On universal differential equations

V. Hoang Ngoc Minh
Université Lille, 1 Place Déliot, 59024 Lille, France.

Séminaire Combinatoire, Informatique et Physique
23 Février, 2, 16 \& 23 Mars 2021, Villetaneuse

Outline

1. Introduction
1.1 Picard-Vessiot theory of ordinary differential equation
1.2 Fuchsian linear differential equations
1.3 Nonlinear differential equations
2. Dual laws and representative series
2.1 conc-shuffle and conc-stuffle bialgebras
2.2 Dualizable laws in conc-shuffle bialgebras
2.3 Representative series and Sweedler's dual
3. Continuity over Chen series
3.1 Continuity, indiscernability and growth condition
3.2 Iterated integrals and Chen series
3.3 Chen series and differential equations
4. Noncommutative PV theory and independences via words
4.1 First step of noncommutative PV theory
4.2 Independences over differential ring
4.3 $\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$

INTRODUCTION

Picard-Vessiot theory of ordinary differential equation

(\mathbf{k}, ∂) a commutative differential ring without zero divisors.
$\operatorname{Const}(\mathbf{k})=\{c \in \mathbf{k} \mid \partial c=0\}$ is supposed to be a field.
$(O D E) \quad\left(a_{n} \partial^{n}+a_{n-1} \partial^{n-1}+\ldots+a_{0}\right) y=0, \quad a_{0}, \ldots, a_{n-1}, a_{n} \in \mathbf{k}$.
a_{n}^{-1} is supposed to exist.

Definition 1

1. Let y_{1}, \ldots, y_{n} be Const(\mathbf{k})-linearly independent solutions of $(O D E)$. Then $\left\{y_{1}, \ldots, y_{n}\right\}$ is called a fundamental set of solutions of (ODE) and it generates a Const(\mathbf{k})-vector subspace of dimension at most n.
2. If ${ }^{1} M=\mathbf{k}\left\{y_{1}, \ldots, y_{n}\right\}$ and $\operatorname{Const}(M)=\operatorname{Const}(\mathbf{k})$ then M is called a Picard-Vessiot extension related to (ODE)
3. Let $\mathbf{k} \subset \mathbb{K}_{1}$ and $\mathbf{k} \subset \mathbb{K}_{2}$ be differential rings. An isomorphism of rings $\sigma: \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$ is a differential \mathbf{k}-isomorphism if
$\forall a \in \mathbb{K}_{1}, \quad \partial(\sigma(a))=\sigma(\partial a)$ and, if $a \in \mathbf{k}, \sigma(a)=a$.
If $\mathbb{K}_{1}=\mathbb{K}_{2}=\mathbb{K}$, the differential galois group of \mathbb{K} over \mathbf{k} is by $\operatorname{Gal}_{\mathbf{k}}(\mathbb{K})=\{\sigma \mid \sigma$ is a differential \mathbf{k}-automorphism of $\mathbb{K}\}$.
4. Let R_{1}, R_{2} be differential rings s.t. $R_{1} \subset R_{2}$. Let S be a subset of R_{2}.
$R_{1}\{S\}$ denotes the smallest differential subring of R_{2} containing R_{1}.
$R_{1}\{S\}$ is the ring (over R_{1}) generated by S and their derivatives of all orders.

Linear differential equations and Dyson series

Let $a_{0}, \ldots, a_{n} \in \mathbb{C}(z), \quad a_{n}(z) \partial^{n} y(z)+\ldots+a_{1}(z) \partial y(z)+a_{0}(z) y(z)=0$.

$$
(E D) \quad\left\{\begin{array}{rlrl}
\partial q(z) & =A(z) q(z), & A(z) \in \mathcal{M}_{n, n}(\mathbb{C}(z)) \\
q\left(z_{0}\right) & =\eta, & \lambda \in \mathcal{M}_{1, n}(\mathbb{C}) \\
y(z) & =\lambda q(z), & & \eta \in \mathcal{M}_{n, 1}(\mathbb{C})
\end{array}\right.
$$

By successive Picard iterations, with the initial point $q\left(z_{0}\right)=\eta$, we get ${ }^{2}$ $y(z)=\lambda U\left(z_{0} ; z\right) \eta$, where $U\left(z_{0} ; z\right)$ is the following functional expansion $U\left(z_{0} ; z\right)=\sum_{k \geq 0} \int_{z_{0}}^{z} A\left(z_{1}\right) d z_{1} \int_{z_{0}}^{z_{1}} A\left(z_{2}\right) d z_{2} \ldots \int_{z_{0}}^{z_{k}-1} A\left(z_{k}\right) d z_{k}$, (Dyson series) and $\left(z_{0}, z_{1} \ldots, z_{k}, z\right)$ is a subdivision of the path of integration $z_{0} \rightsquigarrow z$. In order to find the matrix $\Omega\left(z_{0} ; z\right)$ s.t.

$$
U\left(z_{0} ; z\right)=\exp \left[\Omega\left(z_{0} ; z\right)\right]=T \exp \int_{z_{0}}^{z} A(s) d s, \quad \text { (Feynman's notation) }
$$

Magnus computed $\Omega\left(z_{0} ; z\right)$ as limit of the following Lie-integral-functionals

$$
\begin{aligned}
\Omega_{1}\left(z_{0} ; z\right)= & \int_{z_{0}}^{z} A(z) d s \\
\Omega_{k}\left(z_{0} ; z\right)= & \int_{z_{0}}^{z}\left[A(z)+\left[A(z), \Omega_{k-1}\left(z_{0} ; s\right)\right] / 2\right. \\
& \left.+\left[\left[A(z), \Omega_{k-1}\left(z_{0} ; s\right)\right], \Omega_{k-1}\left(z_{0} ; s\right)\right] / 12+\ldots\right) d s .
\end{aligned}
$$

[^0]
Fuchsian linear differential equations

Let Ω be a simply connected domain and $\mathcal{H}(\Omega)$ be the ring of holomorphic functions over Ω (with $1_{\mathcal{H}(\Omega)}$ as neutral element). Let us consider, here, $\sigma=\left\{s_{i}\right\}_{i=0, . ., m}, m \geq 1$, as set of simple poles of $(E D)$ and $\Omega=\widetilde{\mathbb{C} \backslash \sigma}$.

$$
\left.\begin{array}{rl}
A(z)=\sum_{i=0}^{m} M_{i} u_{i}(z), \quad \text { where } & \left\{\begin{aligned}
M_{i} & \in \mathcal{M}_{n, n}(\mathbb{C}) \\
u_{i}(z)= & \left(z-s_{i}\right)^{-1}
\end{aligned} \in \mathbb{C}(z)\right.
\end{array}\right\} \begin{aligned}
\partial q(z) & =\left(\sum_{i=0}^{m} M_{i} u_{i}(z)\right) q(z) \\
q\left(z_{0}\right) & =\eta, \\
y(z) & =\lambda q(z)
\end{aligned}
$$

Let X^{*} be the set of words over $X=\left\{x_{0}, \ldots, x_{m}\right\}$ and

$$
\alpha_{z_{0}}^{z} \otimes \mathcal{M}: \mathbb{C}\langle X\rangle \otimes \mathbb{C}\langle X\rangle \rightarrow \mathcal{M}_{n, n}(\mathcal{H}(\Omega))
$$

($z_{0} \rightsquigarrow z$ is the path of integration previously introduced) s.t.
$\mathcal{M}\left(1_{X^{*}}\right)=\operatorname{Id}_{n} \quad$ and $\quad \mathcal{M}\left(x_{i_{1}} \cdots x_{i_{k}}\right)=M_{i_{1}} \ldots M_{i_{k}}$,
$\alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1_{\mathcal{H}(\Omega)} \quad$ and $\quad \alpha_{z_{0}}^{z}\left(x_{i_{1}} \cdots x_{i_{k}}\right)=\int_{z_{0}}^{z} \frac{d z_{1}}{z_{1}-s_{i_{1}}} \cdots \int_{z_{0}}^{z_{k-1}} \frac{d z_{k}}{z_{k}-s_{i_{k}}}$.
Then ${ }^{3} y(z)=\lambda U\left(z_{0} ; z\right) \eta$ with

$$
U\left(z_{0} ; z\right)=\sum_{w \in X^{*}} \mathcal{M}(w) \alpha_{z_{0}}^{z}(w)=\left(\mathcal{M} \otimes \alpha_{z_{0}}\right) \sum_{w \in X^{*}} w \otimes w
$$

3. Subject to convergence.

Examples of linear dynamical systems

Example 2 (Hypergeometric equation)

Let t_{0}, t_{1}, t_{2} be parameters and

$$
z(1-z) \ddot{y}(z)+\left[t_{2}-\left(t_{0}+t_{1}+1\right) z\right] \dot{y}(z)-t_{0} t_{1} y(z)=0 .
$$

Let $q_{1}(z)=-y(z)$ and $q_{2}(z)=(1-z) \dot{y}(z)$. Hence, one has

$$
y(z)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{q_{1}(z)}{q_{2}(z)}
$$

and

$$
\begin{aligned}
\binom{\dot{q}_{1}(z)}{\dot{q}_{2}(z)} & =\left(\frac{M_{0}}{z}+\frac{M_{1}}{1-z}\right)\binom{q_{1}(z)}{q_{2}(z)} \\
& =\left(u_{0}(z) M_{0}+u_{1}(z) M_{1}\right)\binom{q_{1}(z)}{q_{2}(z)},
\end{aligned}
$$

where $u_{0}(z)=z^{-1}, u_{1}(z)=(1-z)^{-1}$ and

$$
M_{0}=-\left(\begin{array}{cc}
0 & 0 \\
t_{0} t_{1} & t_{2}
\end{array}\right) \quad \text { and } \quad M_{1}=-\left(\begin{array}{cc}
0 & 1 \\
0 & t_{2}-t_{0}-t_{1}
\end{array}\right) .
$$

Nonlinear differential equations

$$
(N E D)\left\{\begin{aligned}
\partial q(z) & =\left(\sum_{i=0}^{m} T_{i}(q) u_{i}(z)\right)(q), \\
q\left(z_{0}\right) & =q_{0} \\
y(z) & =f(q(z))
\end{aligned}\right.
$$

where

- $u_{i} \in(\mathbf{k}, \partial)$,
- the state $q=\left(q_{1}, \ldots, q_{n}\right)$ belongs the complex analytic manifold Q of dimension n and q_{0} is the initial state,
- the observation $f \in \mathcal{O}$, with \mathcal{O} the ring of analytic functions over Q,
- for $i=0 . .1, T_{i}=\left(T_{i}^{1}(q) \partial / \partial q_{1}+\cdots+T_{i}^{m}(q) \partial / \partial q_{m}\right)$ is an analytic vector field over Q, with $T_{i}^{j}(q) \in \mathcal{O}$, for $j=1, \ldots, n$.

