$$DK(A; k) = \langle A \times A; \mathbf{R}_{\mathbf{A}} \rangle_{k-\text{Lie algebras}}$$
 (11)

with $\boldsymbol{R}_{\boldsymbol{A}},$ the relator

$$\mathbf{R}_{\mathbf{A}} = \begin{cases} (a, a) = 0 \text{ for } a \in A \\ (a, b) = (b, a) \text{ for } a, b \in A \\ [(a, c), (a, b) + (b, c)] = 0 \text{ for } |\{a, b, c\}| = 3, \\ [(a, b), (c, d)] = 0 \text{ for } |\{a, b, c, d\}| = 4 \end{cases}$$
(12)

can be decomposed in several ways as a direct sum of Free Lie algebras giving rise to product of MRS factorisations

$$\chi = \prod_{l \in \mathcal{L}yn(X)}^{\searrow} e^{\chi(S_l) P_l}$$
(13)

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 26 / 28

THANK YOU FOR YOUR ATTENTION !

V.C. Bùi, G.H.E. Duchamp, Hoang Ngoc MinCombinatorics of characters and continuation CIP-CALIN, 18 juin 2019 28 / 28

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □