On universal differential equations

V. Hoang Ngoc Minh
Université Lille, 1 Place Déliot, 59024 Lille, France.

Séminaire Combinatoire, Informatique et Physique
23 Février, 2 Mars & 16 2021, Villetaneuse
Outline

1. Introduction
 1.1 Picard-Vessiot theory of ordinary differential equation
 1.2 Fuchsian linear differential equations
 1.3 Nonlinear differential equations

2. Dual laws and representative series
 2.1 conc-shuffle and conc-stuffle bialgebras
 2.2 Dualizable laws in conc-shuffle bialgebras
 2.3 Representative series and Sweedler’s dual

3. Continuity over Chen series
 3.1 Continuity, indiscernability and growth condition
 3.2 Iterated integrals
 3.3 Chen series

4. Noncommutative PV theory and independences via words
 4.1 Noncommutative differential equations
 4.2 First step of noncommutative PV theory
 4.3 Independences over differential field & differential ring
INTRODUCTION
Picard-Vessiot theory of ordinary differential equation

\((k, \partial)\) a commutative differential ring without zero divisors.
\(\text{Const}(k) = \{ c \in k | \partial c = 0 \}\) is supposed to be a field.

\(\text{(ODE)} \quad (a_n \partial^n + a_{n-1} \partial^{n-1} + \ldots + a_0)y = 0, \quad a_0, \ldots, a_{n-1}, a_n \in k.\)
\(a_n^{-1}\) is supposed to exist.

Definition 1

1. Let \(y_1, \ldots, y_n\) be \(\text{Const}(k)\)-linearly independent solutions of \((\text{ODE})\).
 Then \(\{y_1, \ldots, y_n\}\) is called a fundamental set of solutions of \((\text{ODE})\) and it generates a \(\text{Const}(k)\)-vector subspace of dimension at most \(n\).

2. If \(^1 M = k\{y_1, \ldots, y_n\}\) and \(\text{Const}(M) = \text{Const}(k)\) then \(M\) is called a Picard-Vessiot extension related to \((\text{ODE})\).

3. Let \(k \subset K_1\) and \(k \subset K_2\) be differential rings. An isomorphism of rings \(\sigma : K_1 \rightarrow K_2\) is a differential \(k\)-isomorphism if
 \[
 \forall a \in K_1, \quad \partial(\sigma(a)) = \sigma(\partial a) \quad \text{and, if} \quad a \in k, \quad \sigma(a) = a.
 \]
 If \(K_1 = K_2 = K\), the differential galois group of \(K\) over \(k\) is by
 \[
 \text{Gal}_k(K) = \{ \sigma | \sigma \text{ is a differential } k\text{-automorphism of } K \}.
 \]

1. Let \(R_1, R_2\) be differential rings s.t. \(R_1 \subset R_2\). Let \(S\) be a subset of \(R_2\).
\(R_1\{S\}\) denotes the smallest differential subring of \(R_2\) containing \(R_1\).
\(R_1\{S\}\) is the ring (over \(R_1\)) generated by \(S\) and their derivatives of all orders.
Linear differential equations and Dyson series

Let \(a_0, \ldots, a_n \in \mathbb{C}(z) \), \(a_n(z)\partial^n y(z) + \ldots + a_1(z)\partial y(z) + a_0(z)y(z) = 0 \).

\[
(ED) \quad \begin{cases}
\partial q(z) &= A(z)q(z), \quad A(z) \in \mathcal{M}_{n,n}(\mathbb{C}(z)), \\
q(z_0) &= \eta, \\
y(z) &= \lambda q(z), \quad \lambda \in \mathcal{M}_{1,n}(\mathbb{C}), \\
\eta &\in \mathcal{M}_{n,1}(\mathbb{C}).
\end{cases}
\]

By successive Picard iterations, with the initial point \(q(z_0) = \eta \), we get
\(y(z) = \lambda U(z_0; z)\eta \), where \(U(z_0; z) \) is the following functional expansion

\[
U(z_0; z) = \sum_{k \geq 0} \int_{z_0}^{z} A(z)dz_1 \int_{z_0}^{z_1} A(z)dz_2 \ldots \int_{z_0}^{z_{k-1}} A(z)dz_k, \quad \text{(Dyson series)}
\]

and \((z_0, z_1, \ldots, z_k, z)\) is a subdivision of the path of integration \(z_0 \rightsquigarrow z \).

In order to find the matrix \(\Omega(z_0; z) \) s.t.

\[
U(z_0; z) = \exp[\Omega(z_0; z)] = \top \exp \int_{z_0}^{z} A(s)ds, \quad \text{(Feynman's notation)}
\]

Magnus computed \(\Omega(z_0; z) \) as limit of the following Lie-integral-functionals

\[
\Omega_1(z_0; z) = \int_{z_0}^{z} A(z)ds,
\]

\[
\Omega_k(z_0; z) = \int_{z_0}^{z} [A(z) + [A(z), \Omega_{k-1}(z_0; s)]]/2 \\
+ [[A(z), \Omega_{k-1}(z_0; s)], \Omega_{k-1}(z_0; s)]/12 + \ldots ds.
\]

2. Subject to convergence.
Fuchsian linear differential equations

Let Ω be a simply connected domain and $\mathcal{H}(\Omega)$ be the ring of holomorphic functions over Ω (with $1_{\mathcal{H}(\Omega)}$ as neutral element). Let us consider, here, $\sigma = \{s_i\}_{i=0,\ldots,m}$, $m \geq 1$, as set of simple poles of (ED) and $\Omega = \overline{\mathbb{C} \setminus \sigma}$.

$$A(z) = \sum_{i=0}^{m} M_i u_i(z),$$

where

$$\begin{cases}
M_i \in \mathcal{M}_{n,n}(\mathbb{C}), \\
u_i(z) = \frac{1}{z - s_i} \in \mathbb{C}(z), \\
\partial q(z) = \left(\sum_{i=0}^{m} M_i u_i(z) \right) q(z), \\
q(z_0) = \eta, \\
y(z) = \lambda q(z).
\end{cases}$$

Let X^* be the set of words over $X = \{x_0, \ldots, x_m\}$ and

$$\alpha_{z_0}^Z \otimes \mathcal{M} : \mathbb{C}\langle X \rangle \otimes \mathbb{C}\langle X \rangle \to \mathcal{M}_{n,n}(\mathcal{H}(\Omega))$$

($z_0 \rightsquigarrow z$ is the path of integration previously introduced) s.t.

$$\begin{align*}
\mathcal{M}(1_{X^*}) &= \text{Id}_n \\
\mathcal{M}(x_{i_1} \cdots x_{i_k}) &= M_{i_1} \cdots M_{i_k}, \\
\alpha_{z_0}^Z (1_{X^*}) &= 1_{\mathcal{H}(\Omega)} \\
\alpha_{z_0}^Z (x_{i_1} \cdots x_{i_k}) &= \int_{z_0}^{z} \frac{dz_1}{z_1 - s_{i_1}} \cdots \int_{z_0}^{z_{k-1}} \frac{dz_k}{z_{k} - s_{i_k}}.
\end{align*}$$

Then $y(z) = \lambda U(z_0; z) \eta$ with

$$U(z_0; z) = \sum_{w \in X^*} \mathcal{M}(w) \alpha_{z_0}^{Z}(w) = (\mathcal{M} \otimes \alpha_{z_0}) \sum_{w \in X^*} w \otimes w.$$

3. Subject to convergence.
Example 2 (Hypergeometric equation)

Let \(t_0, t_1, t_2 \) be parameters and
\[z(1 - z)\ddot{y}(z) + [t_2 - (t_0 + t_1 + 1)z]\dot{y}(z) - t_0 t_1 y(z) = 0. \]

Let \(q_1(z) = -y(z) \) and \(q_2(z) = (1 - z)\dot{y}(z) \). Hence, one has
\[y(z) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix} \]
and
\[\begin{pmatrix} \dot{q}_1(z) \\ \dot{q}_2(z) \end{pmatrix} = \begin{pmatrix} M_0 & M_1 \\ z & 1 - z \end{pmatrix} \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix} = (u_0(z)M_0 + u_1(z)M_1) \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix}, \]
where \(u_0(z) = z^{-1}, u_1(z) = (1 - z)^{-1} \) and
\[M_0 = -\begin{pmatrix} 0 & 0 \\ t_0 t_1 & t_2 \end{pmatrix} \quad \text{and} \quad M_1 = -\begin{pmatrix} 0 & 1 \\ 0 & t_2 - t_0 - t_1 \end{pmatrix}. \]
Nonlinear differential equations

\[
\begin{align*}
\text{(NED)} \quad \left\{ \\
\partial q(z) &= \left(\sum_{i=0}^{m} T_i(q) u_i(z) \right)(q), \\
q(z_0) &= q_0, \\
y(z) &= f(q(z)),
\end{align*}
\]

where

- \(u_i \in (k, \partial) \),
- the state \(q = (q_1, \ldots, q_n) \) belongs the complex analytic manifold \(Q \) of dimension \(n \) and \(q_0 \) is the initial state,
- the observation \(f \in O \), with \(O \) the ring of analytic functions over \(Q \),
- for \(i = 0..1 \), \(T_i = (T_i^1(q) \partial/\partial q_1 + \cdots + T_i^m(q) \partial/\partial q_m) \) is an analytic vector field over \(Q \), with \(T_i^j(q) \in O \), for \(j = 1, \ldots, n \).

With \(X \) and \(\alpha_{z_0}^z \) given as previously, let the morphism \(\tau \) be defined by
\(\tau(1_{X^*}) = \text{Id} \) and \(\tau(x_{i_1} \cdots x_{i_k}) = T_{i_1} \cdots T_{i_k} \). Then
\[y(z) = T \circ f|_{q_0} \]

with
\[T = \sum_{w \in X^*} \tau(w) \alpha_{z_0}^z(w) = (\tau \otimes \alpha_{z_0}) \sum_{w \in X^*} w \otimes w. \]

4. Subject to convergence.
Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let k_1, k_2 be parameters and $\partial^2 y(z) + k_1 y(z) + k_2 y^2(z) = u_1(z)$ which can be represented by the following state equations (with $n = 1$)

$$
\begin{align*}
y(z) &= q(z), \\
\partial q(z) &= A_0(q)u_0(z) + A_1(q)u_1(z),
\end{align*}
$$

where $A_0 = -(k_1 q + k_2 q^2) \frac{\partial}{\partial q}$ and $A_1 = \frac{\partial}{\partial q}$.

Example 4 (Duffing equation)

Let a, b, c be parameters and $\partial^2 y(z) + a\partial y(z) + by(z) + cy^3(z) = u_1(z)$ which can be represented by the following state equations (with $n = 2$)

$$
\begin{align*}
y(z) &= q_1(z), \\
\begin{pmatrix}
\partial q_1(z) \\
\partial q_2(z)
\end{pmatrix}
&= \begin{pmatrix}
q_2 \\
-(aq_2 + b^2 q_1 + cq_1^3)
\end{pmatrix} u_0(z) + \begin{pmatrix}
0 \\
1
\end{pmatrix} u_1(z) \\
&= A_0(q)u_0(z) + A_1(q)u_1(z),
\end{align*}
$$

where $A_0 = -(aq_2 + b^2 q_1 + cq_1^3) \frac{\partial}{\partial q_2} + q_2 \frac{\partial}{\partial q_1}$ and $A_1 = \frac{\partial}{\partial q_2}$.
Example 5 (Van der Pol oscillator)

Let γ, g be parameters and

$$\partial^2 x(z) - \gamma [1 + x(z)^2] \partial x(z) + x(z) = g \cos(\omega z)$$

which can be transformed into (with C is some constant of integration)

$$\partial x(z) = \gamma [1 + x(z)^2/3] x(z) - \int_{z_0}^{z} x(s) ds + \frac{g}{\omega} \sin(\omega z) + C.$$

Supposing $x = \partial y$ and $u_1(z) = g \sin(\omega z)/\omega + C$, it leads then to

$$\partial^2 y(z) = \gamma [\partial y(z) + (\partial y(z))^3/3] + y(z) + u_1(z)$$

which can be represented by the following state equations (with $n = 2$)

$$y(z) = q_1(z),$$

$$\begin{pmatrix} \partial q_1(z) \\ \partial q_2(z) \end{pmatrix} = \begin{pmatrix} q_2 \\ \gamma(q_2 + q_2^3/3) + q_1 \end{pmatrix} u_0(z) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_1(z)$$

$$= A_0(q) u_0(z) + A_1(q) u_1(z),$$

where $\begin{align*}
A_0 &= [\gamma(q_2 + q_2^3/3) + q_1] \frac{\partial}{\partial q_2} + q_2 \frac{\partial}{\partial q_1} \\
A_1 &= \frac{\partial}{\partial q_2}.
\end{align*}$
DUAL LAWS AND REPRESENTATIVE SERIES
Dual law in bialgebra

Startting with a $k \rightarrow \text{AAU}$ (k is a ring) A. Dualizing $\mu : A \otimes_k A \rightarrow A$, we get the transpose $t_\mu : A^\vee \rightarrow (A \otimes_k A)^\vee$ so that we do not get a co-multiplication in general.

- Remark that when k is a field, the following arrow is into (due to the fact that $A^\vee \otimes_k A^\vee$ is torsionfree)
 $$\Phi : A^\vee \otimes_k A^\vee \rightarrow (A \otimes_k A)^\vee.$$

- One restricts the codomain of t_μ to $A^\vee \otimes_k A^\vee$ and then the domain to $(t_\mu)^{-1}\Phi(A^\vee \otimes_k A^\vee) =: A^\circ$.

\[
\begin{array}{ccc}
A^\vee & \xrightarrow{t_\mu} & (A \otimes_k A)^\vee \\
\mathcal{can} & & \phi \\
A^\circ & \xrightarrow{\Delta_\mu} & A^\vee \otimes_k A^\vee \\
\mathcal{can} & & j \otimes j \\
A^{\circ\circ} & \xrightarrow{\Delta_\mu} & A^\circ \otimes_k A^\circ
\end{array}
\]

The descent can stop at first step for a field k and then $A^{\circ\circ} = A^\circ$.
The coalgebra (A°, Δ_μ) is called the Sweedler’s dual of (A, μ).
Case of algebras noncommutative series

- Denoting the (ordered) alphabets $Y := \{y_k\}_{k \geq 1}$ (with $y_1 \succ y_2 \succ \ldots$) or $X := \{x_0, x_1\}$ (with $x_1 \succ x_0$) by \mathcal{X}, we use the correspondence among words of the free monoid $(\mathcal{X}^*, \text{conc}, 1_{\mathcal{X}^*})$:

$$
(s_1, \ldots, s_r) \in \mathbb{N}_+^r \leftrightarrow y_{s_1} \ldots y_{s_r} \in Y^* \xrightarrow{\pi_X} x_0^{s_1-1} x_1 \ldots x_0^{s_r-1} x_1 \in X^* x_1.
$$

- Let $Lyn\mathcal{X}$ denote the set of Lyndon words generated by \mathcal{X}.

- Let $(\text{Lie}_A\langle\langle\mathcal{X}\rangle\rangle, [.])$ and $(A\langle\langle\mathcal{X}\rangle\rangle, \text{conc})$ (resp. $\text{Lie}_A\langle\mathcal{X}\rangle, [.]$) and $(A\langle\mathcal{X}\rangle, \text{conc})$ denote the algebras of (Lie) series (resp. polynomials) with coefficients in the ring A, over \mathcal{X}.