With X and $\alpha_{z_{0}}^{z}$ given as previously, let the morphism τ be defined by $\tau\left(1_{x^{*}}\right)=\operatorname{Id}$ and $\tau\left(x_{i_{1}} \cdots x_{i_{k}}\right)=T_{i_{1}} \ldots T_{i_{k}}$. Then ${ }^{4} y(z)=\mathcal{T} \circ f_{q_{0}}$ with

$$
\mathcal{T}=\sum_{w \in X^{*}} \tau(w) \alpha_{z_{0}}^{z}(w)=\left(\tau \otimes \alpha_{z_{0}}\right) \sum_{w \in X^{*}} w \otimes w
$$

4. Subject to convergence.

Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let k_{1}, k_{2} be parameters and $\partial^{2} y(z)+k_{1} y(z)+k_{2} y^{2}(z)=u_{1}(z)$ which can be represented by the following state equations (with $n=1$)

$$
\begin{aligned}
y(z) & =q(z), \\
\partial q(z) & =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\
\text { where } A_{0} & =-\left(k_{1} q+k_{2} q^{2}\right) \frac{\partial}{\partial q} \text { and } A_{1}=\frac{\partial}{\partial q} .
\end{aligned}
$$

Example 4 (Duffing equation)

Let a, b, c be parameters and $\partial^{2} y(z)+a \partial y(z)+b y(z)+c y^{3}(z)=u_{1}(z)$ which can be represented by the following state equations (with $n=2$)

$$
\begin{aligned}
y(z) & =q_{1}(z), \\
\binom{\partial q_{1}(z)}{\partial q_{2}(z)} & =\binom{q_{2}}{-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right)} u_{0}(z)+\binom{0}{1} u_{1}(z) \\
& =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\
\text { where } A_{0} & =-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right) \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}} \quad \text { and } \quad A_{1}=\frac{\partial}{\partial q_{2}} .
\end{aligned}
$$

Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)

Let γ, g be parameters and

$$
\partial^{2} x(z)-\gamma\left[1+x(z)^{2}\right] \partial x(z)+x(z)=g \cos (\omega z)
$$

which can be tranformed into (with C is some constant of integration)

$$
\partial x(z)=\gamma\left[1+x(z)^{2} / 3\right] x(z)-\int_{z_{0}}^{z} x(s) d s+\frac{g}{\omega} \sin (\omega z)+C .
$$

Supposing $x=\partial y$ and $u_{1}(z)=g \sin (\omega z) / \omega+C$, it leads then to

$$
\partial^{2} y(z)=\gamma\left[\partial y(z)+(\partial y(z))^{3} / 3\right]+y(z)+u_{1}(z)
$$

which can be represented by the following state equations (with $n=2$)

$$
\begin{aligned}
y(z) & =q_{1}(z), \\
\binom{\partial q_{1}(z)}{\partial q_{2}(z)} & =\binom{q_{2}}{\gamma\left(q_{2}+q_{2}^{3} / 3\right)+q_{1}} u_{0}(z)+\binom{0}{1} u_{1}(z) \\
& =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\
\text { where } A_{0} & =\left[\gamma\left(q_{2}+q_{2}^{3} / 3\right)+q_{1}\right] \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}} \text { and } A_{1}=\frac{\partial}{\partial q_{2}} .
\end{aligned}
$$

DUAL LAWS AND REPRESENTATIVE SERIES

Dual law in bialgebra

Startting with a $\mathbf{k}-\mathbf{A A U}\left(\mathbf{k}\right.$ is a ring) \mathcal{A}. Dualizing $\mu: \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \rightarrow \mathcal{A}$, we get the transpose ${ }^{t} \mu: \mathcal{A}^{\vee} \rightarrow\left(\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A}\right)^{\vee}$ so that we do not get a co-multiplication in general.

- Remark that when \mathbf{k} is a field, the following arrow is into (due to the fact that $\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}$ is torsionfree)

$$
\Phi: \mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee} \rightarrow\left(\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A}\right)^{\vee}
$$

- One restricts the codomain of ${ }^{t} \mu$ to $\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}$ and then the domain to $\left({ }^{t} \mu\right)^{-1} \Phi\left(\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}\right)=: \mathcal{A}^{\circ}$.

The descent can stop at first step for a field \mathbf{k} and then $\mathcal{A}^{\circ 0}=\mathcal{A}^{\circ}$. The coalgebra $\left(\mathcal{A}^{\circ}, \Delta_{\mu}\right)$ is called the Sweedler's dual of (\mathcal{A}, μ).

Case of algebras noncommutative series

- \mathcal{X} denotes the ordered alphabets $Y:=\left\{y_{k}\right\}_{k \geq 1}$ or $X:=\left\{x_{0}, x_{1}\right\}$.

On the free monoid (\mathcal{X}^{*}, conc, $1_{\mathcal{X}^{*}}$), we use the correspondences

$$
x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} \in X^{*} x_{1} \underset{\pi_{x}}{\pi_{r}} y_{s_{1}} \ldots y_{s_{r}} \in Y^{*} \leftrightarrow\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}_{+}^{r}
$$

Let $\mathcal{L} y n \mathcal{X}$ denote the set of Lyndon words generated by \mathcal{X}.

- Let $(\mathcal{L i e} A\langle\mathcal{X}\rangle\rangle,[]$.$) and \left(A\langle\langle\mathcal{X}\rangle\rangle\right.$, conc) (resp. $\left(\mathcal{L i e}_{A}\langle\mathcal{X}\rangle,[].\right)$ and $(A\langle\mathcal{X}\rangle$, conc $))$ denote the algebras of (Lie) series (resp. polynomials) with coefficients in the ring A, over \mathcal{X}.
$\left\{P_{l}\right\}_{l \in \mathcal{L y n} \mathcal{X}}$ (resp. $\left.\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}\right)$ is a basis of Lie algebra of primitive elements and $\left\{S_{l}\right\}_{l \in \mathcal{L} y n \mathcal{X}}$ (resp. $\left.\left\{\Sigma_{l}\right\}_{l \in \mathcal{L} y n Y}\right)$ is a transcendence basis of $\left(A\langle\mathcal{X}\rangle\right.$, ш, $\left.1_{\mathcal{X}^{*}}\right)\left(\right.$ resp. $\left.\left(A\langle Y\rangle, \downarrow^{\prime}, 1_{Y^{*}}\right)\right)$.
- $\mathcal{H}_{ш}(\mathcal{X}):=\left(A\langle\mathcal{X}\rangle\right.$, conc, $1_{\mathcal{X}^{*}}, \Delta_{ш}$, e) and $\mathcal{H}_{+_{+1}}(Y):=\left(A\langle Y\rangle\right.$, conc, $\left.1_{Y^{*}}, \Delta_{+_{+1}}, e\right)$ with ${ }^{5}\left(\right.$ for $\left.x \in \mathcal{X}, y_{i} \in Y\right)$

$$
\begin{aligned}
& \Delta_{ш} x=x \otimes 1_{\mathcal{X}^{*}}+1_{\mathcal{X}^{*}} \otimes x, \\
& \Delta_{+ \pm} y_{i}=y_{i} \otimes 1_{Y^{*}}+1_{Y^{*}} \otimes y_{i}+\sum_{k+l=i} y_{k} \otimes y_{l} .
\end{aligned}
$$

- The dual law associated to conc is defined, for $w \in \mathcal{X}^{*}$, by

$$
\Delta_{\text {conc }}(w)=\sum_{u, v \in \mathcal{X} *, u v=w} u \otimes v .
$$

5. Or equivalently, for $x, y \in \mathcal{X}, y_{i}, y_{j} \in Y$ and $u, v \in \mathcal{X}^{*}$ (resp. Y^{*}),
$u ш 1_{\mathcal{X}^{*}}=1_{\mathcal{X}^{*}} ш u=u$ and $x u ш y v=x(u ш y v)+y(x u ш v)$,
$u \mapsto 1_{Y *}=1_{Y^{*}}+u=u$ and $x_{i} u ゅ y_{j} v=y_{i}\left(u \downarrow y_{j} v\right)+y_{j}\left(y_{i} u \downarrow \downarrow v\right)+y_{i \neq j}(u \not \ddagger v)$

Dualizable laws in conc-shuffle bialgebras (1/2)

We can exploit the basis of words as follows

1. Any bilinear law (shuffle, stuffle or any) $\mu: A\langle\mathcal{X}\rangle \otimes_{A} A\langle\mathcal{X}\rangle \rightarrow A\langle\mathcal{X}\rangle$ can be decribed through its structure constants wrt to the basis of words, i.e. for $u, v, w \in \mathcal{X}^{*}, \Gamma_{u, v}^{w}:=\langle\mu(u \otimes v) \mid w\rangle$ so that

$$
\mu(u \otimes v)=\sum_{w \in \mathcal{X}^{*}} \Gamma_{u, v}^{w} w .
$$

2. In the case when $\Gamma_{u, v}^{w}$ is locally finite in w, we say that the given law is dualizable, the arrow ${ }^{t} \mu$ restricts nicely to $A\langle\mathcal{X}\rangle \hookrightarrow A\langle\langle\mathcal{X}\rangle\rangle$ and one can define on the polynomials a comultiplication by

$$
\Delta_{\mu}(w):=\sum_{u, v \in \mathcal{X}^{*}} \Gamma_{u, v}^{w} u \otimes v .
$$

3. When the law μ is dualizable, we have

The arrow Δ_{μ} is unique to be able to close the rectangle and $\Delta_{\mu}(P)$ is defined as above.

Dualizable laws in conc-shuffle bialgebras (2/2)

4. Proof that the arrow $A\langle\mathcal{X}\rangle \otimes_{A} A\langle\mathcal{X}\rangle \longrightarrow A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle$ is into : Let $T=\sum_{i=1}^{n} P_{i} \otimes_{A} Q_{i}$ such that $\Phi(T)=0$. Rewriting T as a finitely supported sum $T=\sum_{u, v \in \mathcal{X}^{*}} c_{u, v} u \otimes v$ (this is indeed the iso between $A\langle\mathcal{X}\rangle \otimes_{A} A\langle\mathcal{X}\rangle$ and $\left.A\left[\mathcal{X}^{*} \times \mathcal{X}^{*}\right]\right), \Phi(T)$ is by definition of Φ the double series (here a polynomial) s.t. $\langle\Phi(T) \mid u \otimes v\rangle=c_{u, v}$. If $\Phi(T)=0$, then for all $(u, v) \in \mathcal{X}^{*} \times \mathcal{X}^{*}, c_{u, v}=0$ entailing $T=0$.

We extend by linearity and infinite sums, for $S \in A\langle\langle Y\rangle$ (resp. $A\langle\langle\mathcal{X}\rangle)$), by

$$
\begin{aligned}
& \Delta_{+ \pm} S=\sum_{Y}\langle S \mid w\rangle \Delta_{+ \pm} w \in A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right\rangle, \\
& \Delta_{\text {conc }} S=\sum_{w \in \mathcal{X}^{*}}^{\sum_{w \in Y^{*}}}\langle S \mid w\rangle \Delta_{\text {conc }} w \in A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle, \\
& \Delta_{ш} S=\sum_{w \in \mathcal{X}^{*}}\langle S \mid w\rangle \Delta_{ш} w \in A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle .
\end{aligned}
$$

$A\langle\langle\mathcal{X}\rangle\rangle \otimes A\langle\langle\mathcal{X}\rangle\rangle$ embeds injectively in $\left.{ }^{6} A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle \cong[A\langle\langle\mathcal{X}\rangle\rangle]\langle\mathcal{X}\rangle\right\rangle$.
6. $A\langle\langle\mathcal{X}\rangle\rangle \otimes A\langle\langle\mathcal{X}\rangle\rangle$ contains the elements of the form $\sum_{i \in I}$ finite $G_{i} \otimes D_{i}$, for $\left(G_{i}, D_{i}\right) \in A\langle\langle\mathcal{X}\rangle\rangle \times A\langle\langle\mathcal{X}\rangle\rangle$. But since elements of $M \otimes N$ are finite combination of $m_{i} \otimes n_{i}, m_{i} \in M, n_{i} \in N$ then $\sum_{i \geq 0} u^{i} \otimes v^{i}$ belongs to $A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle$ and does not belong to $A\langle\langle\mathcal{X}\rangle\rangle \otimes A\langle\langle\mathcal{X}\rangle\rangle$, for $u, v \in \mathcal{X}^{\geq 1}$.

Extended Ree's theorem

Let $S \in A\langle\langle Y\rangle\rangle($ resp. $A\langle\langle\mathcal{X}\rangle\rangle), A$ is a commutative ring containing \mathbb{Q}.
The series S is said to be

1. a $+($ resp. conc, $w)$-character iff, for any $w, v \in Y^{*}\left(\right.$ resp. $\left.\mathcal{X}^{*}\right)$, $\langle S \mid w\rangle\langle S \mid v\rangle=\langle S \mid w \leftarrow v\rangle(r e s p .\langle S \mid w v\rangle,\langle S \mid w ш v\rangle)$ and $\langle S \mid 1\rangle=1$.
2. an infinitesimal + (resp. conc, w)-character iff, for any $w, v \in Y^{*}\left(\right.$ resp. $\left.\mathcal{X}^{*}\right),\langle S \mid w+v\rangle=\langle S \mid w\rangle\left\langle v \mid 1_{Y^{*}}\right\rangle+\left\langle w \mid 1_{Y^{*}}\right\rangle\langle S \mid v\rangle$ (resp. $\langle S \mid w v\rangle=\langle S \mid w\rangle\left\langle v \mid 1_{\mathcal{X}^{*}}\right\rangle+\left\langle w \mid 1_{\mathcal{X}^{*}}\right\rangle\langle S \mid v\rangle$, $\left.\langle S \mid w ш v\rangle=\langle S \mid w\rangle\left\langle v \mid 1_{\mathcal{X}^{*}}\right\rangle+\left\langle w \mid 1_{\mathcal{X}^{*}}\right\rangle\langle S \mid v\rangle\right)$.
3. a group-like series iff $\left\langle S \mid 1_{\mathcal{X}^{*}}\right\rangle=1$ and $\Delta_{++} S=\Phi(S \otimes S)$ (resp. $\left.\Delta_{\text {conc }} S=\Phi(S \otimes S), \Delta_{+ \pm} S=\Phi(S \otimes S)\right)$.
4. a primitive series iff $\Delta_{t_{+}} S=1_{Y^{*}} \otimes S+S \otimes 1_{Y^{*}}$ (resp.
$\left.\Delta_{\text {conc }} S=1_{\mathcal{X}^{*}} \otimes S+S \otimes 1_{\mathcal{X}^{*}}, \Delta_{ш} S=1_{\mathcal{X}^{*}} \otimes S+S \otimes 1_{\mathcal{X}^{*}}\right)$.
Then the following assertions are equivalent
5. S is a \downarrow (resp. conc and $ш$)-character.
6. $\log S$ an infinitesimal $+\Perp$ (resp. conc and $ш$)-character.
7. S is group-like, for $\Delta_{+ \pm}\left(\right.$resp. $\Delta_{\text {conc }}$ and $\left.\Delta_{ш}\right)$.
8. $\log S$ is primitive, for $\Delta_{++}\left(r e s p . \Delta_{\text {conc }}\right.$ and $\left.\Delta_{\dot{\amalg}}\right)$

Extension by continuity (infinite sums)

Now, suppose that the ring A (containing \mathbb{Q}) is a field \mathbf{k}. Then

$$
\Delta_{ш}: \mathbf{k}\langle\mathcal{X}\rangle \rightarrow \mathbf{k}\langle\mathcal{X}\rangle \otimes \mathbf{k}\langle\mathcal{X}\rangle \text { and } \Delta_{+ \pm}: \mathbf{k}\langle Y\rangle \rightarrow \mathbf{k}\langle Y\rangle \otimes \mathbf{k}\langle Y\rangle
$$

are graded for the multidegree. Then $\Delta_{ \pm \pm}$is graded for the length. Their extension to the completions (i.e. $\mathbf{k}\langle\langle\mathcal{X}\rangle\rangle$ and $\mathbf{k}\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle$) are continuous and then, when exist, commute with infinite sums. Hence ${ }^{7,8}$,

$$
\forall c \in \mathbf{k}, \quad \Delta_{ш}(c x)^{*}=\sum_{n \geq 0} c^{n} \Delta_{\amalg} x^{n}=\sum_{n \geq 0} c^{n} \sum_{j=0}^{n}\binom{n}{j} x^{j} \otimes x^{n-j} .
$$

For $c \in \mathbb{N}_{\geq 2}$ which is neither a field nor a ring (containing \mathbb{Q}), we also get

$$
\begin{gathered}
(c x)^{*}=(c-1)^{-1} \sum_{a, b \in \mathbb{N} \geq 1, a+b=c}(a x)^{*} ш(b x)^{*} \quad \in \mathbb{N} \geq 2\langle\langle\mathcal{X}\rangle\rangle, \\
\Delta_{ш}(c x)^{*} \neq(c-1)^{-1} \sum_{a, b \in \mathbb{N} \geq 1, a+b=c}(a x)^{*} \otimes(b x)^{*} \quad \in \mathbb{Q}\langle\langle\mathcal{X}\rangle\rangle \otimes \mathbb{Q}\langle\langle\mathcal{X}\rangle\rangle,
\end{gathered}
$$

because

$$
\left\langle\mathrm{LHS} \mid x \otimes 1_{\mathcal{X}^{*}}\right\rangle=c \quad \text { and } \quad\left\langle\mathrm{RHS} \mid x \otimes 1_{\mathcal{X}^{*}}\right\rangle=(c-1)^{-1} \sum_{a=1}^{c-1} a=\frac{c}{2}
$$

For $c \in \mathbb{Z}$ (or even $\mathbb{Q}, \mathbb{R}, \mathbb{C}$), the such decomposition is not finite.
7. For $S \in A\langle\langle\mathcal{X}\rangle\rangle$ s.t. $\left\langle S \mid 1_{\mathcal{X}^{*}}\right\rangle=0, S^{*}=\sum_{n \geq 0} S^{n}$ is called Kleene star of S.
8. $\Delta_{ш} x^{n}=\left(\Delta_{ш} x\right)^{n}=\left(1_{\mathcal{X} *}^{*} \otimes x+x \otimes 1_{\mathcal{X}^{*}}\right)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} \otimes x^{n-j}$.

Case of rational series and of $\Delta_{\text {conc }}$

$A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$ denotes the algebraic closure by ${ }^{9}\{$ conc,,$+ *\}$ of $\widehat{A \cdot \mathcal{X}}$ in $A\langle\langle\mathcal{X}\rangle\rangle$.

