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INTRODUCTION
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Picard-Vessiot theory of ordinary differential equation

(k,0) a commutative differential ring without zero divisors.
Const(k) = {c € k|0c = 0} is supposed to be a field.
(ODE) (2,0" +a, 10"+ ... +a))y =0, ag,...,an_1,an € k.

a1 is supposed to exist.

Definition 1
1. Let yi,..., ¥y, be Const(k)-linearly independent solutions of (ODE).

Then {y1,...,¥n} is called a fundamental set of solutions of (ODE)
and it generates a Const(k)-vector subspace of dimension at most n.

2. IfY M =k{y1,...,y,} and Const(M) = Const(k) then M is called
a Picard-Vessiot extension related to (ODE)

3. Let k C K; and k C K; be differential rings. An isomorphism of
rings o : K; — K is a differential k-isomorphism if
Vae Ky, 09(o(a)) =o0(da) and, if a €k, o(a) = a.
If K; = K; =K, the differential galois group of K over k is by
Gal(K) = {o|o is a differential k-automorphism of K}.
1. Let Ri, R> be differential rings s.t. Ry C R». Let S be a subset of R;.
R:1{S} denotes the smallest differential subring of R containing R.
R1{S} is the ring (over R;) generated by S and their derivatives of all orders.
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Linear differential equations and Dyson series
Let ag,...,an € C(2), (an(2)0" + ...+ a1(2)0 + ao(2))y(z) = 0.

9q(z) = Al2)q(z),  Alz) € My(C(2)),
(ED) q(ZO) = n, A€ Ml n( )
y(z) = Xq(2), n € Mpi(C).

By successive Picard iterations, with the initial point q(z) = 7, we get?
y(2) = AU(z0; z)n, where U(zy; z) is the following functional expansion
z V4

U(z0; 2) = Z/ A(zl)dzl/ 1 A(z)dzy . .. /Zki1 A(zx)dzk,(Dyson series)

kZO p) p) po)
and (2,21 ..., 2k, 2) is a subdivision of the path of integration z5 ~~ z.
In order to find the matrix Q(z; z) s.t.
"z
U(zo; z) = exp[Q(z0; 2)] = Texp/ A(s)ds, (Feynman's notation)

20

Magnus computed Q(zp; z) as limit of the following Lie-integral-functionals
Qi(z0;2) = / A(z)ds,
E)

Qu(z:2) = / ") + [A(2), e 1(20:5)]/2
+H[[A(2), Qk—1(20; 5)], Q—1(20; 5)] /12 + .. .)ds.

2. Subject to convergence.
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Fuchsian linear differential equations
Let Q be a simply connected domain and #(2) be the ring of holomorphic
functions over Q (with 1y q) as neutral element). Let us consider, here,

o = {si}i=o,.,m,m > 1, as set of simple poles of (ED) and Q = ((/I_i/a.

B M, € Mn,n((c)a
N Z Miui(z),  where { u(z) =(z—-s)"' €C(2).

da(z) = (gmui(z))q(z)

q(2) = m,
yz) = Aq(2)
Let X* be the set of words over X = {xo,...,xn} and
aZ @ M C(X) ® C(X) = M, ,(H(Q))
(zo ~ z is the path of integration previously introduced) s.t
M(lx*) = Id, and ./\/l(X,'1 < -X,'k) = Mi1 ... M;

I
z dZ]_ Zk—1 de
Z(1y-)=1 d Zz e X, ) = .
az()( X ) H(Q) an azo(xl Xk) /Z0 71 — S, 10 ZKk — S,
Then3 () >\U(Zo, z)n with
)= 3 M) = (M) 3 wow

weX* weX*
3. Subject to convergence.

(ED)
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Examples of linear dynamical systems

Example 2 (Hypergeometric equation)
Let ty, t1, to be parameters and

z(1 - 2)y(z) + [t — (to + t1 + 1)z]y(2) — tot1y(2) = 0.
Let g1(z) = —y(z) and ga2(z) = (1 — z)y(z). Hence, one has

@ -0 0 (%)

and :
(66) (M 1) (042
~ (wlz )Mo+u1(Z)M1) 328 ’
where uo( )= (- "

0 1
<tot1 ) and - M, = (0 ty — to — t1> '
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Nonlinear differential equations

da(z) = (zmj Tia)ul2)) @),

(NED)
q(z) = Qo
y(z) = f(q(2)),
where
> u; € (k, 3),
> the state ¢ = (g1, ..., gn) belongs the complex analytic manifold @

of dimension n and qq is the initial state,
» the observation f € O, with O the ring of analytic functions over Q,
» fori=0.1,T; = (T}(q)@/@ql + -+ T"(q)0/0qm) is an analytic
vector field over Q,with T/(q) € O,for j=1,...,n.
With X and o given as previously, let the morphism 7 be defined by
T(lx-)=TId and 7(x; - x;,) =Ty ... Tj,. Then* y(z2) =T o flq With
T = Z T(w)aZ (w) = (T ® ag) Z w® w.

weX* weX*

4. Subject to convergence.
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Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let ki, ko be parameters and 9%y(z) + kiy(z) + kay?(z) = u1(2)
which can be represented by the following state equations (with n = 1)

y(z) = q(2),
9q(z) = Ao(q)uo(z) + Ar(q)ur(2), 5
where Ay = —(k1q+k2q2)a—q and A} = TR

Example 4 (Duffing equation)

Let a, b, ¢ be parameters and 92y(z) + ady(z) + by(z) + cy*(z) = n1(2)

which can be represented by the following state equations (with n = 2)
y(z) = al2),

<gg;8> B < (aqz+gqu+cq1)> O(ZH((D u(z)
Ao(q)uo(2) + Ar(q)u(2), )

where Ay = (aq2+b2q14—cq1)a—+q281 and A; = e

9/42



Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)
Let v, g be parameters and

0?x(2) — Y[1 + x(2)?]0x(z) + x(z) = g cos(wz)

which can be tranformed into (with C is some constant of integration)
z

Ox(z) = v[1 + x(2)?/3]x(z) — / x(s)ds + » sm(wz) + C.
Supposing x = dy and u1(z) = gsin(wz)/w + C, it leads then to
0%y(z) = 710y(2) + (9y(2))*/3] + y(2) + wi(2)

which can be represented by the following state equations (with n = 2)
y(z) = a(2),

@Z;g;) - (7(‘72 s P, ) o(2) + (?) u(2)
= Ao(q)uo(z) + A(q)ui(2),

)
where Ay = + 3) + + = .
0 V(g2 + g3/3) ql] ® 50 90
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DUAL LAWS AND REPRESENTATIVE SERIES
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Dual law in bialgebra
Startting with a k — AAU (k is a ring) A. Dualizing i : A®x A — A, we
get the transpose ‘1 : AY — (A ®k A)Y so that we do not get a
co-multiplication in general.

» Remark that when k is a field, the following arrow is into (due to
the fact that A" ®x A" is torsionfree)
S AY @ A — (A A)Y.

» One restricts the codomain of ti to AY ®x AV and then the domain
o (fp)1e(AY @k AY) =: A°.

t

AY - (A @k A)Y
can] A ]\(p

A° . AY @ A
can]\ ]\J@j

A = A° @y A°

The descent can stop at first step for a field k and then A4°° = A°.
The coalgebra (A°, A,) is called the Sweedler's dual of (A, p).
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Case of algebras noncommutative series
> X denotes the ordered alphabets Y := {yi}x>1 or X 1= {xo,x1}.

On the free monoid (X*, conc, 1 v+ ), we use the correspondences

s1—1 s—1 Y
XXX X1€X*X1ﬂ‘—*ysl...ys,EY*H(sl,...,sr)ENi.
X

Let LynX denote the set of Lyndon words generated by X.

> Let (Liea(X)),[]) and (A{X)), conc) (resp. (Liea(X),[.]) and
(A(X), conc)) denote the algebras of (Lie) series (resp.
polynomials) with coefficients in the ring A, over X.
{Pi}ticcynx (resp. {[1;}iccyny) is a basis of Lie algebra of primitive
elements and {S/}cyny (resp. {X}iccyny) is a transcendence
basis of (A(X), w ,1yx) (resp. (A(Y), w, 1y-)).
> H ., (X):=(A(X), conc,1y+, A, ,e) and
H s (V) := (A(Y),conc, 1y, A, e) with® (for x € X,y; € Y)
A,x = xQ@1lys+ 1y ®x,
Awy, = Yi@ly-+1y=-Qy+ > i Yk @y
» The dual law associated to conc is defined, for w € X*, by
A B (W) = Zu,vGX*,uv:w uv.
5. Or equivalently, for x,y € X,yi,y; € Y and u,v € X (resp. Y*),
uw 1y =1x» wu=uwvand xuw yv = x(uw yv)+ y(xu w v),

Ut lys = 1y« wu = u and xjuw yjv = yi(u = yv) +yi(yviv e v) + yiaj(u e v),
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Dualizable laws in conc-shuffle bialgebras (1/2)
We can exploit the basis of words as follows
1. Any bilinear law (shuffle, stuffle or any) p: A(X) ®a A(X) — A(X)
can be decribed through its structure constants wrt to the basis of
words, i.e. for u,v,w € X*, Ty = (u(u® v)|w) so that
/J,(U ® V) = ZWEX* rLVJV,VVV
2. In the case when I}, is locally finite in w, we say that the given

law is dualizable, the arrow t11 restricts nicely to A(X) — A{(X)
and one can define on the polynomials a comultiplication by

AN(W) = Zu,ve){* ruw,vu Qv.
3. When the law p is dualizable, we have

A(X) - Afx™ © &™)

Ca"]\ ]\lDlA(X)@AA(X)

A(X) = A(X) @4 A(X)

The arrow A, is unique to be able to close the rectangle and
A, (P) is defined as above.
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Dualizable laws in conc-shuffle bialgebras (2/2)
4. Proof that the arrow A(X) @4 A(X) — A(X* @ X*)) is into :

Let T=3"", P;®a Q; such that ®(T) = 0. Rewriting T as a

finitely supported sum T = 3-  y. cy,vu® v (this is indeed the iso
between A(X) @4 A(X) and A[X* x X*]), ®(T) is by definition of
® the double series (here a polynomial) s.t. (P(T)|u® v) =c,,. If
®(T) =0, then for all (u,v) € X* x X*, ¢,, = 0 entailing T =0.

We extend by linearity and infinite sums, for S € A{(Y)) (resp. A{X))), by
AwS= D (SWhAww €AY ®Y*),

weY*

AconcS = Y (SIW)Aconew € A(X" @ X)),
weX*

ALS= Y (SWALw €A(X*®x*).
weX*

A(X) @ A(X)) embeds injectively in® A(X* @ X*) = [A(XN](X)).

6. A(X)) ® A(X)) contains the elements of the form 3., finite Gi ® D, for
(Gi, Di) € A(X)) x A(X)). But since elements of M @ N are finite combination
of mi ® nj,m; € M,n;j € N then > .., u' ® v' belongs to A(X™ ® X)) and
does not belong to A(X) ® A(XY, for u,v € X=1.
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Extended Ree's theorem

Let S € A(Y)) (resp. A(X))), A is a commutative ring containing Q.
The series S is said to be

1. a w (resp. conc, w )-character iff, for any w,v € Y* (resp. X*),
(S|w)(S|v) = (S|w w v) (resp. (S|wv), (S|w w v)) and (5|1) = 1.
2. an infinitesimal w1 (resp. conc, w )-character iff, for any
w,v € Y* (resp. X*), (S|lwwwv) = (S|w)(v|Lly+) + (w|ly«)(S|v)
(resp. (S|wv) = (S|w)(v|Lx+) + (w[lx-)(S|v),
(Slw w v) = (S[w){v[lx+) + (w[lx-)(S]v)).

3. a group-like series iff (S|1y«) =1and Ay S = (S ® S) (resp.
AconcS = ¢(5 ® S)7Attl S = CD(S X S))

4. a primitive series iff Al S =1y« ® S+ S ® Ly« (resp.
AeoncS=1x+®@5+S5S@1x«, AL, S=1- @S5+ 5® 1x+).

Then the following assertions are equivalent

1. Sisa w (resp. conc and w )-character.

2. log S an infinitesimal w (resp. conc and w )-character.
3. S is group-like, for Ay (resp. Aconc and A ).
4

. log S is primitive, for Ay (resp. Aconc and A, )
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Extension by continuity (infinite sums)
Now, suppose that the ring A (containing Q) is a field k. Then
AL k(X)) = k(X)) @k(X) and Ay k(YY) = k(Y)@k(Y)
are graded for the multidegree. Then A 4, is graded for the length. Their
extension to the completions (i.e. k{(X) and k{{(X* ® X*))) are
continuous and then, when exist, commute with infinite sums. Hence

Veek, A, =) AL x"=) ¢ Z()xf@x =,

n>0 n>0 Jj=0

7,8

For ¢ € N>, which is neither a field nor a ring (containing Q), we also get

() =(c-17 Y () w(bx) €Nx(a),

a,beN>,a+b=c

AL () #Ac—1)"1 > (ax) @ ()" € QX)) ®Q(X),
a,beN>q,a+b=c
because -

(LHS|x ® 1x+)=c and (RHS|x®1ly«)=(c—1)" Z

For c € Z (or even Q, R, C), the such decomposition is not flnlte

7. For S € A(X)) s.t. (S[lx+) =0, §* =3 ;5" is called Kleene star of S.

8. Ay x"=(AL x)"=(1a @x+x@1x)" =37, (;)xj@)x"_j.
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Case of rational series and of Aconc
A" (X)) denotes the algebraic closure by® {conc, +, %} of AX in A(X)).

A(X) A(X* ® X))
can]\ T“’ | arat (2 @ parat a0y
AT (XN mmmmmmmme oo y ATE(X) @4 AT

The dashed arrow may not exist in general, but for any R € A"t (X))

admitting (X, 1, m) as linear representation of dimension n, we can get
tconc(R) = ®(Y.1_, G ® D;).

Indeed, since (R|xy) = Au(xy)n = Ap(x)u(y)n (x,y € X) then, letting

e is the vector such that fe;= (0 ... 0 1 0 ... 0), one has

(Rlxy) = qu eten(y)n = S (G (Dily) = S (G @ Dilx @ y).
i=1 i=1
G; (resp. D,-) admits then (A, i, ;) (resp. (*e;, 1, m)) as linear representation.
If A=k being a field then, due to the injectivity of ®, all expressions of
the type 2721 G; ® D;, of course, coincide. Hence, the dashed arrow (a
restriction of A onc) in the above diagram is well-defined.

9. A (X)) is closed under w . A™((Y)) is also closed under .
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Representative series and Sweedler's dual
Theorem 6 (representative series)
Let S € A{(X)). The following assertions are equivalent

1. The series S belongs to A" ((X')).

2. There exists a linear representation (v, j1,m), of rank n, for S with
v € My ,(A),n € M, 1(A) and a morphism of monoids
i X* = M, o(A) s.t., for any w € X*, (S|w) = vu(w)n.

3. The shifts'® {Saw},ex~ (resp. {w> S}yex+) lie within a finitely
generated shift-invariant A-module.

Moreover, if A is a field k, the previous assertions are equivalent to
4. There exist (G;, D;)icFinite S-t. Dconc(S) = Y jcFpimte Gi @ Di.

Hence, H°, (X) = (k"™*(X)), w ,1x+, Aconc,e) and

My (Y) = (krat<<y>>7 e, L, Aconc, e)'

Now, let Ae.. (X)) (resp. A% (X)) be the set of exchangeable!! series

(resp. series admitting a linear representation with commuting matrices).

10. The left (resp. right) shift of S by Pis P> S (resp. S < P) defined by, for

w € X", (P> S|w) = (S|wP) (resp. (S < P|lw) = (S|Pw)).

11. e if S € Acxc (X)) then (Vu,v € X*)((Vx € X)(Julx =v|x) = (Slu) = (5&//)22.




Kleene stars of the plane and conc-characters
For any S € A(X)), let VS denotes S — 1 .

Theorem 7 (rational exchangeable series)
1 ARE (X)) C AN N Acxc (X). If A is a field then the equality
holds and A% (X)) = A" {(xo)) w A™"((x1)) and, for the algebra of
series over subalphabets AN (YY) := Urc 5 Yy A (F)), we get!?

Asc YD) DALY ) = UkzoA™ () w - ow A (i) © AT (Y)-
2. Vx € X, A (x)) = {P(1 — xQ) "'} p qeapq- Ifk is an algebraically
closed field then k*'((x)) = span,{(ax)* w k{x)|a € K}.

3. If A'is a Q-algebra without zero divisors, {x*}xcx (resp. {y*}yev)
are conc-character and algebraically independent over (A(X), w )
(resp. (A(Y), w)) within (A= (), w ) (resp. (A= (Y), ).

4. Let S € A(X)). If A=k, a field, then t.f.a.e.

a) S is groupe-like, for A;onc.
b) There exists M := erx CxX € kX st S= M
c) There exists M := 3" _, CxX € kX st VS=MS=SM.

12. The following identity lives in AL (YY) but not in AZL{Y) NAR (YY),

ri+..) =limesgoo(i 4 )" = liMps ooy w o Y= wr sy i
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Triangular sub bialgebras of (A™* (X)), w , 1x+, Aconc, €)

Let (v, u,n) be a linear representation of R € A% (X)) and L be the Lie
algebra generated by {(x)}xex.

Let M(x) := u(x)x, for x € X. Then R = vM(X*)n. If {(x)}xex are
triangular then let D(X) (resp. N(X)) be the diagonal (resp. nilpotent)
letter matrix s.t. M(X) = D(X) + N(X) then

M(X*) = ((D(X*)T(X))*D(X*)). Moreover, if X = {xp,x1} then
M(X") = (M)M(x0))" M(x7) = (M(x5)M(x1))* M(x5)-

If Ais an algabraically closed field, the modules generated by the
following families are closed by conc, w and coproducts :

(Fo) Eixi... EleEj+1, where Ej € Arat <<X0>>,

(Fl) Eixg... EjXOEj+]_7 where Ej € Arat <<X1>>,

(Fz) E1X,'1 .. EJ'X,']. Ej+17 where Ej € Ag;“fC«X», X, € X.
It follows then that

1. R is a linear combination of expressions in the form (Fo) (resp.
(F1)) iff M(x{)M(xo) (resp. M(x3)M(x1)) is nilpotent,

2. R is a linear combination of expressions in the form (F,) iff L is
solvable. Thus, if R € A2 (X)) w A(X) then L is nilpotent.

exc
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CONTINUITY OVER CHEN SERIES
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lterated integrals over w;(z) = uy(z)dz and along zy ~ z

Let Q be a simply connected domain admitting 14, as neutral element.
Let A :=H(Q) and let Cy be a differential subring of A (9(Co) C Co)
which is an integral domain containing C.

C{{(g)ics}} denotes the differential subalgebra of A generated by (g;i)ic/,
i.e. the C-algebra generated by gi's and their derivatives

{uy}xex : elements in Co N A~! in correspondence with {0, }xex (0x = u;10).

The iterated integral associated to x; ...x; € X*, over the differential forms
wi(z) = uy(z)dz, and along a path zy ~~ z on Q, is defined by
Ckio(l)(*) = 197

z Zk—1
ago(x,-l...x,-k) = / w,-l(zl).../ wi, (zk).
20 2 20 21
5‘a§0(x,-1 CXp) = Us;, (z)/ w,-z(zz).../ wi, (zk).

Zp Zp

SPANC {{ () 1 1 0% (W) fwe -
bpamcci{(uﬂ Y 105 (W) bwexs
CH{(ux")xex }} ®c spanc{aZ (w)}wex-?

Spancc{alaio(w)}wex*,lzo

NN
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Iterated integrals and integro differential operators

Let C = C{{(uf)xex}}. One has 6, € C(9), for x € X, and
Vx,y € X, Ywe X*, 0. (yw) = ul(2)uy(2)0Z (w).
Now, let © be the morphism C(X) — C(0) defined as follows
I i w=lae,
Ow) = { O(u)o, if w=uxeX*X.
One has, for any w € X%,

1. ©(w)aZ (w) = 1g, and then 9(©(W)aZ (w)) = 0.
2. LyaZ (W) =0, where L, := 00(w) € C(0).

For any x; € X, let us consider a section of f,, : 0.3 = 1d, i.e.

VFEH(Q), 12f(z) = / wi(5)F(s).
E)
The operator ¢,:2, for x # y, admits uyu;1 as eigenvalue, i.e.
Ve H(Q), (0,02)f =uyu*f, inparticular, (0,:2)1lq = uyu
Now, let 3% be the morphism defined as follows
Id if w=1x-
CxZ _ )
S9(w) = { S (u)2 if w=ux € X*X.
Hence, for any w € X*, 3% (w)lq = of (w).

1

x -
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First properties
Proposition 1
The following assertions are equivalent
L. The morphism (C(X), w ,1x-) — (spanc{aZ (w)}wex-, X, 1)
IS Injective.
2. {aZ (w)}wex~ is C-linearly independent.
3. {aZ,(N}iccynx is C-algebraically independent.
4. {aZ (x)}xex is C-algebraically independent.
5. {aZ (

- {aZ,(X) }xexufiy-} fs C-linearly independent.

If one of the above assertions holds then

L. C[{aZ (w)}wex~] forms the universal C-module of solutions of all
differential equations Ly = 0,

2. C{aZ (w)}wex~ forms the universal Picard-Vessiot extension related
to all differential equations Ly = 0,

where 13 L's are linear differential operators belonging to C(9).
13. Forany w € X*, let Z,, := {L € C(0) s.t. Laz (w)=0}-Then Z, is a left iglse;alll.2




Practical example (polylogarithms)

For X = {xo,x1}, let us consider
U(z) =271 and uy(z)=(1-2)"L
Then, on the other hand,
wo(z) = Uy (2)dz =z71dz and wi(z) = uy(2)dz = (1 — z)"tdz,
Oy = Uy (2)0 = 20 and 0, = u t(2)0 = (1 - z)0.
On the other hand *, C = C{{(vF)xex}} = Clz,z7%, (1 — z)7!] being
closed by 0, 0,, and then by 0 = 60,, + 05, = ©(xo + x1).

One also has

- 0(xt, %0]) = [ O] = 2.

. Vw € X*xq,S0(w)lq = ad(w) = Liy(2).
C(0t2)lg =2z(1—z)"t and (0 2)1g =271 —1.

[0xt20, 05 2] = 0.

X0Yx1 Y X1%xg

(0% t2)(05,02) = (05,02)(0x,.2) = 1d.

X0 “x1 X1%xg X1%Xg X0 “x1

For any L € C(9), there is P € C(X) s.t L = ©(P), meaning that © is
surjective and non injective. ker © 7

[

oA e

14. Any p € C is polynomial on z,z7* and (1 — z)~! and admits 0 and-1 as poles.
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Examples of linear differential equation
Example 8 (with C = C(z))

2 (0-2)y =0, 1)
1. e*/2 s solution of (1).

2. ce® /2 = e7'/2¢l8¢< s an other solution (c € R\ {0}).
3. {e%/2} is a fundamental set of solutions of (1).
4. C{e22/2} is a Picard-Vessiot extension related to (1).
For 0y, = z0 and 0,, = (1 — 2)0, since Ly,x, = 004,05, € C(D) then let
Ly = (2(1 = 2)8* + (2 —32)9* = 1)y = 0. (2)
1. Ly Liz = 0 meaning that Lis is solution of (2).

2. cLip = Lip €"°8€ is an other solution (c € R\ {0}) but it is not
independent to Lis.

3. {Liy, log,1q} is a fundamental set of solutions of (2).

4. C{Lip,log,1q} is a Picard-Vessiot extension!® related to (2).

15. C{Liz(z)} = C ® C[Liz(z), log(1 — z), log(z)].
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Chen series of {w;};>1 and along z5 ~> z
Let C = C{{(uf)xex}}. Forany AD Q, we get, on H ,, (X) and H i (Y),

N\ o
= E wRw = H e>®P and Dy = E wRw = H =@M
wex* leLynX weY* leLynY
H H 1 1 z — z z
Hence, since iterated integrals satisfy o (v w v) = oZ (u)aZ (v)

(u,v € X*) then the Chen series, C, ., € H(Q){X >> is given by

Copuz i= Z ol (w)w = (o, ® Id)Dx = H e ()P
weX* lIeLynX
and then® A | C, ., = Copy @ Cpyy and (Cppy|1x+) = 1.
For any n > 0, one has d"C,,., = p, CZOWZ where 17
degr

-y S U (P77 awecw,

wgtr=nweX" =1
and, for w = x;, ...x;, € X* assouated to the derivation multiindex
r=(rn,...,r) € Nk of weight wgtr = |w| + fo:l ri and of degree
degr = [w|, 7v(w) := 7, (%) - - - T, (Xi) = (0"t )X, - - - (9™ U, )X,
16. (Coyooz|u w v) = (Cyonz|u)(Csy—z|v) and on the other hand,
(Copz|uw v) = (A Gz |u @ V), (Crpnz|U)( Crpnz| V) = (Crpnz @ Crpnz|U @ V).
17. VS € H(Q(X),dS =3, c 1« (O(SIw))w € H(Q)(X):
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Continuity, indiscernability and growth condition
For i =0,2, let (kj, .|| ) be a semi-normed space and g; € Z.
Definition 9
1. Let CI be a class of ky ((X). Let S € ko (X)) and it is said to be

a) continuous over Cl if, for ® € (I, the following sum is convergent

> KSIW)ILIK®Iw)I,-

weX*
We will denote (S||®) the sum }°  ..(S|w)(®|w) and

ko () CONT the set of continuous power series over (/.
b) indiscernable over CI iff, for any & € Cl, (S]|®) = 0.

2. Let x1 and x2 be real positive functions over X*. Let S € kq {(X)).
a) S satisfies the x1—growth condition of order g if it satisfies
IK eRy,Ine N,Vw e X227, |[(S|w), < Kxa(w) |w]le.
We denote by k(f“’gl)((?()) the set of formal power series in
ki (X)) satisfying the y;—growth condition of order g.

b) If S is continuous over ngQ’gZ)«X)) then it will be said to be
(x2, &)-continuous. The set of formal power series which are

(X2, 8)-continuous is denoted by k¥2€) (x)cont,
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Convergence condition

Proposition 2
Let x1 and x» be real positive functions over X*.
Let gy and g» € Z such that g + g» < 0.

1. Let KX"8) (X)) and let P € ky(X).
The right residual of S by P belongs to k"€ ().

2. Let R e kY& (X)) and let Q € ko(X).
The concatenation QR belongs to k(QXZ’g2) {(x)).

3. X1, X2 are morphisms over X* satisfying 3 ., x1(x)x2(x) < 1.
If Fy € kX8 x) (resp. Fy € kK28 (X)) then Fy (resp. Fy) is
continuous over kgxz’gz)«X)) (resp. k(1X1’g1)<<X>>).
Proposition 3
Let CI C k(X)) be a monoid containing {e*}:EX,. Let S € kp((X))cONE.
1. If S is indiscernable over C| then for any x € X, x< S and S > x
belong to ky (X)€" and they are indiscernable over Cl.
2. S is indiscernable over Cl iff S = 0.
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Chen series and differential equations

Let K be a compact on . There is cx € R> and a morphism Mk s.t.
Y e X%, [(Comal Wl < cMic(w) w1

Let R € C™((X)) of minimal representation (A, i, n) of dimension n. Then
vw € X%, (R|w) < N ()12l

With these data, we have

Theorerln 10 X

I e IMSIIES Yover Mc() ()N < 1 then of (R) = (R|| C,.2) and

Vx € X, 0.aZ(R) =3 cx s (2)uv(z)a (Rax').
Letting y(zo,z) := (R||C4~-z), the following assertions are equivalent :

1. Thereis p € Co{X) s.t. (R||pCsyosz) = (R p||Chynz) = 0.

2. Thereis | =0,..,n—1s.t. {0%y}o<k< is Co-linearly independent
and aj,... a1, a0 € Co s.t. (a0 + ...+ 210+ ap)y = 0.

Proposition 4

Let G € C(X)) and H € Cexo (X)) sit. aZ (G) = (G| Cyye2) and
h(aZ (x0), o2, (x1)) := o (H) = (H||Csy-2) exist (X = {xo0,x1}). Then

0%,(HG) = (6L )ax (H) + [ h(e00). aZ(x0))da, ().

20
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Practical examples (1/2)
Forany x € X*,t € C and n > 0, since x" = x % "/n! then
oz, (x") = [a2,()]"/n! and oz ((£x)7) = e,

Example 11 (extension of eulerian functions)
Hor any z € C,|z|< 1, let us consider

z) ':yz—zg(k)ﬂ Vr > 2,4,( ZC(kr =
' k k
k>2 k>1
Then, for any k > 1, letting wx(z) = 9k, one has
B S Y2
Z(\,* k>2 k Z(\,* k>1 k
ag(yi) =e = , Vr>2,a5(yp) =e %2

Example 12 (wo(z) = z71dz and wi(z) = (1 — z)~tdz)
For any a,b € C and n > 0, one has
Lixg(2) = a10q) = [log(2)]"/n!, Lix(2) = ag(x7) = [~ log(1 = 2)]"/nt,
Li(ax)- (2) = af((ax0)") = 2%, Li(b)-(2) = ag((bxa)") = (1 - 2)~"
Hence, for any S € CI2 (X)) (resp. (Cgitc« » w C(X)), letting

C = C[z%,(1 — 2)"]a.pec, one has
Lis(z) € C[log(z),log(1 — z)] (resp. C[{Lis}iccynx])-
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Practical examples (2/2)
Example 13 (Polylogarithms indexed by non positive integers)

Now, let us use the noncommutative multivariate exponential transforms,
i.e., for any rational exchangeable serles we get the followmg transform
Z Sip, l]XO w Xl — Z I?Illl |Og )|Og (( 2)71)'
io,i1 >0 io,h1 >0
In particular, for any n € N, we have x{ — log"(z)/n! and
s log"((1 — z)~1)/n!. Then (txo)* — zt and (txq)* — (1 —z)7¢.
We then obtain the following polylogarithms indexed by rational series
Li(z) =z, Liw(2)=(1—2)"" Liagssq)(2) = 2°(1 - z)™b

Thus, for any (s1,...,s,) € Ni, there exists an unique series R, .
belonging to (Z[X1], wo,1x«) st Liog = LiRYsl---YS . More precisely,
(sp+--.+sr)— r r—1
(ky+.-+kp—1) s Z s — Z ki

ysl Y T Z Z k) i=1 i=1 Plg W oo W Pp,
1 k,
where, for any i=1,...,rif k =0 then py, = x{" — 1x~ else

pk—X1L”—'ZSQ :,J (X1—1X*) wi
Jj=1

the Sy(k;,j) being the Stirling numbers of second kind.
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NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS
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First step of noncommutative PV theory

The Chen series G, satisfies the following differential equation

(NCDE) dS=MS, with M= ux
xeX
Ay, M= Zux(lx*®X+X®1x*)=1x*®/\//+/\4®1x*.

xeX

The space of solutions of (NCDE) is a right free C{(X))-module of rank 1.

By a theorem of Ree, C,,.., is a w —group-like solution'® of (NCDE).

Moreover, if G and H are w —group-like solutions (NCDE) there is a

constant Lie series C such that G = He® (and conversely).

From this, it follows that

> the differential Galois group of (NCDE)+ w —group-like is the
group™® {e“}cerie, (a)-
Which leads us to the following definition
> the PV extension related to (NCDE) is C/OTV{CZOWZ}.
It, of course, is such that Const(Co((X))) = kerd = C.1q{(X)).

18. It can be obtained as the limit of a convergent Picard iteration, initialized
at (Cyymnz|la) = lyya)la+, for ultrametric distance.
19. In fact, the Hausdorff group (group of characters) of H 4 (X)-
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Basic triangular theorem over a differential ring

Suppose that the C-commutative ring A is without zero divisors and
equipped with a differential operator 0 such that C = ker 0.
Let S € A{X) be a group-like solution of (NCDE) in the following form

S= > (Slmyw= Y (S|Su)Py = H elsIsnP

weX* weX* leLynX
Then

1. If H e A{(X)) is another grouplike solution then there exists
C € Liea((X)) such that S = He® (and conversely).
2. The following assertions are equivalent
a) {(S|w)}wex~ is Co-linearly independent,
b) {(S5|/)}iccynx is Co-algebraically independent,
) {(S|x)}xex is Co-algebraically independent,
d) {{5x)}xexu{ir.} is Co-linearly independent,
e) {u}xex is such that, for f € Frac(Cp) and (cx)xex € C¥)
> o =0f = (Vx€ X)(c =0).

xeX
f) (ux)xex is free over C and JFrac(Cy) N spang{ux}xex = {0}.