- $\mathcal{H} \uplus (\mathcal{X}) := (A\langle\mathcal{X}\rangle, \text{conc}, 1_{\mathcal{X}^*}, \Delta \uplus, e)$ and $\mathcal{H} \uplus (Y) := (A\langle Y\rangle, \text{conc}, 1_{Y^*}, \Delta \uplus, e)$ with

 $\forall x \in \mathcal{X}, \quad \Delta \uplus x = x \otimes 1_{\mathcal{X}^*} + 1_{\mathcal{X}^*} \otimes x,$

 $\forall y_i \in Y, \quad \Delta \uplus y_i = y_i \otimes 1_{Y^*} + 1_{Y^*} \otimes y_i + \sum_{k+l=i} y_k \otimes y_l.$

- The dual law associated to conc is defined by

 $\forall w \in \mathcal{X}^*, \quad \Delta_{\text{conc}}(w) = \sum_{u,v \in \mathcal{X}^*, uv=w} u \otimes v.$

5. Or equivalently, for $x, y \in \mathcal{X}, y_i, y_j \in Y$ and $u, v \in \mathcal{X}^*$ (resp. Y^*),

 $u \uplus 1_{\mathcal{X}^*} = 1_{\mathcal{X}^*} \uplus u = u$ and $xu \uplus yv = x(u \uplus yv) + y(xu \uplus v),$

 $u \uplus 1_{Y^*} = 1_{Y^*} \uplus u = u$ and $x_i u \uplus y_j v = y_i(u \uplus y_j v) + y_j(y_i u \uplus v) + y_{i+j}(u \uplus v).$
Dualizable laws in conc-shuffle bialgebras (1/2)

We can exploit the basis of words as follows

1. Any bilinear law (shuffle, stuffle or any) \(\mu : A\langle \X \rangle \otimes A\langle \X \rangle \to A\langle \X \rangle \) can be described through its structure constants wrt to the basis of words, i.e. for \(u, v, w \in \X^* \), \(\Gamma^{w}_{u,v} := \langle \mu(u \otimes v) | w \rangle \) so that
 \[
 \mu(u \otimes v) = \sum_{w \in \X^*} \Gamma^{w}_{u,v} w.
 \]

2. In the case when \(\Gamma^{w}_{u,v} \) is locally finite in \(w \), we say that the given law is dualizable, the arrow \(^{t} \mu \) restricts nicely to
 \[A\langle \X \rangle \hookrightarrow A\langle \langle \X \rangle \rangle\]
 and one can define on the polynomials a comultiplication by
 \[
 \Delta_{\mu}(w) := \sum_{u,v \in \X^*} \Gamma^{w}_{u,v} u \otimes v.
 \]

3. When the law \(\mu \) is dualizable, we have
 \[
 \begin{array}{ccc}
 A\langle \langle \X \rangle \rangle & \xrightarrow{^{t} \mu} & A\langle \langle \X^* \otimes \X^* \rangle \rangle \\
 \uparrow{can} & & \uparrow{\Phi|_{A\langle \X \rangle \otimes A\langle \X \rangle}} \\
 A\langle \X \rangle & \xrightarrow{\Delta_{\mu}} & A\langle \X \rangle \otimes A\langle \X \rangle
 \end{array}
 \]

The arrow \(\Delta_{\mu} \) is unique to be able to close the rectangle and
\(\Delta_{\mu}(P) \) is defined as above.
4. Proof that the arrow $A \langle \mathcal{X} \rangle \otimes_A A \langle \mathcal{X} \rangle \longrightarrow A \langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle$ is into:

Let $T = \sum_{i=1}^{n} P_i \otimes_A Q_i$ such that $\Phi(T) = 0$. Rewriting T as a finitely supported sum $T = \sum_{\{u,v\} \in \mathcal{X}^* \times \mathcal{X}^*} c_{u,v} u \otimes v$ (this is indeed the iso between $A \langle \mathcal{X} \rangle \otimes_A A \langle \mathcal{X} \rangle$ and $A[\mathcal{X}^* \times \mathcal{X}^*]$), $\Phi(T)$ is by definition of Φ the double series (here a polynomial) s.t. $\langle \Phi(T)|u \otimes v \rangle = c_{u,v}$. If $\Phi(T) = 0$, then for all $(u, v) \in \mathcal{X}^* \times \mathcal{X}^*$, $c_{u,v} = 0$ entailing $T = 0$.

We extend by linearity and infinite sums, for $S \in A \langle \mathcal{Y} \rangle$ (resp. $A \langle \mathcal{X} \rangle$), by

$$\Delta_{\shuffle} S = \sum_{w \in \mathcal{Y}^*} \langle S|w \rangle \Delta_{\shuffle} w \in A \langle \mathcal{Y}^* \otimes \mathcal{Y}^* \rangle,$$

$$\Delta_{\text{conc}} S = \sum_{w \in \mathcal{X}^*} \langle S|w \rangle \Delta_{\text{conc}} w \in A \langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle,$$

$$\Delta_{\mathbin{\shuffle\shuffle}} S = \sum_{w \in \mathcal{X}^*} \langle S|w \rangle \Delta_{\mathbin{\shuffle\shuffle}} w \in A \langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle.$$

$A \langle \mathcal{X} \rangle \otimes A \langle \mathcal{X} \rangle$ embeds injectively in $A \langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle \cong [A \langle \mathcal{X} \rangle][\langle \mathcal{X} \rangle]$.

6. $A \langle \mathcal{X} \rangle \otimes A \langle \mathcal{X} \rangle$ contains the elements of the form $\sum_{i \in I} \text{finite } G_i \otimes D_i$, for $(G_i, D_i) \in A \langle \mathcal{X} \rangle \times A \langle \mathcal{X} \rangle$. But since elements of $M \otimes N$ are finite combination of $m_i \otimes n_i, m_i \in M, n_i \in N$ then $\sum_{i \geq 0} u^i \otimes v^i$ belongs to $A \langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle$ and does not belong to $A \langle \mathcal{X} \rangle \otimes A \langle \mathcal{X} \rangle$, for $u, v \in \mathcal{X}^1$.
Extended Ree’s theorem

Let $S \in A\langle \langle Y \rangle \rangle$ (resp. $A\langle \langle X \rangle \rangle$), A is a commutative ring containing \mathbb{Q}.

The series S is said to be

1. a \sqcup (resp. conc, \sqcup)-character iff, for any $w, v \in Y^*$ (resp. X^*),
 $\langle S|w\rangle\langle S|v\rangle = \langle S|w \sqcup v\rangle$ (resp. $\langle S|wv\rangle, \langle S|w \sqcup v\rangle$) and $\langle S|1\rangle = 1$.

2. an infinitesimal \sqcup (resp. conc, \sqcup)-character iff, for any $w, v \in Y^*$ (resp. X^*),
 $\langle S|w\rangle\langle S|v\rangle = \langle S|w\rangle\langle v|1_{Y^*}\rangle + \langle w|1_{Y^*}\rangle\langle S|v\rangle$
 (resp. $\langle S|wv\rangle = \langle S|w\rangle\langle v|1_{X^*}\rangle + \langle w|1_{X^*}\rangle\langle S|v\rangle$),
 $\langle S|w \sqcup v\rangle = \langle S|w\rangle\langle v|1_{X^*}\rangle + \langle w|1_{X^*}\rangle\langle S|v\rangle$).

3. a group-like series iff $\langle S|1_{X^*}\rangle = 1$ and $\Delta_{\sqcup} S = \Phi(S \otimes S)$ (resp. $\Delta_{\text{conc}} S = \Phi(S \otimes S), \Delta_{\sqcup} S = \Phi(S \otimes S))$.

4. a primitive series iff $\Delta_{\sqcup} S = 1_{Y^*} \otimes S + S \otimes 1_{Y^*}$ (resp. $\Delta_{\text{conc}} S = 1_{X^*} \otimes S + S \otimes 1_{X^*}, \Delta_{\sqcup} S = 1_{X^*} \otimes S + S \otimes 1_{X^*}$).

Then the following assertions are equivalent

1. S is a \sqcup (resp. conc and \sqcup)-character.
2. log S an infinitesimal \sqcup (resp. conc and \sqcup)-character.
3. S is group-like, for Δ_{\sqcup} (resp. Δ_{conc} and Δ_{\sqcup}).
4. log S is primitive, for Δ_{\sqcup} (resp. Δ_{conc} and Δ_{\sqcup}).
Extension by continuity (infinite sums)

Now, suppose that the ring A (containing \mathbb{Q}) is a field k. Then

$\Delta_\Box : k\langle X \rangle \rightarrow k\langle X \rangle \otimes k\langle X \rangle$ and $\Delta_\uplus : k\langle Y \rangle \rightarrow k\langle Y \rangle \otimes k\langle Y \rangle$

are graded for the multidegree. Then Δ_\uplus is graded for the length. Their extension to the completions (i.e. $k\langle X \rangle$ and $k\langle X^* \otimes X^* \rangle$) are continuous and then, when exist, commute with infinite sums. Hence $7, 8$,

$\forall c \in k, \quad \Delta_\Box (cx)^* = \sum_{n \geq 0} c^n \Delta_\Box x^n = \sum_{n \geq 0} c^n \sum_{j=0}^{n} \binom{n}{j} x^j \otimes x^{n-j}$.

For $c \in \mathbb{N}_{\geq 2}$ which is neither a field nor a ring (containing \mathbb{Q}), we also get

$(cx)^* = (c - 1)^{-1} \sum_{a,b \in \mathbb{N}_{\geq 1}, a+b=c} (ax)^*_\Box (bx)^* \in \mathbb{N}_{\geq 2} \langle X \rangle$,

$\Delta_\Box (cx)^* \neq (c - 1)^{-1} \sum_{a,b \in \mathbb{N}_{\geq 1}, a+b=c} (ax)^* \otimes (bx)^* \in \mathbb{Q} \langle X \rangle \otimes \mathbb{Q} \langle X \rangle$,

because

$\langle \text{LHS} | x \otimes 1_X^* \rangle = c$ and $\langle \text{RHS} | x \otimes 1_X^* \rangle = (c - 1)^{-1} \sum_{a=1}^{c-1} a = \frac{c}{2}$.

For $c \in \mathbb{Z}$ (or even $\mathbb{Q}, \mathbb{R}, \mathbb{C}$), the such decomposition is not finite.

7. For $S \in A\langle X \rangle$ s.t. $\langle S | 1_X^* \rangle = 0$, $S^* = \sum_{n \geq 0} S^n$ is called Kleene star of S.

8. $\Delta_\Box x^n = (\Delta_\Box x)^n = (1_{X^*} \otimes x + x \otimes 1_{X^*})^n = \sum_{j=0}^{n} \binom{n}{j} x^j \otimes x^{n-j}$.
Case of rational series and of Δ_{conc}

$A^\text{rat} \langle \mathcal{X} \rangle$ denotes the algebraic closure by $^9 \{ \text{conc}, +, * \}$ of $\widehat{A.\mathcal{X}}$ in $A\langle \mathcal{X} \rangle$.

\[
A\langle \mathcal{X} \rangle \xrightarrow{t_{\text{conc}}} A\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle
\]
\[
can \uparrow \quad \Phi|_{A^\text{rat} \langle \mathcal{X} \rangle \otimes_A A^\text{rat} \langle \mathcal{X} \rangle}
\]

$A^\text{rat} \langle \mathcal{X} \rangle \longrightarrow A^\text{rat} \langle \mathcal{X} \rangle \otimes_A A^\text{rat} \langle \mathcal{X} \rangle$

The dashed arrow may not exist in general, but for any $R \in A^\text{rat} \langle \mathcal{X} \rangle$ admitting (λ, μ, η) as linear representation of dimension n, we can get $t_{\text{conc}}(R) = \Phi(\sum_{i=1}^{n} G_i \otimes D_i)$.

Indeed, since $\langle R|xy \rangle = \lambda \mu(xy)\eta = \lambda \mu(x)\mu(y)\eta$ ($x, y \in \mathcal{X}$) then, letting e_i is the vector such that $^t e_i = (0 \ldots 0 1 0 \ldots 0)$, one has

\[
\langle R|xy \rangle = \sum_{i=1}^{n} \lambda \mu(x)e_i^t e_i \mu(y)\eta = \sum_{i=1}^{n} \langle G_i|x \rangle \langle D_i|y \rangle = \sum_{i=1}^{n} \langle G_i \otimes D_i|x \otimes y \rangle.
\]

G_i (resp. D_i) admits then (λ, μ, e_i) (resp. $(^t e_i, \mu, \eta)$) as linear representation.

If $A = k$ being a field then, due to the injectivity of Φ, all expressions of the type $\sum_{i=1}^{n} G_i \otimes D_i$, of course, coincide. Hence, the dashed arrow (a restriction of Δ_{conc}) in the above diagram is well-defined.

9. $A^\text{rat} \langle \mathcal{X} \rangle$ is closed under \sqcup . $A^\text{rat} \langle \mathcal{Y} \rangle$ is also closed under \sqcup.
Representative series and Sweedler’s dual

Theorem 6 (representative series)

Let $S \in A \llangle \mathcal{X} \rrangle$. The following assertions are equivalent

1. The series S belongs to $A^{\text{rat}} \llangle \mathcal{X} \rrangle$.

2. There exists a linear representation (ν, μ, η), of rank n, for S with $\nu \in M_{1,n}(A), \eta \in M_{n,1}(A)$ and a morphism of monoids $\mu : \mathcal{X}^* \to M_{n,n}(A)$ s.t., for any $w \in \mathcal{X}^*$, $\langle S | w \rangle = \nu \mu(w) \eta$.

3. The shifts $^{10}\{S \triangleleft w\}_{w \in \mathcal{X}^*}$ (resp. $\{w \triangleright S\}_{w \in \mathcal{X}^*}$) lie within a finitely generated shift-invariant A-module.

Moreover, if A is a field k, the previous assertions are equivalent to

4. There exist $(G_i, D_i)_{i \in F_{\text{finite}}}$ s.t. $\Delta_{\text{conc}}(S) = \sum_{i \in F_{\text{finite}}} G_i \otimes D_i$.

Hence, $\mathcal{H}_{\shuffle}^\circ(\mathcal{X}) = (k^{\text{rat}} \llangle \mathcal{X} \rrangle, \shuffle, 1_{\mathcal{X}^*}, \Delta_{\text{conc}}, e)$ and $\mathcal{H}_{\shuffle}^\circ(Y) = (k^{\text{rat}} \llangle Y \rrangle, \shuffle, 1_{\mathcal{X}^*}, \Delta_{\text{conc}}, e)$.

Now, let $A_{\text{exc}} \llangle \mathcal{X} \rrangle$ (resp. $A_{\text{exc}}^{\text{rat}} \llangle \mathcal{X} \rrangle$) be the set of exchangeable 11 series (resp. series admitting a linear representation with commuting matrices).

10. The left (resp. right) shift of S by P is $P \triangleright S$ (resp. $S \triangleleft P$) defined by, for $w \in \mathcal{X}^*$, $\langle P \triangleright S | w \rangle = \langle S | wP \rangle$ (resp. $\langle S \triangleleft P | w \rangle = \langle S | PW \rangle$).

11. i.e. if $S \in A_{\text{exc}} \llangle \mathcal{X} \rrangle$ then $(\forall u, v \in \mathcal{X}^*)(\forall x \in \mathcal{X})(|u|_x \equiv |v|_x) \Rightarrow \langle S | u \rangle = \langle S | v \rangle$.

Kleene stars of the plane and conc-characters

For any $S \in A\langle\mathcal{X}\rangle$, let ∇S denotes $S - 1\chi^*$.

Theorem 7 (rational exchangeable series)

1. $A_{\text{exc}}^\text{rat}\langle\mathcal{X}\rangle \subset A^\text{rat}\langle\mathcal{X}\rangle \cap A_{\text{exc}}^\text{rat}\langle\mathcal{X}\rangle$. If A is a field then the equality holds and $A_{\text{exc}}^\text{rat}\langle\mathcal{X}\rangle = A^\text{rat}\langle x_0 \rangle \sqcup A^\text{rat}\langle x_1 \rangle$ and, for the algebra of series over subalphabets $A_{\text{fin}}^\text{rat}\langle\mathcal{Y}\rangle := \bigcup_{F \subset \text{finite}} \forall A^\text{rat}\langle F \rangle$, we get

\[
A_{\text{exc}}^\text{rat}\langle\mathcal{Y}\rangle \cap A_{\text{fin}}^\text{rat}\langle\mathcal{Y}\rangle = \bigcup_{k \geq 0} A^\text{rat}\langle y_1 \rangle \sqcup \ldots \sqcup A^\text{rat}\langle y_k \rangle \subset A_{\text{exc}}^\text{rat}\langle\mathcal{Y}\rangle.
\]

2. $\forall x \in \mathcal{X}, A^\text{rat}\langle x \rangle = \{ P(1 - xQ)^{-1} \}_{P,Q \in A[x]}$. If k is an algebraically closed field then $k^\text{rat}\langle x \rangle = \text{span}_k \{(ax)^* \sqcup k\langle x \rangle | a \in K\}$.

3. If A is a \mathbb{Q}-algebra without zero divisors, $\{x^*\}_{x \in \mathcal{X}}$ (resp. $\{y^*\}_{y \in \mathcal{Y}}$) are conc-character and algebraically independent over $(A\langle\mathcal{X}\rangle, \sqcup)$ (resp. $(A\langle\mathcal{Y}\rangle, \sqcup)$) within $(A^\text{rat}\langle\mathcal{X}\rangle, \sqcup)$ (resp. $(A^\text{rat}\langle\mathcal{Y}\rangle, \sqcup)$).

4. Let $S \in A\langle\mathcal{X}\rangle$. If $A = k$, a field, then t.f.a.e.

\begin{enumerate}
\item S is groupe-like, for Δ_{conc}.
\item There exists $M := \sum_{x \in \mathcal{X}} c_x x \in \overline{k.\mathcal{X}}$ s.t. $S = M^*$.
\item There exists $M := \sum_{x \in \mathcal{X}} c_x x \in \overline{k.\mathcal{X}}$ s.t. $\nabla S = MS = SM$.
\end{enumerate}

12. The following identity lives in $A_{\text{exc}}^\text{rat}\langle\mathcal{Y}\rangle$ but not in $A_{\text{exc}}^\text{rat}\langle\mathcal{Y}\rangle \cap A_{\text{fin}}^\text{rat}\langle\mathcal{Y}\rangle$,

\[
(y_1 + \ldots)^* = \lim_{k \to +\infty} (y_1 + \ldots + y_k)^* = \lim_{k \to +\infty} y_1^* \sqcup \ldots \sqcup y_k^* = \sqcup_{k \geq 1} y_k^*.
\]
CONTINUITY OVER CHEN SERIES
Continuity, indiscernability and growth condition

For \(i = 0, 2 \), let \((k_i, \| . \|_i)\) be a semi-normed space and \(g_i \in \mathbb{Z} \).

Definition 8

1. Let \(Cl \) be a class of \(k_1 \langle \langle \mathcal{X} \rangle \rangle \). Let \(S \in k_2 \langle \langle \mathcal{X} \rangle \rangle \) and it is said to be
 a) \textit{continuous} over \(Cl \) if, for \(\Phi \in Cl \), the following sum is convergent
 \[\sum_{w \in \mathcal{X}^*} \| \langle S|w \rangle \|_2 \| \langle \Phi|w \rangle \|_1. \]
 We will denote \(\langle S|\Phi \rangle \) the sum \(\sum_{w \in \mathcal{X}^*} \langle S|w \rangle \langle \Phi|w \rangle \) and \(k_2 \langle \langle \mathcal{X} \rangle \rangle \text{cont} \) the set of continuous power series over \(Cl \).
 b) \textit{indiscernable} over \(Cl \) iff, for any \(\Phi \in Cl \), \(\langle S|\Phi \rangle = 0 \).

2. Let \(\chi_1 \) and \(\chi_2 \) be real positive functions over \(\mathcal{X}^* \). Let \(S \in k_1 \langle \langle \mathcal{X} \rangle \rangle \).
 a) \(S \) satisfies the \(\chi_1 \)–\textit{growth condition} of order \(g_1 \) if it satisfies
 \[\exists K \in \mathbb{R}_+, \exists n \in \mathbb{N}, \forall w \in \mathcal{X}^\geq n, \quad \| \langle S|w \rangle \|_1 \leq K \chi_1(w) |w|^{g_1}. \]
 We denote by \(k_1^{(\chi_1, g_1)} \langle \langle \mathcal{X} \rangle \rangle \) the set of formal power series in \(k_1 \langle \langle \mathcal{X} \rangle \rangle \) satisfying the \(\chi_1 \)–growth condition of order \(g_1 \).
 b) If \(S \) is continuous over \(k_2^{(\chi_2, g_2)} \langle \langle \mathcal{X} \rangle \rangle \) then it will be said to be \((\chi_2, g_2) \)-\textit{continuous}. The set of formal power series which are \((\chi_2, g_2) \)-continuous is denoted by \(k_2^{(\chi_2, g_2)} \langle \langle \mathcal{X} \rangle \rangle \text{cont} \).
Convergence condition

Proposition 1
Let χ_1 and χ_2 be real positive functions over \mathcal{X}^*. Let g_1 and $g_2 \in \mathbb{Z}$ such that $g_1 + g_2 \leq 0$.

1. Let $k_1^{(\chi_1,g_1)}\langle \mathcal{X} \rangle$ and let $P \in k_1\langle \mathcal{X} \rangle$. The right residual of S by P belongs to $k_1^{(\chi_1,g_1)}\langle \mathcal{X} \rangle$.

2. Let $R \in k_2^{(\chi_2,g_2)}\langle \mathcal{X} \rangle$ and let $Q \in k_2\langle \mathcal{X} \rangle$. The concatenation QR belongs to $k_2^{(\chi_2,g_2)}\langle \mathcal{X} \rangle$.

3. χ_1, χ_2 are morphisms over \mathcal{X}^* satisfying $\sum_{x \in \mathcal{X}} \chi_1(x)\chi_2(x) < 1$. If $F_1 \in k_1^{(\chi_1,g_1)}\langle \mathcal{X} \rangle$ (resp. $F_2 \in k_2^{(\chi_2,g_2)}\langle \mathcal{X} \rangle$) then F_1 (resp. F_2) is continuous over $k_2^{(\chi_2,g_2)}\langle \mathcal{X} \rangle$ (resp. $k_1^{(\chi_1,g_1)}\langle \mathcal{X} \rangle$).

Proposition 2
Let $\mathcal{C} \subseteq k_1\langle \mathcal{X} \rangle$ be a monoid containing $\{e^{tx} \}_{x \in \mathcal{X}}$. Let $S \in k_2\langle \mathcal{X} \rangle^{cont}$.

1. If S is indiscernable over \mathcal{C} then for any $x \in \mathcal{X}$, $x \triangleright S$ and $S \triangleright x$ belong to $k_2\langle \mathcal{X} \rangle^{cont}$ and they are indiscernable over \mathcal{C}.

2. S is indiscernable over \mathcal{C} iff $S = 0$.
Iterated integrals over $\omega_i(z) = u_{x_i}(z)dz$ and along $z_0 \rightsquigarrow z$

Recall that Ω is a simply connected domain with $1_{\mathcal{H}(\Omega)}$ as neutral element, $\mathcal{A} := \mathcal{H}(\Omega)$ and \mathcal{C}_0 is a differential subring of \mathcal{A} ($\partial(\mathcal{C}_0) \subset \mathcal{C}_0$). $\mathbb{C}\{(g_i)_{i \in I}\}$ denotes the differential subalgebra of \mathcal{A} generated by $(g_i)_{i \in I}$, i.e. the \mathbb{C}-algebra generated by g_i’s and their derivatives $\{u_{x_i}\}_{i \in \mathcal{X}} :$ elements in $\mathcal{C}_0 \cap \mathcal{A}^{-1}$ in correspondence with $\{\theta_{x_i}\}_{x \in \mathcal{X}}$ ($\theta_{x_i} = u_{x_i}^{-1}\partial$).

Let Θ be defined by $\Theta(w) = \theta_{x_i}\Theta(u)$, for $w = xu \in \mathcal{X} \mathcal{X}^*$, and $\Theta(1_{\mathcal{X}^*}) = \text{Id}$.

The iterated integral over $\omega_i(z) = u_{x_i}(z)dz$ and along $z_0 \rightsquigarrow z$ is defined by

$$\alpha^z_{z_0}(1_{\mathcal{X}^*}) = 1_\Omega,$$

$$\alpha^z_{z_0}(x_{i_1} \ldots x_{i_k}) = \int_{z_0}^z \omega_{i_1}(z_{1}) \ldots \int_{z_0}^{z_{k-1}} \omega_{i_k}(z_{k}).$$

$$\partial \alpha^z_{z_0}(x_{i_1} \ldots x_{i_k}) = u_{x_{i_1}}(z) \int_{z_0}^z \omega_{i_2}(z_{2}) \ldots \int_{z_0}^{z_{k-1}} \omega_{i_k}(z_{k}).$$

$$\forall w \in \mathcal{X}^* , \quad \Theta(\tilde{w}) \alpha^z_{z_0}(w) = 1_\Omega.$$

$$\text{span}_\mathbb{C}\{\partial^l \alpha^z_{z_0}(w)\}_{w \in \mathcal{X}^*, l \geq 0} \subset \text{span}_\mathbb{C}\{(u_x)_{x \in \mathcal{X}}\}\{\alpha^z_{z_0}(w)\}_{w \in \mathcal{X}^*}$$

$$\subset \text{span}_\mathbb{C}\{(u_{x}^{\pm1})_{x \in \mathcal{X}}\}\{\alpha^z_{z_0}(w)\}_{w \in \mathcal{X}^*}$$

$$\cong \mathbb{C}\{(u_{x}^{\pm1})_{x \in \mathcal{X}}\} \otimes \mathbb{C}\{\alpha^z_{z_0}(w)\}_{w \in \mathcal{X}^*}?$$
Examples of linear differential equation

Let us consider the following examples, with $k = \mathbb{C}(z)$

$$(\partial - z)y = y' - zy = 0. \quad (1)$$

1. $e^{z^2/2}$ is solution of (1).

2. $ce^{z^2/2} = e^{z^2/2}e^{\log c}$ is an other solution ($c \in \mathbb{R} \setminus \{0\}$).

3. $\{e^{z^2/2}\}$ is a fundamental set of solutions of (1).

4. $k\{e^{z^2/2}\}$ is a Picard-Vessiot extension related to (1).

For $\theta_0 = z\partial, \theta_1 = (1 - z)\partial$, since $\partial\theta_1\theta_0 \in k[\partial]$ then let us consider

$$(\partial\theta_1\theta_0)y = \left(z(1 - z)\partial^3 + (2 - 3z)\partial^2 - 1\right)y = z(1 - z)y^{(3)} + (2 - 3z)y'' - y' = 0. \quad (3)$$

1. $(\partial\theta_1\theta_0)\text{Li}_2 = 0$ meaning that Li_2 is solution of (3).

2. $c \text{Li}_2 = \text{Li}_2 e^{\log c}$ is an other solution ($c \in \mathbb{R} \setminus \{0\}$) but it is not independent to Li_2.

3. $\{\text{Li}_2, \log, 1_{\Omega}\}$ is a fundamental set of solutions of (3).

4. $k\{\text{Li}_2, \log, 1_{\Omega}\}$ is a Picard-Vessiot extension 13 related to (3).

13. $k\{\text{Li}_2(z)\} = k \otimes \mathbb{C}[\text{Li}_2(z), \log(1 - z), \log(z)]$.
Chen series of $\{\omega_i\}_{i \geq 1}$ and along $z_0 \rightsquigarrow z$

Since iterated integrals satisfy the Chen’s lemma (or Friedrichs criterion), i.e. $\alpha_{z_0}^z (u \boxplus v) = \alpha_{z_0}^z (u) \alpha_{z_0}^z (v)$ $(u, v \in \mathcal{X}^*)$, then the Chen series is given by

$$C_{z_0 \rightsquigarrow z} := \sum_{w \in \mathcal{X}^*} \alpha_{z_0}^z (w) w = (\alpha_{z_0}^z \otimes \text{Id}) \mathcal{D} \mathcal{X} = \prod_{l \in \text{Lyn} \mathcal{X}} e^{\alpha_{z_0}^z (S_l) P_l} \in \mathcal{H}(\Omega) \langle \langle \mathcal{X} \rangle \rangle.$$

Theorem 9

If $R \in \mathbb{C}^{\text{rat}} \langle \langle \mathcal{X} \rangle \rangle$ with minimal representation of dimension n then

$$y(z_0, z) = \alpha_{z_0}^z (R) = \langle R \| C_{z_0 \rightsquigarrow z} \rangle$$

and there exists $l = 0, \ldots, n - 1$ s.t. $\{\partial^k y\}_{0 \leq k \leq l}$ is C_0-linearly independent and $a_l, \ldots, a_1, a_0 \in C_0$ s.t. $$(a_l \partial^l + a_{l-1} \partial^{l-1} + \ldots + a_1 \partial + a_0) y = 0.$$
Chen series and differential equations

For any \(n \geq 0 \), one has \(d^n C_{z_0 \rightsquigarrow z} = p_n C_{z_0 \rightsquigarrow z} \) with

\[
p_n = \sum_{\text{wgtr}=n} \sum_{w \in \mathcal{X}^n} \prod_{i=1}^{\deg r} \left(\sum_{j=1}^i r_j + j - 1 \right)^{r_i} \tau_r(w) \in C_0 \langle \mathcal{X} \rangle,
\]

where, for any word \(w = x_{i_1} \ldots x_{i_k} \in \mathcal{X}^* \) associated to the derivation multi-index \(r = (r_1, \ldots, r_k) \in \mathbb{N}^k \) of degree \(\deg r = |w| \) and of weight \(\text{wgtr} = |w| + \sum_{i=1}^k r_i \)

\(\tau_r(w) := \tau_{r_1}(x_{i_1}) \ldots \tau_{r_k}(x_{i_k}) \).

Proposition 3

Let \(K \) be a compact on \(\Omega \). There is \(c_K \in \mathbb{R}_{\geq 0} \) and a morphism \(M_K \) s.t.

\[
\forall w \in \mathcal{X}^*, \quad \| \langle C_{z_0 \rightsquigarrow z} | w \rangle \|_K \leq c_K M_K(w) |w|^{-1}.
\]

Let \(R \in \mathcal{C}^{\text{rat}} \langle \mathcal{X} \rangle \) s.t. \(\langle R | C_{z_0 \rightsquigarrow z} \rangle \) exists and \(\alpha_{z_0}^z(R) = \langle R | C_{z_0 \rightsquigarrow z} \rangle \). Thus,

\[
\forall y \in \mathcal{X}, \quad \theta_y \alpha_{z_0}^z(R) = \sum_{x \in \mathcal{X}} u_x(z) u_y^{-1}(z) \alpha_{z_0}^z(R \triangleright x).
\]

The following assertions are equivalent:

1. \(\alpha_{z_0}^z(R) \) satisfies a ODE with coefficients in \((C_0, \partial) \).

2. There is \(p \in C_0 \langle \mathcal{X} \rangle \) s.t. \(\langle R | p C_{z_0 \rightsquigarrow z} \rangle = \langle R \triangleright p | C_{z_0 \rightsquigarrow z} \rangle = 0 \).

16. Considering \(A = (\mathcal{H}(\Omega), \partial) \) as the differential ring of holomorphic functions on \(\Omega \), equipped \(1_{\Omega} \) as the neutral element, the differential ring \((\mathcal{H}(\Omega) \langle \mathcal{X} \rangle, d) \) is defined, for any \(S \in \mathcal{H}(\Omega) \langle \mathcal{X} \rangle \), by \(dS = \sum_{w \in \mathcal{X}^*} (\partial(S|w)) w \in \mathcal{H}(\Omega) \langle \mathcal{X} \rangle \).
More about Chen series

Chen series $C_{z_0 \leadsto z}$ of $\{\omega_i\}_{i \geq 1}$ satisfies the following Freidrichs criterion
\[\forall u, v \in \mathcal{X}^*, \quad \langle C_{z_0 \leadsto z} | u \uplus v \rangle = \langle C_{z_0 \leadsto z} | u \rangle \langle C_{z_0 \leadsto z} | v \rangle. \]

On the other hand, for any u and $v \in \mathcal{X}^*$,
\[\langle C_{z_0 \leadsto z} | u \rangle \langle C_{z_0 \leadsto z} | v \rangle = \langle \Delta \uplus C_{z_0 \leadsto z} | u \otimes v \rangle. \]

Hence, $\Delta \uplus C_{z_0 \leadsto z} = C_{z_0 \leadsto z} \otimes C_{z_0 \leadsto z}$ and $\langle C_{z_0 \leadsto z} | 1_{\mathcal{X}^*} \rangle = 1$.

Note that $C_{z_0 \leadsto z}$ only depends on the homotopy class of $z_0 \leadsto z$ and the endpoints z_0, z. One has $C_{z_0 \leadsto z} C_{z_1 \leadsto z_0} = C_{z_1 \leadsto z}$. Or equivalently\(^{17}\),
\[\forall w \in \mathcal{X}^*, \quad \langle C_{z_1 \leadsto z} | w \rangle = \sum_{u, v \in \mathcal{X}^*, uv = w} \langle C_{z_0 \leadsto z} | u \rangle \langle C_{z_1 \leadsto z_0} | v \rangle. \]

Note also that, for $g \in \mathcal{H}(\Omega)$, one has $C_{g(z_0) \leadsto g(z)} = g^* C_{z_0 \leadsto z}$, i.e. the Chen series of $\{g^* \omega_i\}_{i \geq 1}$ along the path $g^*(z_0 \leadsto z)$.

Example 10 (with $\omega_0(z) = z^{-1}dz$ and $\omega_1(z) = (1 - z)^{-1}dz$)

<table>
<thead>
<tr>
<th>$g(z)$</th>
<th>z</th>
<th>z^{-1}</th>
<th>$(z - 1)z^{-1}$</th>
<th>$z(z - 1)^{-1}$</th>
<th>$(1 - z)^{-1}$</th>
<th>$1 - z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g^*\omega_0$</td>
<td>ω_0</td>
<td>$-\omega_0$</td>
<td>$-\omega_1 - \omega_0$</td>
<td>$\omega_1 + \omega_0$</td>
<td>ω_1</td>
<td>$-\omega_1$</td>
</tr>
<tr>
<td>$g^*\omega_1$</td>
<td>ω_1</td>
<td>$\omega_1 + \omega_0$</td>
<td>$-\omega_0$</td>
<td>$-\omega_1$</td>
<td>$-\omega_1 - \omega_0$</td>
<td>$-\omega_0$</td>
</tr>
</tbody>
</table>

\(^{17}\) Although $\Delta_{\text{conc}} w = \sum_{u, v \in \mathcal{X}^*, uv = w} u \otimes v$ but $\Delta_{\text{conc}} C_{z_1 \leadsto z} \neq C_{z_0 \leadsto z} \otimes C_{z_1 \leadsto z}$.
NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS
Noncommutative differential equations

Considering \(A = (\mathcal{H}(\Omega), \partial) \) as the differential ring of holomorphic functions on \(\Omega \), the differential ring \((\mathcal{H}(\Omega)\langle \langle X \rangle \rangle, \mathbf{d}) \) is defined, for any \(S \in \mathcal{H}(\Omega)\langle \langle X \rangle \rangle \), by

\[
\mathbf{d}S = \sum_{w \in X^*} (\partial \langle S \mid w \rangle) w \in \mathcal{H}(\Omega)\langle \langle X \rangle \rangle.
\]

The Chen series \(C_{z_0 \rightsquigarrow z} \) satisfies the following differential equation

\[
(\text{NCDE}) \quad \mathbf{d}S = MS, \quad \text{with} \quad M = \sum_{x \in \mathcal{X}} u_x x.
\]

\[
\Delta \uplus M = \sum_{x \in \mathcal{X}} u_x (1 \mathcal{X}^* \otimes x + x \otimes 1 \mathcal{X}^*) = 1 \mathcal{X}^* \otimes M + M \otimes 1 \mathcal{X}^*.
\]

More generally, for any \(k \geq 1 \), \(C_{z_0 \rightsquigarrow z} \) satisfies \(\mathbf{d}^k S = Q_k S \) with \(Q_k \in \mathbb{C}\{\{(u_x^{\pm 1})_{x \in \mathcal{X}}\}\langle \mathcal{X} \rangle\} \) satisfying the recursion

\[
Q_0 = 1 \quad \text{and} \quad Q_k = Q_{k-1} M + \mathbf{d} Q_{k-1}.
\]

\(Q_k \) can be computed explicitly by (summing over words \(w = x_{i_1} \ldots x_{i_k} \) and derivation multiindices \(r = (r_1, \ldots, r_k) \) of degree \(\text{deg} \ r = |w| = k \) and of weight \(\text{wgt} \ r = k + r_1 + \ldots + r_k \))

\[
Q_k = \sum_{\text{wgt} \ r = k, w \in \mathcal{X}^{\text{deg} \ r}} \prod_{j=1}^{\text{deg} \ r} \left(\sum_{j=1}^{r_j} \binom{r_j + j - 1}{r_k} \right) \tau_r(w), \quad \text{where}
\]

\[
\tau_r(w) = \tau_{r_1}(x_{i_1}) \ldots \tau_{r_k}(x_{i_k}) = (\partial^{r_1} u_{x_{i_1}}) x_{i_1} \ldots (\partial^{r_k} u_{x_{i_k}}) x_{i_k} \in \mathbb{C}\{\{(u_x^{\pm 1})_{x \in \mathcal{X}}\}\langle \mathcal{X} \rangle\}.
\]
First step of noncommutative PV theory

1. The space of solutions of

$$(\text{NCDE}) \quad dS = MS, \quad \text{with} \quad M = \sum_{x \in \mathcal{X}} u_x x.$$

is a right free $\mathbb{C}\langle \langle \mathcal{X} \rangle \rangle$-module of rank 1.

2. By a theorem of Ree, $C_{z_0 \sim z}$ is a group-like solution of (NCDE) and it can be obtained as the limit of a convergent Picard iteration, initialized at $\langle C_{z_0 \sim z} | 1_{\mathcal{X}^*} \rangle = 1_{\mathcal{H}(\Omega)} 1_{\mathcal{X}^*}$, for ultrametric distance.

3. If G and H are group-like solutions (NCDE) there is a constant Lie series C such that $G = He^C$ (and conversely).

From this, it follows that

- the differential Galois group of (NCDE) + group-like is the group $\{ e^C \}_{C \in \mathcal{L}ie_{\mathcal{C}.1_{\Omega}} \langle \langle \mathcal{X} \rangle \rangle}$.

Which leads us to the following definition

- the PV extension related to (NCDE) is $\mathcal{C}_{0}.\mathcal{X} \{ C_{z_0 \sim z} \}$.

It, of course, is such that $\text{Const}(\mathcal{C}_0 \langle \langle \mathcal{X} \rangle \rangle) = \ker d = \mathbb{C}.1_{\Omega} \langle \langle \mathcal{X} \rangle \rangle$.

18. In fact, the Hausdorff group (group of characters) of $\mathcal{H} \langle \langle \mathcal{X} \rangle \rangle$.
Basic triangular theorem over a differential ring

Suppose that the \(\mathbb{C} \)-commutative ring \(A \) is without zero divisors and equipped with a differential operator \(\partial \) such that \(\mathbb{C} = \ker \partial \).

Let \(S \in \mathcal{A}\langle \mathcal{X} \rangle \) be a group-like solution of \((NCDE) \) in the following form

\[
S = \sum_{w \in \mathcal{X}^*} \langle S | w \rangle w = \sum_{w \in \mathcal{X}^*} \langle S | S_w \rangle P_w = \prod_{l \in \mathcal{L} \mathcal{Y} \mathcal{N} \mathcal{X}} e^{\langle S | S_l \rangle P_l}.
\]

Then

1. If \(H \in \mathcal{A}\langle \mathcal{X} \rangle \) is another group-like solution then there exists \(C \in \mathcal{L} \mathcal{I} \mathcal{E}_A \langle \mathcal{X} \rangle \) such that \(S = He^C \) (and conversely).

2. The following assertions are equivalent
 a) \(\{\langle S | w \rangle\}_{w \in \mathcal{X}^*} \) is \(C_0 \)-linearly independent,
 b) \(\{\langle S | l \rangle\}_{l \in \mathcal{L} \mathcal{Y} \mathcal{N} \mathcal{X}} \) is \(C_0 \)-algebraically independent,
 c) \(\{\langle S | x \rangle\}_{x \in \mathcal{X}} \) is \(C_0 \)-algebraically independent,
 d) \(\{\langle S | x \rangle\}_{x \in \mathcal{X} \cup \{1_{\mathcal{X}^*}\}} \) is \(C_0 \)-linearly independent,
 e) \(\{u_x\}_{x \in \mathcal{X}} \) is such that, for \(f \in \text{Frac}(C_0) \) and \((c_x)_{x \in \mathcal{X}} \in \mathbb{C}(\mathcal{X}) \),
 \[
 \sum_{x \in \mathcal{X}} c_x u_x = \partial f \implies (\forall x \in \mathcal{X})(c_x = 0).
 \]
 f) \((u_x)_{x \in \mathcal{X}} \) is free over \(\mathbb{C} \) and \(\partial \text{Frac}(C_0) \cap \text{span}_{\mathbb{C}} \{u_x\}_{x \in \mathcal{X}} = \{0\} \).
Examples of positive cases over $\mathcal{X} = \{x\}$, $\mathcal{A} = (\mathcal{H}(\Omega), \partial)$

1. $\Omega = \mathbb{C}$, $u_x(z) = 1_\Omega$, $C_0 = \mathbb{C}\{u_x^{\pm1}\} = \mathbb{C}$.

 $\alpha_0^z(x^n) = z^n/n!$, for $n \geq 1$. Thus, $dS = xS$ and

 $$ S = \sum_{n \geq 0} \alpha_0^z(x^n)x^n = \sum_{n \geq 0} \frac{z^n}{n!}x^n = e^{zx}. $$

 Moreover, $\alpha_0^z(x) = z$ which is transcendent over C_0 and the family $\{\alpha_0^z(x^n)\}_{n \geq 0}$ is C_0-free. Let $f \in C_0$ then $\partial f = 0$. Thus, if $\partial f = cu_x$ then $c = 0$.