The dashed arrow may not exist in general, but for any $R \in A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$ admitting (λ, μ, η) as linear representation of dimension n, we can get

$$
{ }^{t} \operatorname{conc}(R)=\Phi\left(\sum_{i=1}^{n} G_{i} \otimes D_{i}\right) .
$$

Indeed, since $\langle R \mid x y\rangle=\lambda \mu(x y) \eta=\lambda \mu(x) \mu(y) \eta(x, y \in \mathcal{X})$ then, letting e_{i} is the vector such that ${ }^{t} e_{i}=\left(\begin{array}{lllllll}0 & \ldots & 0 & 1 & 0 & \ldots & 0\end{array}\right)$, one has

$$
\langle R \mid x y\rangle=\sum_{i=1}^{n} \lambda \mu(x) e_{i}^{t} e_{i} \mu(y) \eta=\sum_{i=1}^{n}\left\langle G_{i} \mid x\right\rangle\left\langle D_{i} \mid y\right\rangle=\sum_{i=1}^{n}\left\langle G_{i} \otimes D_{i} \mid x \otimes y\right\rangle
$$

$G_{i}\left(\right.$ resp. $\left.D_{i}\right)$ admits then $\left(\lambda, \mu, e_{i}\right)\left(\right.$ resp. $\left.\left({ }^{t} e_{i}, \mu, \eta\right)\right)$ as linear representation. If $A=\mathbf{k}$ being a field then, due to the injectivity of Φ, all expressions of the type $\sum_{i=1}^{n} G_{i} \otimes D_{i}$, of course, coincide. Hence, the dashed arrow (a restriction of $\Delta_{\text {conc }}$) in the above diagram is well-defined.
9. $A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$ is closed under $ш . A^{\text {rat }}\langle\langle Y\rangle$ is also closed under \uplus.

Representative series and Sweedler's dual

Theorem 6 (representative series)
Let $S \in A\langle\mathcal{X}\rangle$. The following assertions are equivalent

1. The series S belongs to $\left.A^{\text {rat }}\langle\mathcal{X}\rangle\right\rangle$.
2. There exists a linear representation (ν, μ, η), of rank n, for S with $\nu \in M_{1, n}(A), \eta \in M_{n, 1}(A)$ and a morphism of monoids $\mu: \mathcal{X}^{*} \rightarrow M_{n, n}(A)$ s.t., for any $w \in \mathcal{X}^{*},\langle S \mid w\rangle=\nu \mu(w) \eta$.
3. The shifts ${ }^{10}\{S \triangleleft w\}_{w \in \mathcal{X}^{*}}$ (resp. $\{w \triangleright S\}_{w \in \mathcal{X}^{*}}$) lie within a finitely generated shift-invariant A-module.

Moreover, if A is a field \mathbf{k}, the previous assertions are equivalent to
4. There exist $\left(G_{i}, D_{i}\right)_{i \in F \text { finite }}$ s.t. $\Delta_{\text {conc }}(S)=\sum_{i \in F \text { finite }} G_{i} \otimes D_{i}$.

Hence, $\left.\mathcal{H}^{\circ}{ }_{\boldsymbol{w}}(\mathcal{X})=\left(\mathbf{k}^{\text {rat }}\langle\mathcal{X}\rangle\right\rangle, ш, 1_{\mathcal{X}^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right)$ and
$\mathcal{H}_{+ \pm}^{\circ}(Y)=\left(\mathbf{k}^{\mathrm{rat}}\langle\langle Y\rangle\rangle,\left\llcorner_{+}, 1_{\mathcal{X}^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right)\right.$.
Now, let $A_{\text {exc }}\langle\langle\mathcal{X}\rangle\rangle$ (resp. $A_{\text {exc }}^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$) be the set of exchangeable ${ }^{11}$ series (resp. series admitting a linear representation with commuting matrices).
10. The left (resp. right) shift of S by P is $P \triangleright S$ (resp. $S \triangleleft P$) defined by, for $w \in \mathcal{X}^{*},\langle P \triangleright S \mid w\rangle=\langle S \mid w P\rangle($ resp. $\langle S \triangleleft P \mid w\rangle=\langle S \mid P w\rangle)$.
11. i.e. if $S \in A_{\text {exc }}\langle\langle\mathcal{X}\rangle\rangle$ then $\left(\forall u, v \in \mathcal{X}^{*}\right)\left((\forall x \in \mathcal{X})\left(|u|_{x}=\|\left. v\right|_{x}\right) \Rightarrow\langle S \mid u\rangle=\langle S \mid v\rangle\right)$

Kleene stars of the plane and conc-characters

For any $S \in A\langle\langle\mathcal{X}\rangle\rangle$, let ∇S denotes $S-1_{\mathcal{X}}$.
Theorem 7 (rational exchangeable series)

1. $A_{\text {exc }}^{\mathrm{rat}}\langle\langle\mathcal{X}\rangle\rangle \subset A^{\mathrm{rat}}\langle\langle\mathcal{X}\rangle\rangle \cap A_{\mathrm{exc}}\langle\langle\mathcal{X}\rangle\rangle$. If A is a field then the equality holds and $A_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle=A^{\text {rat }}\left\langle\left\langle x_{0}\right\rangle\right\rangle ш A^{\text {rat }}\left\langle\left\langle x_{1}\right\rangle\right\rangle$ and, for the algebra of series over subalphabets $A_{\text {fin }}^{\mathrm{rat}}\langle\langle Y\rangle\rangle:=\cup_{F \subset_{\text {finite }} Y} A^{\mathrm{rat}}\langle\langle F\rangle\rangle$, we get ${ }^{12}$ $A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle \cap A_{\mathrm{fin}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle=\cup_{k \geq 0} A^{\mathrm{rat}}\left\langle\left\langle y_{1}\right\rangle\right\rangle ш \ldots$... $A^{\mathrm{rat}}\left\langle\left\langle y_{k}\right\rangle\right\rangle \subsetneq A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle$.
2. $\forall x \in \mathcal{X}, A^{\text {rat }}\langle\langle x\rangle\rangle=\left\{P(1-x Q)^{-1}\right\}_{P, Q \in A[x]}$. If \mathbf{k} is an algebraically closed field then $\mathbf{k}^{\text {rat }}\langle\langle x\rangle\rangle=\operatorname{span}_{\mathbf{k}}\left\{(a x)^{*} ш \mathbf{k}\langle x\rangle \mid a \in K\right\}$.
3. If A is a \mathbb{Q}-algebra without zero divisors, $\left\{x^{*}\right\}_{x \in \mathcal{X}}$ (resp. $\left\{y^{*}\right\}_{y \in Y}$) are conc-character and algebraically independent over $(A\langle\mathcal{X}\rangle$, ш $)$ (resp. $(A\langle Y\rangle, ш))$ within $\left(A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle, ш\right)\left(\operatorname{resp} .\left(A^{\text {rat }}\langle\langle Y\rangle\rangle, ш\right)\right)$.
4. Let $S \in A\langle\langle\mathcal{X}\rangle\rangle$. If $A=\mathbf{k}$, a field, then t.f.a.e.
a) S is groupe-like, for $\Delta_{\text {conc }}$.
b) There exists $M:=\sum_{x \in \mathcal{X}} c_{x} x \in \widehat{\mathbf{k} . \mathcal{X}}$ s.t. $S=M^{*}$.
c) There exists $M:=\sum_{x \in \mathcal{X}} c_{x} x \in \widehat{\mathbf{k} . \mathcal{X}}$ s.t. $\nabla S=M S=S M$.
5. The following identity lives in $A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle$ but not in $A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle \cap A_{\mathrm{fin}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle$,

Triangular sub bialgebras of $\left(A^{\mathrm{rat}}\langle\langle X\rangle\rangle, ш, 1_{X^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right)$

Let (ν, μ, η) be a linear representation of $R \in A^{\mathrm{rat}}\langle\langle X\rangle$ and \mathcal{L} be the Lie algebra generated by $\{\mu(x)\}_{x \in X}$.
Let $M(x):=\mu(x) x$, for $x \in X$. Then $R=\nu M\left(X^{*}\right) \eta$. If $\{\mu(x)\}_{x \in X}$ are triangular then let $D(X)$ (resp. $N(X))$ be the diagonal (resp. nilpotent) letter matrix s.t. $M(X)=D(X)+N(X)$ then
$M\left(X^{*}\right)=\left(\left(D\left(X^{*}\right) T(X)\right)^{*} D\left(X^{*}\right)\right)$. Moreover, if $X=\left\{x_{0}, x_{1}\right\}$ then
$M\left(X^{*}\right)=\left(M\left(x_{1}^{*}\right) M\left(x_{0}\right)\right)^{*} M\left(x_{1}^{*}\right)=\left(M\left(x_{0}^{*}\right) M\left(x_{1}\right)\right)^{*} M\left(x_{0}^{*}\right)$.
If A is an algabraically closed field, the modules generated by the following families are closed by conc, $ш$ and coproducts:
(F_{0}) $E_{1} x_{1} \ldots E_{j} x_{1} E_{j+1}$, where $E_{k} \in A^{\mathrm{rat}}\left\langle\left\langle x_{0}\right\rangle\right\rangle$,
(F_{1}) $E_{1} x_{0} \ldots E_{j} x_{0} E_{j+1}$, where $E_{k} \in A^{\mathrm{rat}}\left\langle\left\langle x_{1}\right\rangle\right\rangle$,
$\left(F_{2}\right) \quad E_{1} x_{i_{1}} \ldots E_{j} x_{i_{j}} E_{j+1}$, where $\left.\quad E_{k} \in A_{\mathrm{exc}}^{\mathrm{rat}}\langle X\rangle\right\rangle, x_{i_{k}} \in X$.
It follows then that

1. R is a linear combination of expressions in the form $\left(F_{0}\right)$ (resp. $\left.\left(F_{1}\right)\right)$ iff $M\left(x_{1}^{*}\right) M\left(x_{0}\right)$ (resp. $M\left(x_{0}^{*}\right) M\left(x_{1}\right)$) is nilpotent,
2. R is a linear combination of expressions in the form $\left(F_{2}\right)$ iff \mathcal{L} is solvable. Thus, if $R \in A_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle \boldsymbol{A}\langle X\rangle$ then \mathcal{L} is nilpotent.