(e]
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Examples of positive cases over X = {x}, A = (H(Q),0)

1. Q=C,uz) =1q,Co = C{{uF'}} = C.
a§(x™) = z"/nl, for n > 1. Thus, dS = xS and

zn
S= E ag(x")x" = E —x" = e*.
n!
n>0 n>0

Moreover, a§(x) = z which is transcendent over Cy
and the family {a§(x")}n>0 is Co-free. Let f € Cy then Of = 0. Thus,
if Of = cu, then ¢ = 0.
2. Q=C\] - 00,0],ux(2) = z71,Co = C{z*}} = C[z*'] C C(2).
aF(x") = log"(z)/n!, for n > 1. Thus dS = z~ xS and

S = Zaf(x”)x” = Z 7Iog"(z)xn =z~

n!
n>0 n>0

Moreover, af(x) = log(z) which is transcendent over C(z) then
over C[z*!]. The family the family {af(x")}n>0 is C(z)-free and
then Co-free. Let f € C then Of € spang{z*"},.1. Thus,

if Of = cuy then ¢ = 0.
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Examples of negative cases over X = {x}, A = (H(Q), )

1. Q=C,u(z) = €?,Cy = C{{e?}} = C[e*2].
ag(x™) = (e —1)"/n!, for n > 1. Thus, dS = e°xS and

S= Z ag(xM)x" = Z (ezn;'l)nx" = el "1x,

n>0 n>0
Moreover, a(x) = e — 1 which is not transcendent over Cy and
and {ag(x™)}n>o is not Co-free. If f(z) = ce” € Cy (¢ # 0) then
Of (z) = ce” = cuy(2).
2. Q=C\] —0,0], ux(z)=z%(a ¢ Q),
Co = C{{z, z*}} = spanc{zF*+'} jez.
ag(x") = (a+1)7"z"@*) /nl, for n > 1. Thus, dS = z%xS and

n(a+1)

V4 —1_(a+1)
n (a+1)"'Z X
S= E af(x")x" = 207(2 1)”n!X =e .

n>0

Moreover, a(x) = z**1/(a+ 1) which is not transcendent over Cg
and {ag(x")}n>0 is not Co-free. If f(z) = cz?*1/(a+ 1) € Cy
(c # 0) then 9f(z) = cz? = cux(z).
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Chen series of wy(z) = z71dz and wi(z) = (1 — z) ldz

Let vo(¢) and 71 (¢) be the circular paths of radius € encircling 0 and 1
clockwise, respectively. In particular, letting 8 = 81 — 5y, one considers
W0(EB) = eetimcet (o),
’yl(f-:,ﬁ) = 1—celPw1—celt C e).

On the one hand, one has, for any i =0 or 1 and w € X,
[{Coe.) W) | < 2Pt 9 w11,

It follows then

Cyep) =€ +o(e) and C ) = e?™ 4 o(e).

T

Hence?, for R € C**((X)) of minimal representation (X, 1z,7), one has

(RIICy(z.3)) (H e®te.) Sk ”)m
eLyn
I -
€Lyn

(RIC, o) = A( AP ).

20. Recall that the map oZ, : C™*{(X)) — H(Q) is not injective. For example,

az(20xg + (1 — z0)(—x1)" — 1x=) = 0.
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Dom(Li,)
Let C := C[z?, (1 — 2)®]a pec and Dom(Li,) be the set of S =", ., S, with
Sn = Z|W|:n<5|w>w s.t. Y ,>o Lis, converges uniformly on any compact of €.
Proposition 5
Dom(Li, ), containing C:2* (X)) w C(X), is closed by shuffle and then

exc

Lis ,, + = LisLit (S, T € Dom(Li,)).

Proposition 6 (L(z) = Cy,-..1(20))

For R € Dom(Li,), let p := (R||L). Then, for n > 0,0"p = (R||d"L) and
d"L = p,L, where p, is given previously, with 7,(xg) = —r!(—z)~ ") x
and 7,(x;) = r!(1 — z)~("*Yx;. The following assertions are equivalent :

1. p satisfies a differential equation with coefficients in (C,0).

2. There exists P € C(X) such that (R||PL) = (R« P||L) = 0.
Example 14 (wo(z) = z7dz,wi1(z) = (1 — 2)'dz & |c|< 1)
Li(ogy s (2) = ad((cx0)x1) = /O T 0B/ (5) = o Oz S smcds

n—c+1 ’}720

z z
- Zcznchrl :anc'
n>0

n>1
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