2. $\Omega = \mathbb{C}\setminus(-\infty, 0]$, $u_x(z) = z^{-1}$, $C_0 = \mathbb{C}\{z^{\pm1}\} = \mathbb{C}[z^{\pm1}] \subset \mathbb{C}(z)$.

 $\alpha_1^z(x^n) = \log^n(z)/n!$, for $n \geq 1$. Thus $dS = z^{-1}xS$ and

 $$ S = \sum_{n \geq 0} \alpha_1^z(x^n)x^n = \sum_{n \geq 0} \frac{\log^n(z)}{n!}x^n = z^x. $$

 Moreover, $\alpha_1^z(x) = \log(z)$ which is transcendent over $\mathbb{C}(z)$ then over $\mathbb{C}[z^{\pm1}]$. The family the family $\{\alpha_1^z(x^n)\}_{n \geq 0}$ is $\mathbb{C}(z)$-free and then C_0-free. Let $f \in C_0$ then $\partial f \in \text{span}_{\mathbb{C}}\{z^{\pm n}\}_{n \neq 1}$. Thus, if $\partial f = cu_x$ then $c = 0$.
Examples of negative cases over $X = \{x\}$, $A = (\mathcal{H}(\Omega), \partial)$

1. $\Omega = \mathbb{C}, u_x(z) = e^z, \mathcal{C}_0 = \mathbb{C}\{\{e^{\pm z}\}\} = \mathbb{C}[e^{\pm z}]$.

 $\alpha_0^z(x^n) = (e^z - 1)^n/n!$, for $n \geq 1$. Thus, $dS = e^z x S$ and

 $S = \sum_{n \geq 0} \alpha_0^z(x^n)x^n = \sum_{n \geq 0} \frac{(e^z - 1)^n}{n!}x^n = e^{(e^z - 1)x}.$

 Moreover, $\alpha_0^z(x) = e^z - 1$ which is not transcendent over \mathcal{C}_0 and
 and $\{\alpha_0^z(x^n)\}_{n \geq 0}$ is not \mathcal{C}_0-free. If $f(z) = ce^z \in \mathcal{C}_0$ ($c \neq 0$) then
 $\partial f(z) = ce^z = cu_x(z)$.

2. $\Omega = \mathbb{C}\setminus[-\infty, 0], u_x(z) = z^a (a \notin \mathbb{Q}),$

 $\mathcal{C}_0 = \mathbb{C}\{\{z, z^{\pm a}\}\} = \operatorname{span}_\mathbb{C} \{z^{ka+l}\}_{k,l \in \mathbb{Z}}.$

 $\alpha_0^z(x^n) = (a + 1)^{-n}z^{n(a+1)/n!}$, for $n \geq 1$. Thus, $dS = z^a x S$ and

 $S = \sum_{n \geq 0} \alpha_0^z(x^n)x^n = \sum_{n \geq 0} \frac{z^{n(a+1)}}{(a + 1)^nn!}x^n = e^{(a+1)^{-1}z^{(a+1)x}}.$

 Moreover, $\alpha_0^z(x) = z^{a+1}/(a + 1)$ which is not transcendent over \mathcal{C}_0
 and $\{\alpha_0^z(x^n)\}_{n \geq 0}$ is not \mathcal{C}_0-free. If $f(z) = cz^{a+1}/(a + 1) \in \mathcal{C}_0$
 ($c \neq 0$) then $\partial f(z) = cz^a = cu_x(z)$.
Chen series of $\omega_0(z) = z^{-1}dz$ and $\omega_1(z) = (1 - z)^{-1}dz$

Let $\gamma_0(\varepsilon)$ and $\gamma_1(\varepsilon)$ be the circular paths of radius ε encircling 0 and 1 clockwise, respectively. In particular, letting $\beta = \beta_1 - \beta_0$, one considers

$$
\gamma_0(\varepsilon, \beta) = \varepsilon e^{i\beta_0} \mapsto \varepsilon e^{i\beta_1} \subset \gamma_0(\varepsilon), \\
\gamma_1(\varepsilon, \beta) = 1 - \varepsilon e^{i\beta_0} \mapsto 1 - \varepsilon e^{i\beta_1} \subset \gamma_1(\varepsilon).
$$

On the one hand, one has, for any $i = 0$ or 1 and $w \in X^+$,

$$
|\langle C_{\gamma_i(\varepsilon, \beta)}|w\rangle| \leq \varepsilon^{\|w\|_{\mathcal{M}} |\beta|_{\mathcal{M}}} |w|^{-1}.
$$

It follows then

$$
C_{\gamma_i(\varepsilon, \beta)} = e^{i\beta x_i} + o(\varepsilon) \quad \text{and} \quad C_{\gamma_i(\varepsilon)} = e^{2i\pi x_i} + o(\varepsilon).
$$

On the other hand, for $R \in \mathcal{C}^{\text{rat}} \langle \langle X \rangle \rangle$ of minimal representation (λ, μ, η) of dimension n, one has, for any $w \in X^*$,

$$
|\langle R|w\rangle| \leq \|\lambda\|_{\infty}^{1,n} \|\mu(w)\|_{\infty}^{n,n} \|\eta\|_{\infty}^{n,1}.
$$

Hence,

$$
\alpha^z_{z_0}(R) := \langle R \parallel C_{z_0 \mapsto z} \rangle = \lambda((\alpha^z_{z_0} \otimes \mu) \mathcal{D} X) \eta = \lambda\left(\prod_{l \in \mathcal{L} X^*} e^{\alpha^z_{z_0}(S_l)\mu(P_l)} \right) \eta.
$$

Note that the map $\alpha^z_{z_0} : \mathcal{C}^{\text{rat}} \langle \langle X \rangle \rangle \to \mathcal{H}(\Omega)$ is not injective. For example,

$$
\alpha^z_{z_0}(z_0 x_0^* + (1 - z_0)(-x_1)^* - 1 x^*) = 0.
$$
Let $C_C := \mathbb{C}[z^a, (1 - z)^b]_{a,b \in \mathbb{C}}$ be equipped with ∂.

Proposition 4

Let $\text{Dom}(\text{Li}_\bullet)$ be the set of $S = \sum_{n \geq 0} S_n$ with $S_n = \sum_{|w| = n} \langle S| w \rangle w$ s.t. $\sum_{n \geq 0} \text{Li}_n S_n$ converges uniformly on any compact of Ω. Then $\text{Dom}(\text{Li}_\bullet)$, containing $\mathbb{C}^{\text{rat exc}} (\langle X \rangle) \shuffle \mathbb{C} \langle X \rangle$, is closed by shuffle. Moreover, $\forall S, T \in \text{Dom}(\text{Li}_\bullet)$, $\text{Li}_S \shuffle T = \text{Li}_S \text{Li}_T$.

For $R \in \text{Dom}(\text{Li}_\bullet)$, let $\rho := \langle R||L \rangle$. Then, $\forall n \geq 0$, $\partial^n \rho = \langle R||d^n L \rangle$ and

$$d^n L = p_n L \quad \text{with} \quad p_n = \sum \sum \prod_{w \in X^n} \left(\sum_{j=1}^{i} r_j + j - 1 \right)^{r_i} \tau_r(w) \in C \langle X \rangle,$$

where, for any word $w = x_{i_1} \ldots x_{i_k} \in X^*$ associated to the derivation multi-index $r = (r_1, \ldots, r_k) \in \mathbb{N}^k$ of degree $\deg r = |w|$ and of weight $\text{wgt } r = |w| + \sum_{i=1}^{k} r_i$, $\tau_r(w) := \tau_{r_1}(x_{i_1}) \ldots \tau_{r_k}(x_{i_k})$ and, for any $r \geq 0$, $\tau_r(x_0) = -r!(-z)^{-(r+1)} x_0$ and $\tau_r(x_1) = r!(1 - z)^{-(r+1)} x_1$.

Proposition 5

The following assertions are equivalent:

1. ρ satisfies a differential equation with coefficients in (C_C, ∂).
2. There exists $P \in C_C \langle X \rangle$ such that $\langle R||PL \rangle = \langle R \triangleright P||L \rangle = 0$.

36 / 37
Bibliography

G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo.– Kleene stars of the plane, polylogarithms and symmetries, Theoretical Computer Science, Volume 800, 31 December 2019, Pages 52-72

V. Hoang Ngoc Minh.– On the solutions of the universal differential equation with three regular singularities (On solutions of KZ$_3$), CONFLUENTES MATHEMATICI (2020).

THANK YOU FOR YOUR ATTENTION