CONTINUITY OVER CHEN SERIES

Continuity, indiscernability and growth condition

For $i=0$, 2 , let $\left(\mathbf{k}_{i},\|\cdot\|_{i}\right)$ be a semi-normed space and $g_{i} \in \mathbb{Z}$.
Definition 8

1. Let $\mathcal{C l}$ be a class of $\mathbf{k}_{1}\left\langle\langle\mathcal{X}\rangle\right.$. Let $S \in \mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle$ and it is said to be
a) continuous over $\mathcal{C l}$ if, for $\Phi \in \mathcal{C l}$, the following sum is convergent

$$
\sum_{w \in \mathcal{X}^{*}}\|\langle S \mid w\rangle\|_{2}\|\langle\Phi \mid w\rangle\|_{1}
$$

We will denote $\langle S \| \Phi\rangle$ the sum $\sum_{w \in \mathcal{X}^{*}}\langle S \mid w\rangle\langle\Phi \mid w\rangle$ and $\mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle{ }^{\text {Cont }}$ the set of continuous power series over $\mathcal{C l}$.
b) indiscernable over $\mathcal{C l}$ iff, for any $\Phi \in \mathcal{C l},\langle S \| \Phi\rangle=0$.
2. Let χ_{1} and χ_{2} be real positive functions over \mathcal{X}^{*}. Let $S \in \mathbf{k}_{1}\langle\mathcal{X}\rangle$.
a) S satisfies the χ_{1}-growth condition of order g_{1} if it satisfies

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in \mathcal{X} \geq n, \quad\|\langle S \mid w\rangle\|_{1} \leq K \chi_{1}(w)|w|!^{g_{1}} .
$$

We denote by $\left.\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\mathcal{X}\rangle\right\rangle$ the set of formal power series in $\left.\mathbf{k}_{1}\langle\mathcal{X}\rangle\right\rangle$ satisfying the χ_{1}-growth condition of order g_{1}.
b) If S is continuous over $\left.\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\mathcal{X}\rangle\right\rangle$ then it will be said to be $\left(\chi_{2}, g_{2}\right)$-continuous. The set of formal power series which are $\left(\chi_{2}, g_{2}\right)$-continuous is denoted by $\left.\left.\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\mathcal{X}\rangle\right\rangle\right\rangle^{\text {cont }}$.

Convergence condition

Proposition 1

Let χ_{1} and χ_{2} be real positive functions over \mathcal{X}^{*}.
Let g_{1} and $g_{2} \in \mathbb{Z}$ such that $g_{1}+g_{2} \leq 0$.

1. Let $\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\langle\mathcal{X}\rangle\rangle$ and let $P \in \mathbf{k}_{1}\langle\mathcal{X}\rangle$.

The right residual of S by P belongs to $\left.\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\mathcal{X}\rangle\right\rangle$.
2. Let $R \in \mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\langle\mathcal{X}\rangle\rangle$ and let $Q \in \mathbf{k}_{2}\langle\mathcal{X}\rangle$.

The concatenation $Q R$ belongs to $\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\langle\mathcal{X}\rangle\rangle$.
3. χ_{1}, χ_{2} are morphisms over \mathcal{X}^{*} satisfying $\sum_{x \in \mathcal{X}} \chi_{1}(x) \chi_{2}(x)<1$. If $F_{1} \in \mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\langle\mathcal{X}\rangle\rangle$ (resp. $\left.F_{2} \in \mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\mathcal{X}\rangle\right\rangle$) then F_{1} (resp. F_{2}) is continuous over $\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\langle\mathcal{X}\rangle\rangle$ (resp. $\left.\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\langle\mathcal{X}\rangle\rangle\right)$.
Proposition 2
Let $\mathcal{C l} \subset \mathbf{k}_{1}\langle\langle\mathcal{X}\rangle\rangle$ be a monoid containing $\left\{e^{t x}\right\}_{x \in \mathcal{X}}^{t \in \mathbf{k}_{1}}$. Let $S \in \mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle^{\text {cont }}$.

1. If S is indiscernable over $\mathcal{C l}$ then for any $x \in \mathcal{X}, x \triangleleft S$ and $S \triangleright x$ belong to $\mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle$ cont and they are indiscernable over $\mathcal{C l}$.
2. S is indiscernable over $\mathcal{C l}$ iff $S=0$.

Iterated integrals over $\omega_{i}(z)=u_{x_{i}}(z) d z$ and along $z_{0} \rightsquigarrow z$

Let Ω be a simply connected domain admitting $1_{\mathcal{H}(\Omega)}$ as neutral element. Let $\mathcal{A}:=\mathcal{H}(\Omega)$ and let \mathcal{C}_{0} be a differential subring of $\mathcal{A}\left(\partial\left(\mathcal{C}_{0}\right) \subset \mathcal{C}_{0}\right)$ which is an integral domain containing \mathbb{C}.
$\mathbb{C}\left\{\left\{\left(g_{i}\right)_{i \in 1}\right\}\right\}$ denotes the differential subalgebra of \mathcal{A} generated by $\left(g_{i}\right)_{i \in I}$, i.e. the \mathbb{C}-algebra generated by g_{i} 's and their derivatives
$\left\{u_{x}\right\}_{x \in \mathcal{X}}$: elements in $\mathcal{C}_{0} \cap \mathcal{A}^{-1}$ in correspondence with $\left\{\theta_{x}\right\}_{x \in \mathcal{X}}\left(\theta_{x}=u_{x}^{-1} \partial\right)$.
The iterated integral associated to $x_{i_{1}} \ldots x_{i_{k}} \in \mathcal{X}^{*}$, over the differential forms $\omega_{i}(z)=u_{x_{i}}(z) d z$, and along a path $z_{0} \rightsquigarrow z$ on Ω, is defined by

$$
\begin{aligned}
\alpha_{z_{0}}^{z}\left(1_{\mathcal{X}^{*}}\right) & =1_{\Omega} \\
\alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right) & =\int_{z_{0}}^{z} \omega_{i_{1}}\left(z_{1}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right) . \\
\partial \alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right) & =u_{x_{i_{1}}}(z) \int_{z_{0}}^{z} \omega_{i_{2}}\left(z_{2}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{span}_{\mathbb{C}}\left\{\partial^{\prime} \alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}, l \geq 0} & \subset \operatorname{span}_{\mathbb{C}\left\{\left\{\left(u_{x}\right)_{x \in \mathcal{X}}\right\}\right\}}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}} \\
& \subset \operatorname{span}_{\mathbb{C}\left\{\left\{\left(u_{1}^{ \pm 1}\right)_{\chi \in \mathcal{X}}\right\}\right\}}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}} \\
& \left.\cong \mathbb{C}\left\{\left(u_{x}^{ \pm 1}\right)_{x \in \mathcal{X}\}}\right\}\right\} \otimes_{\mathbb{C}} \operatorname{span}_{\mathbb{C}}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}} ?
\end{aligned}
$$

Iterated integrals and linear differential operators

Let $\mathcal{C}=\mathbb{C}\left\{\left\{\left(u_{x}^{ \pm 1}\right)_{x \in \mathcal{X}}\right\}\right\}$. One has $\theta_{x} \in \mathcal{C}[\partial]$, for $x \in \mathcal{X}$, and $\forall x, y \in \mathcal{X}, \quad \forall w \in \mathcal{X}^{*}, \quad \theta_{x} \alpha_{z_{0}}^{z}(y w)=u_{x}^{-1}(z) u_{y}(z) \alpha_{z_{0}}^{z}(w)$.
Now, let Θ be the morphism $\mathbb{C}\langle\mathcal{X}\rangle \longrightarrow \mathcal{C}[\partial]$ defined as follows

$$
\Theta(w)=\left\{\begin{array}{cll}
\text { Id } & \text { if } & w=1_{\mathcal{X}^{*}} \\
\Theta(u) \theta_{\chi} & \text { if } & w=u x \in \mathcal{X}^{*} \mathcal{X}
\end{array}\right.
$$

One has, for any $w \in \mathcal{X}^{*}$,

1. $\Theta(\tilde{w}) \alpha_{z_{0}}^{z}(w)=1_{\Omega}$, and then $\partial\left(\Theta(\tilde{w}) \alpha_{z_{0}}^{z}(w)\right)=0$.
2. $L_{w} \alpha_{z_{0}}^{z}(\tilde{w})=0$, where $L_{w}:=\partial \Theta(w) \in \mathcal{C}[\partial]$.

Proposition 3

If $\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}$ is \mathcal{C}-linearly independent then

1. $\mathcal{C}\left[\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}\right]$ forms the universal \mathcal{C}-module of solutions of all differential equations $L y=0$,
2. $\mathcal{C}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}$ forms the universal Picard-Vessiot extension related to all differential equations $L y=0$,
where L's are linear differential operators belonging to $\mathcal{C}[\partial]$.

Sections of $\left\{\theta_{x}\right\}_{x \in \mathcal{X}}$

For any $x_{i} \in \mathcal{X}$, let us consider a section of $\theta_{x_{i}}: \theta_{x_{i}} z_{x_{i}}^{z_{0}}=I d$, i.e.

$$
\forall f \in \mathcal{H}(\Omega), \quad \iota_{x_{i}}^{z_{0}} f(z)=\int_{z_{0}}^{z} \omega_{i}(s) f(s)
$$

The operator $\theta_{y} \iota_{x}^{z_{0}}$, for $x \neq y$, admits $u_{y} u_{x}^{-1}$ as eigenvalue, i.e.
$\forall f \in \mathcal{H}(\Omega), \quad\left(\theta_{y} \iota_{x}^{z_{0}}\right) f=u_{y} u_{x}^{-1} f, \quad$ in particular, $\quad\left(\theta_{y} \iota_{x}^{z_{0}}\right) 1_{\Omega}=u_{y} u_{x}^{-1}$.
Now, let $\Im^{z_{0}}$ be the morphism defined as follows

$$
\Im^{z_{0}}(w)=\left\{\begin{array}{cl}
\text { Id } & \text { if } \quad w=1_{\mathcal{X}^{*}} \\
\Im^{z_{0}}(u) \iota_{x}^{z_{0}} & \text { if } \quad w=u x \in \mathcal{X}^{*} \mathcal{X}
\end{array}\right.
$$

Hence, for any $w \in X^{*}, \Im^{z_{0}}(w) 1_{\Omega}=\alpha_{z_{0}}^{z}(w)$.
Example 9 (with $\omega_{0}(z)=z^{-1} d z$ and $\left.\omega_{1}(z)=(1-z)^{-1} d z\right)$
Let $\mathcal{C}:=\mathbb{C}\left[z, z^{-1},(1-z)^{-1}\right]$. Here, $\theta_{x_{0}}=z \partial$ and $\theta_{x_{1}}=(1-z) \partial$. Then

$$
\theta_{x_{0}}+\theta_{x_{1}}=\left[\theta_{x_{1}}, \theta_{x_{0}}\right]=\partial
$$

and, for any $L \in \mathcal{C}[\partial]$, there is $P \in \mathcal{C}\langle X\rangle$ s.t. ${ }^{13} L=\Theta(P)$. One also has

1. $\left(\theta_{x_{0}} \iota_{x_{1}}^{z_{0}}\right)\left(\theta_{x_{1}} \iota_{x_{0}}^{z_{0}}\right)=\left(\theta_{x_{1}} \iota_{x_{0}}^{z_{0}}\right)\left(\theta_{x_{0}} \iota_{x_{1}}^{z_{0}}\right)=\mathrm{Id}$.
2. $\forall w \in X^{*} x_{1}, \Im^{0}(w) 1_{\Omega}=\alpha_{0}^{z}(w)=\operatorname{Li}_{w}(z)$.
3. $\left(\theta_{x_{0}} \iota_{x_{1}}^{z_{0}}\right) 1_{\Omega}=z(1-z)^{-1}$ and $\left(\theta_{x_{1}} \iota_{x_{0}}^{z_{0}}\right) 1_{\Omega}=z^{-1}-1$.
4. i.e. Θ is surjective and non injective. $\operatorname{ker} \Theta$?

Examples of linear differential equation

Example 10 (with $\left.\mathcal{C}_{0}=\mathbb{C}(z)\right)$

$$
\begin{equation*}
(\partial-z) y=0 . \tag{1}
\end{equation*}
$$

1. $e^{z^{2} / 2}$ is solution of (1).
2. $c e^{z^{2} / 2}=e^{z^{2} / 2} e^{\log c}$ is an other solution $(c \in \mathbb{R} \backslash\{0\}$).
3. $\left\{e^{z^{2} / 2}\right\}$ is a fundamental set of solutions of (1).
4. $\mathbf{k}\left\{e^{z^{2} / 2}\right\}$ is a Picard-Vessiot extension related to (1).

For $\theta_{x_{0}}=z \partial$ and $\theta_{x_{1}}=(1-z) \partial$, since $L_{x_{1} x_{0}}=\partial \theta_{x_{1}} \theta_{x_{0}} \in \mathbf{k}[\partial]$ then let

$$
\begin{equation*}
L_{x_{1} x_{0}} y=\left(z(1-z) \partial^{3}+(2-3 z) \partial^{2}-1\right) y=0 \tag{2}
\end{equation*}
$$

1. $L_{x_{1} x_{0}} L_{i_{2}}=0$ meaning that Li_{2} is solution of (2).
2. $c \operatorname{Li}_{2}=\operatorname{Li}_{2} e^{\log c}$ is an other solution $(c \in \mathbb{R} \backslash\{0\})$ but it is not independent to Li_{2}.
3. $\left\{\mathrm{Li}_{2}, \log , 1_{\Omega}\right\}$ is a fundamental set of solutions of (2).
4. $\mathbf{k}\left\{\mathrm{Li}_{2}, \log , 1_{\Omega}\right\}$ is a Picard-Vessiot extension ${ }^{14}$ related to (2).
5. $\mathbf{k}\left\{\operatorname{Li}_{2}(z)\right\}=\mathbf{k} \otimes \mathbb{C}\left[\operatorname{Li}_{2}(z), \log (1-z), \log (z)\right]$.

Chen series of $\left\{\omega_{i}\right\}_{i \geq 1}$ and along $z_{0} \rightsquigarrow z$

For any A containing \mathbb{Q}, we get, on $\mathcal{H}_{\omega}(\mathcal{X})$ and $\mathcal{H}_{++}(Y)$,

$$
\mathcal{D}_{\mathcal{X}}:=\sum_{w \in \mathcal{X}^{*}} w \otimes w=\prod_{l \in \mathcal{L} y n \mathcal{X}}^{\searrow} e^{S_{1} \otimes P_{l}} \text { and } \mathcal{D}_{Y}:=\sum_{w \in \boldsymbol{Y}^{*}} w \otimes w=\prod_{I \in \mathcal{L} y n Y}^{\searrow} e^{\Sigma_{l} \otimes \Pi_{l}} .
$$

Hence, since iterated integrals satisfy $\alpha_{z_{0}}^{z}(u \varpi v)=\alpha_{z_{0}}^{z}(u) \alpha_{z_{0}}^{z}(v)$ $\left(u, v \in \mathcal{X}^{*}\right)$ then the Chen series, $C_{z_{0} \rightsquigarrow z} \in \mathcal{H}(\Omega)\langle\langle\mathcal{X}\rangle\rangle$, is given by

$$
C_{z_{0} \rightsquigarrow z}:=\sum_{w \in \mathcal{X}^{*}} \alpha_{z_{0}}^{z}(w) w=\left(\alpha_{z_{0}}^{z} \otimes \operatorname{Id}\right) \mathcal{D}_{\mathcal{X}}=\prod_{l \in \mathcal{L} y n \mathcal{X}} e^{\alpha_{z_{0}}^{z}\left(S_{l}\right) P_{l}}
$$

and then ${ }^{15} \Delta_{ш} C_{z_{0} \rightsquigarrow z}=C_{z_{0} \rightsquigarrow z} \otimes C_{z_{0} \rightsquigarrow z}$ and $\left\langle C_{z_{0} \rightsquigarrow z} \mid 1_{\mathcal{X}^{*}}\right\rangle=1$.
For any $n \geq 0$, one has $\mathbf{d}^{n} C_{z_{0} \rightsquigarrow z}=p_{n} C_{z_{0} \rightsquigarrow z}$, where ${ }^{16}$

$$
p_{n}=\sum_{\text {wgtr }=n} \sum_{w \in \mathcal{X}^{n}} \prod_{i=1}^{\operatorname{deg} r}\binom{\sum_{j=1}^{i} r_{j}+j-1}{r_{i}} \tau_{\mathbf{r}}(w) \in \mathcal{C}_{0}\langle\mathcal{X}\rangle,
$$

and, for $w=x_{i_{1}} \ldots x_{i_{k}} \in \mathcal{X}^{*}$ associated to the derivation multiindex $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right) \in \mathbb{N}^{k}$ of weight wgtr $=|w|+\sum_{i=1}^{k} r_{i}$ and of degree $\underline{\operatorname{deg}} \mathbf{r}=|w|, \tau_{\mathbf{r}}(w):=\tau_{r_{1}}\left(x_{i_{1}}\right) \ldots \tau_{r_{k}}\left(x_{i_{k}}\right)=\left(\partial^{r_{1}} u_{x_{i_{1}}}\right) x_{i_{1}} \ldots\left(\partial^{r_{k}} u_{x_{i_{k}}}\right) x_{i_{k}}$.
15. $\left\langle C_{z_{0} \rightsquigarrow z} \mid u ш v\right\rangle=\left\langle C_{z_{0} \rightsquigarrow z} \mid u\right\rangle\left\langle C_{z_{0} \sim z} \mid v\right\rangle$ and on the other hand, $\left\langle C_{z_{0} \cdots z} \mid u ш v\right\rangle=\left\langle\Delta_{ш} C_{z_{0} \cdots z} \mid u \otimes v\right\rangle,\left\langle C_{z_{0} \rightsquigarrow z} \mid u\right\rangle\left\langle C_{z_{0} \cdots z} \mid v\right\rangle=\left\langle C_{z_{0} \rightsquigarrow z} \otimes C_{z_{0} \cdots z} \mid u \otimes v\right\rangle$. 16. $\forall S \in \mathcal{H}(\Omega)\langle\langle\mathcal{X}\rangle\rangle, \mathrm{d} S=\sum_{w \in \mathcal{X}^{*}}(\partial\langle S \mid w\rangle) w \in \mathcal{H}(\Omega)\langle\langle\mathcal{X}\rangle\rangle=$

Chen series and differential equations

Let K be a compact on Ω. There is $c_{K} \in \mathbb{R}_{\geq 0}$ and a morphism M_{K} s.t.

$$
\forall w \in \mathcal{X}^{*}, \quad\left\|\left\langle C_{z_{0} w z} \mid w\right\rangle\right\|_{K} \leq c_{K} M_{K}(w)|w|!^{-1} .
$$

Let $R \in \mathbb{C}^{\text {rat }}\langle X X\rangle$ of minimal representation (λ, μ, η) of dimension n. Then

$$
\forall w \in \mathcal{X}^{*}, \quad|\langle R \mid w\rangle| \leq\|\lambda\|_{\infty}^{1, n}\|\mu(w)\|_{\infty}^{n, n}\|\eta\|_{\infty}^{n, 1} .
$$

With these data, we have
Theorem 11
If $c_{K}\|\lambda\|_{\infty}^{1, n}\|\eta\|_{\infty}^{n, 1} \sum_{x \in \mathcal{X}} M_{K}(x)\|\mu(x)\|_{\infty}^{n, n}<1$ then $\alpha_{z_{0}}^{z}(R)=\left\langle R \| C_{z_{0} \rightsquigarrow z}\right\rangle$ and

$$
\forall x \in \mathcal{X}, \quad \theta_{x} \alpha_{z_{0}}^{z}(R)=\sum_{x^{\prime} \in \mathcal{X}} u_{x}^{-1}(z) u_{x^{\prime}}(z) \alpha_{z_{0}}^{z}\left(R \triangleleft x^{\prime}\right) .
$$

Letting $y\left(z_{0}, z\right):=\left\langle R \| C_{z_{0} \rightsquigarrow z}\right\rangle$, the following assertions are equivalent:

1. There is $p \in \mathcal{C}_{0}\langle\mathcal{X}\rangle$ s.t. $\left\langle R \| p C_{z_{0} \rightsquigarrow z}\right\rangle=\left\langle R \triangleleft p \| C_{z_{0} \rightsquigarrow z}\right\rangle=0$.
2. There is $I=0, . ., n-1$ s.t. $\left\{\partial^{k} y\right\}_{0 \leq k \leq 1}$ is \mathcal{C}_{0}-linearly independent and $a_{l}, \ldots, a_{1}, a_{0} \in \mathcal{C}_{0}$ s.t. $\left(a_{l} \partial^{\prime}+\ldots+a_{1} \partial+a_{0}\right) y=0$.
Proposition 4
Let $G \in \mathbb{C}\langle\langle X\rangle\rangle$ and $H \in \mathbb{C}_{\text {exc }}\langle\langle X\rangle\rangle$ s.t. $\alpha_{z_{0}}^{z}(G)=\left\langle G \| C_{z_{0} \rightsquigarrow z}\right\rangle$ and $h\left(\alpha_{z_{0}}^{z}\left(x_{0}\right), \alpha_{z_{0}}^{z}\left(x_{1}\right)\right):=\alpha_{z_{0}}^{z}(H)=\left\langle H \| C_{z_{0} \rightsquigarrow z z}\right\rangle$ exist $\left(X=\left\{x_{0}, x_{1}\right\}\right)$. Then

$$
\alpha_{z_{0}}^{z}(H G)=\left\langle G \mid 1_{X^{*}}\right\rangle \alpha_{z_{0}}^{z}(H)+\int_{z_{0}}^{z} h\left(\alpha_{s}^{z}\left(x_{0}\right), \alpha_{s}^{z}\left(x_{1}\right)\right) d \alpha_{z_{0}}^{s}(G) .
$$

NONCOMMUTATIVE PV THEORY AND INDEPENDENCE VIA WORDS

First step of noncommutative PV theory

The Chen series $C_{z_{0} \rightsquigarrow z}$ satisfies the following differential equation

$$
\begin{gathered}
(N C D E) \quad \mathbf{d} S=M S, \quad \text { with } \quad M=\sum_{x \in \mathcal{X}} u_{x} x . \\
\Delta_{\amalg} M=\sum_{x \in \mathcal{X}} u_{x}\left(1_{\mathcal{X}^{*}} \otimes x+x \otimes 1_{\mathcal{X}^{*}}\right)=1_{\mathcal{X}^{*}} \otimes M+M \otimes 1_{\mathcal{X}^{*}} .
\end{gathered}
$$

The space of solutions of $(N C D E)$ is a right free $\mathbb{C}\langle\langle X\rangle\rangle$-module of rank 1 . By a theorem of Ree, $C_{z_{0} \rightsquigarrow z}$ is a $ш$-group-like solution ${ }^{17}$ of (NCDE). Moreover, if G and H are $ш$-group-like solutions (NCDE) there is a constant Lie series C such that $G=H e^{C}$ (and conversely).
From this, it follows that

- the differential Galois group of $(N C D E)+ш$-group-like is the group ${ }^{18}\left\{e^{C}\right\}_{C \in \mathcal{L i e}}^{C, 1_{\Omega}}$ $\left.\langle\mathcal{X}\rangle\right\rangle$.
Which leads us to the following definition
- the PV extension related to $(N C D E)$ is $\widehat{\mathcal{C}_{0} \cdot \mathcal{X}}\left\{C_{z_{0} \rightsquigarrow z}\right\}$.
$\underline{\left.\text { It, of course, is such that } \operatorname{Const}\left(\mathcal{C}_{0}\langle\mathcal{X}\rangle\right\rangle\right)=\operatorname{ker} \mathbf{d}=\mathbb{C} .1_{\Omega}\langle\langle\mathcal{X}\rangle\rangle \text {. } ~}$

17. It can be obtained as the limit of a convergent Picard iteration, initialized at $\left\langle C_{\mathcal{Z}_{0} \rightsquigarrow z} \mid 1_{\mathcal{X}^{*}}\right\rangle=1_{\mathcal{H}(\Omega)} 1_{\mathcal{X}^{*}}$, for ultrametric distance.
18. In fact, the Hausdorff group (group of characters) of $\mathcal{H}_{\text {島 }}(\mathcal{X})$,

Basic triangular theorem over a differential ring

Suppose that the \mathbb{C}-commutative ring \mathcal{A} is without zero divisors and equipped with a differential operator ∂ such that $\mathbb{C}=\operatorname{ker} \partial$.
Let $S \in \mathcal{A}\langle\langle\mathcal{X}\rangle\rangle$ be a group-like solution of (NCDE) in the following form

$$
S=\sum_{w \in \mathcal{X}^{*}}\langle S \mid w\rangle w=\sum_{w \in \mathcal{X}^{*}}\left\langle S \mid S_{w}\right\rangle P_{w}=\prod_{l \in \mathcal{L} y n \mathcal{X}}^{\nu} e^{\left\langle S \mid S_{l}\right\rangle P_{1}} .
$$

Then

1. If $H \in \mathcal{A}\langle\langle\mathcal{X}\rangle\rangle$ is another grouplike solution then there exists $C \in \mathcal{L i e} \mathcal{A}_{\mathcal{A}}\langle\langle\mathcal{X}\rangle\rangle$ such that $S=H e^{C}$ (and conversely).
2. The following assertions are equivalent
a) $\{\langle S \mid w\rangle\}_{w \in \mathcal{X}}$ is \mathcal{C}_{0}-linearly independent,
b) $\{\langle S \mid /\rangle\}_{\text {I } \mathcal{L} \text { yn } \mathcal{X}}$ is \mathcal{C}_{0}-algebraically independent,
c) $\{\langle S \mid x\rangle\}_{x \in \mathcal{X}}$ is \mathcal{C}_{0}-algebraically independent,
d) $\{\langle S \mid x\rangle\}_{x \in \mathcal{X} \cup\left\{1_{\mathcal{X}^{*}}\right\}}$ is \mathcal{C}_{0}-linearly independent,
e) $\left\{u_{x}\right\}_{x \in \mathcal{X}}$ is such that, for $f \in \operatorname{Frac}\left(\mathcal{C}_{0}\right)$ and $\left(c_{x}\right)_{x \in \mathcal{X}} \in \mathbb{C}^{(\mathcal{X})}$,

$$
\sum_{x \in \mathcal{X}} c_{x} u_{x}=\partial f \quad \Longrightarrow \quad(\forall x \in \mathcal{X})\left(c_{x}=0\right)
$$

f) $\left(u_{x}\right)_{x \in \mathcal{X}}$ is free over \mathbb{C} and $\partial \operatorname{Frac}\left(\mathcal{C}_{0}\right) \cap \operatorname{span}_{\mathbb{C}}\left\{u_{x}\right\}_{x \in \mathcal{X}} \equiv\{0\}$.

Examples of positive cases over $\mathcal{X}=\{x\}, \mathcal{A}=(\mathcal{H}(\Omega), \partial)$

1. $\Omega=\mathbb{C}, u_{x}(z)=1_{\Omega}, \mathcal{C}_{0}=\mathbb{C}\left\{\left\{u_{x}^{ \pm 1}\right\}\right\}=\mathbb{C}$.
$\alpha_{0}^{z}\left(x^{n}\right)=z^{n} / n!$, for $n \geq 1$. Thus, $\mathrm{d} S=x S$ and

$$
S=\sum_{n \geq 0} \alpha_{0}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{z^{n}}{n!} x^{n}=e^{z x} .
$$

Moreover, $\alpha_{0}^{z}(x)=z$ which is transcendent over \mathcal{C}_{0} and the family $\left\{\alpha_{0}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is \mathcal{C}_{0}-free. Let $f \in \mathcal{C}_{0}$ then $\partial f=0$. Thus, if $\partial f=c u_{x}$ then $c=0$.
2. $\Omega=\mathbb{C} \backslash]-\infty, 0], u_{x}(z)=z^{-1}, \mathcal{C}_{0}=\mathbb{C}\left\{\left\{z^{ \pm 1}\right\}\right\}=\mathbb{C}\left[z^{ \pm 1}\right] \subset \mathbb{C}(z)$.
$\alpha_{1}^{z}\left(x^{n}\right)=\log ^{n}(z) / n!$, for $n \geq 1$. Thus $\mathrm{d} S=z^{-1} \times S$ and

$$
S=\sum_{n \geq 0} \alpha_{1}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{\log ^{n}(z)}{n!} x^{n}=z^{x} .
$$

Moreover, $\alpha_{1}^{z}(x)=\log (z)$ which is transcendent over $\mathbb{C}(z)$ then over $\mathbb{C}\left[z^{ \pm 1}\right]$. The family the family $\left\{\alpha_{1}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is $\mathbb{C}(z)$-free and then \mathcal{C}_{0}-free. Let $f \in \mathcal{C}_{0}$ then $\partial f \in \operatorname{span}_{\mathbb{C}}\left\{z^{ \pm n}\right\}_{n \neq 1}$. Thus,

$$
\text { if } \partial f=c u_{x} \text { then } c=0 .
$$

Examples of negative cases over $\mathcal{X}=\{x\}, \mathcal{A}=(\mathcal{H}(\Omega), \partial)$

1. $\Omega=\mathbb{C}, u_{x}(z)=e^{z}, \mathcal{C}_{0}=\mathbb{C}\left\{\left\{e^{ \pm z}\right\}\right\}=\mathbb{C}\left[e^{ \pm z}\right]$.
$\alpha_{0}^{z}\left(x^{n}\right)=\left(e^{z}-1\right)^{n} / n!$, for $n \geq 1$. Thus, $\mathbf{d} S=e^{z} x S$ and

$$
S=\sum_{n \geq 0} \alpha_{0}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{\left(e^{z}-1\right)^{n}}{n!} x^{n}=e^{\left(e^{z}-1\right) x}
$$

Moreover, $\alpha_{0}^{z}(x)=e^{z}-1$ which is not transcendent over \mathcal{C}_{0} and and $\left\{\alpha_{0}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is not \mathcal{C}_{0}-free. If $f(z)=c e^{z} \in \mathcal{C}_{0}(c \neq 0)$ then $\partial f(z)=c e^{z}=c u_{x}(z)$.
2. $\Omega=\mathbb{C} \backslash]-\infty, 0], u_{x}(z)=z^{a}(a \notin \mathbb{Q})$,
$\mathcal{C}_{0}=\mathbb{C}\left\{\left\{z, z^{ \pm a}\right\}\right\}=\operatorname{span}_{\mathbb{C}}\left\{z^{k a+\prime}\right\}_{k, l \in \mathbb{Z}}$.
$\alpha_{0}^{z}\left(x^{n}\right)=(a+1)^{-n} z^{n(a+1)} / n!$, for $n \geq 1$. Thus, $\mathbf{d} S=z^{a} \times S$ and

$$
S=\sum_{n \geq 0} \alpha_{0}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{z^{n(a+1)}}{(a+1)^{n} n!} x^{n}=e^{(a+1)^{-1} z^{(a+1)} x}
$$

Moreover, $\alpha_{0}^{z}(x)=z^{a+1} /(a+1)$ which is not transcendent over \mathcal{C}_{0} and $\left\{\alpha_{0}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is not \mathcal{C}_{0}-free. If $f(z)=c z^{a+1} /(a+1) \in \mathcal{C}_{0}$ $(c \neq 0)$ then $\partial f(z)=c z^{a}=c u_{x}(z)$.

Chen series of $\omega_{0}(z)=z^{-1} d z$ and $\omega_{1}(z)=(1-z)^{-1} d z$

Let $\gamma_{0}(\varepsilon)$ and $\gamma_{1}(\varepsilon)$ be the circular paths of radius ε encircling 0 and 1 clockwise, respectively. In particular, letting $\beta=\beta_{1}-\beta_{0}$, one considers

$$
\begin{array}{lll}
\gamma_{0}(\varepsilon, \beta) & = & \varepsilon e^{\mathrm{i} \beta_{0}} \rightsquigarrow \varepsilon \mathrm{i}^{\mathrm{i} \beta_{1}} \\
\gamma_{1}(\varepsilon, \beta) & =1-\varepsilon e^{\mathrm{i} \beta_{0}} \rightsquigarrow 1-\varepsilon e^{\mathrm{i} \beta_{1}} & \subset \\
\gamma_{0}(\varepsilon), \\
\gamma_{1}(\varepsilon) .
\end{array}
$$

On the one hand, one has, for any $i=0$ or 1 and $w \in X^{+}$,

$$
\left|\left\langle C_{\gamma_{i}(\varepsilon, \beta)} \mid w\right\rangle\right| \leq \varepsilon^{\mid m x_{x_{i}}} \beta^{|w|}|w|!^{-1} .
$$

It follows then

$$
C_{\gamma_{i}(\varepsilon, \beta)}=e^{\mathrm{i} \beta x_{i}}+o(\varepsilon) \quad \text { and } \quad C_{\gamma_{i}(\varepsilon)}=e^{2 \mathrm{i} \pi x_{i}}+o(\varepsilon)
$$

Hence ${ }^{19}$, for $R \in \mathbb{C}^{\text {rat }}\langle\langle X\rangle\rangle$ of minimal representation (λ, μ, η), one has

$$
\begin{aligned}
\left\langle R \| C_{\gamma_{i}(\varepsilon, \beta)}\right\rangle & =\lambda\left(\prod_{I \in \mathcal{L} y n X}^{\geq} e^{\alpha_{\gamma_{i}(\varepsilon, \beta)}\left(S_{l}\right) \mu\left(P_{l}\right)}\right) \eta, \\
\left\langle R \| C_{\gamma_{i}(\varepsilon)}\right\rangle & =\lambda\left(\prod_{I \in \mathcal{L} y n X}^{\geq} e^{\alpha_{\gamma_{i}(\varepsilon)}\left(S_{l}\right) \mu\left(P_{l}\right)}\right) \eta .
\end{aligned}
$$

19. Recall that the map $\alpha_{z_{0}}^{z}: \mathbb{C}^{\text {rat }}\langle\langle X\rangle \rightarrow \mathcal{H}(\Omega)$ is not injective. For example, $\alpha_{z_{0}}^{z}\left(z_{0} x_{0}^{*}+\left(1-z_{0}\right)\left(-x_{1}\right)^{*}-1_{X^{*}}\right)=0$.

Dom(Li.)

Proposition 5
Let $\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$ be the set of $S=\sum_{n \geq 0} S_{n}$ with $S_{n}=\sum_{|w|=n}\langle S \mid w\rangle w$ s.t. $\sum_{n \geq 0} \operatorname{Li}_{S_{n}}$ converges uniformly on any compact of Ω. Then $\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$, containing $\mathbb{C}_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle ш \mathbb{C}\langle X\rangle$, is closed by shuffle and then $\operatorname{Li}_{\boldsymbol{S}} T=\operatorname{Li}_{S} \operatorname{Li}_{T}$, for S and $T \in \operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$.
Proposition $6\left(\mathrm{~L}(z)=C_{z_{0} \rightsquigarrow z} \mathrm{~L}\left(z_{0}\right)\right)$
Let $\mathcal{C}:=\mathbb{C}\left[z^{a},(1-z)^{b}\right]_{a, b \in \mathbb{C}}$. For $R \in \operatorname{Dom}\left(\operatorname{Li}_{\bullet}\right)$, let $\rho:=\langle R \| \mathrm{L}\rangle$. Then, for $n \geq 0, \partial^{n} \rho=\left\langle R \| \mathbf{d}^{n} \mathrm{~L}\right\rangle$ and $\mathbf{d}^{n} \mathrm{~L}=p_{n} \mathrm{~L}$, where p_{n} is given previously, with $\tau_{r}\left(x_{0}\right)=-r!(-z)^{-(r+1)} x_{0}$ and $\tau_{r}\left(x_{1}\right)=r!(1-z)^{-(r+1)} x_{1}$.
The following assertions are equivalent :

1. ρ satisfies a differential equation with coefficients in (\mathcal{C}, ∂).
2. There exists $P \in \mathcal{C}\langle X\rangle$ such that $\langle R \| P \mathrm{~L}\rangle=\langle R \triangleleft P \| \mathrm{L}\rangle=0$.

Example $12\left(\omega_{0}(z)=z^{-1} d z, \omega_{1}(z)=(1-z)^{-1} d z \&|c|<1\right)$

$$
\begin{aligned}
\operatorname{Li}_{\left(c x_{0}\right)^{*} x_{1}}(z)=\alpha_{0}^{z}\left(\left(c x_{0}\right)^{*} x_{1}\right) & =\int_{0}^{z} e^{c \log (z / s)} \omega_{1}(s)
\end{aligned}=z^{c} \int_{0}^{z} \sum_{n \geq 0} s^{n-c} d s .
$$

Bibliography

V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, L. Kane, C. Tollu.- Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization, Journal of Symbolic Computation (2015).
C. Costermans, J.Y. Enjalbert and V. Hoang Ngoc Minh.- Algorithmic and combinatoric aspects of multiple harmonic sums, Discrete Mathematics \& Theoretical Computer Science Proceedings, 2005.
M. Deneufchâtel, G.H.E. Duchamp, V. Hoang Ngoc Minh, A.I. Solomon.- Independence of hyperlogarithms over function fields via algebraic combinatorics, in LNCS (2011), 6742.
G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo, K. Penson, P. Simonnet.- Mathematical renormalization in quantum electrodynamics via noncommutative generating series, in "Applications of Computer Algebra", Springer Proceedings in Mathematics and Statistics, pp. 59-100 (2017).
G.H.E. Duchamp, V. Hoang Ngoc Minh, K.A. Penson.- About Some Drinfel'd Associators, International Workshop on Computer Algebra in Scientific Computing CASC 2018 - Lille, 17-21 September 2018.
G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo.- Kleene stars of the plane, polylogarithms and symmetries, Theoretical Computer Science, Volume 800, 31 December 2019, Pages 52-72
V.Hoang Ngoc Minh, G. Jacob.- Symbolic Integration of meromorphic differential equation via Dirichlet functions, Discrete Mathematics 210, pp. 87-116, 2000.

V. Hoang Ngoc Minh.- Differential Galois groups and noncommutative generating series of polylogarithms, Automata, Combinatorics \& Geometry, World Multi-conf. on Systemics, Cybernetics \& Informatics, Florida, 2003.
V. Hoang Ngoc Minh.- On the solutions of the universal differential equation with three regular singularities (On solutions of $K Z_{3}$), CONFLUENTES MATHEMATICI (2020).

[^0]: 2. Subject to convergence.
