On universal differential equations

V. Hoang Ngoc Minh Université Lille, 1 Place Déliot, 59024 Lille, France.

Séminaire Combinatoire, Informatique et Physique 23 Février, 2 Mars & 16 2021, Villetaneuse

Outline

1. Introduction

- 1.1 Picard-Vessiot theory of ordinary differential equation
- 1.2 Fuchsian linear differential equations
- 1.3 Nonlinear differential equations
- 2. Dual laws and representative series
 - 2.1 conc-shuffle and conc-stuffle bialgebras
 - 2.2 Dualizable laws in conc-shuffle bialgebras
 - 2.3 Representative series and Sweedler's dual
- 3. Continuity over Chen series
 - 3.1 Continuity, indiscernability and growth condition
 - 3.2 Iterated integrals
 - 3.3 Chen series
- 4. Noncommutative PV theory and independences via words
 - 4.1 Noncommutative differential equations
 - 4.2 First step of noncommutative PV theory
 - 4.3 Independences over differential field & differential ring

INTRODUCTION

Picard-Vessiot theory of ordinary differential equation

 (\mathbf{k}, ∂) a commutative differential ring without zero divisors. $\operatorname{Const}(\mathbf{k}) = \{c \in \mathbf{k} | \partial c = 0\}$ is supposed to be a field. $(ODE) \quad (a_n \partial^n + a_{n-1} \partial^{n-1} + \ldots + a_0)y = 0, \quad a_0, \ldots, a_{n-1}, a_n \in \mathbf{k}.$ a_n^{-1} is supposed to exist.

Definition 1

- 1. Let y_1, \ldots, y_n be $Const(\mathbf{k})$ -linearly independent solutions of (ODE). Then $\{y_1, \ldots, y_n\}$ is called a fundamental set of solutions of (ODE) and it generates a $Const(\mathbf{k})$ -vector subspace of dimension at most n.
- If ¹ M = k{y₁,..., y_n} and Const(M) = Const(k) then M is called a Picard-Vessiot extension related to (ODE)
- Let k ⊂ K₁ and k ⊂ K₂ be differential rings. An isomorphism of rings σ : K₁ → K₂ is a differential k-isomorphism if ∀a ∈ K₁, ∂(σ(a)) = σ(∂a) and, if a ∈ k, σ(a) = a. If K₁ = K₂ = K, the differential galois group of K over k is by Gal_k(K) = {σ|σ is a differential k-automorphism of K}.

1. Let R_1, R_2 be differential rings s.t. $R_1 \subset R_2$. Let S be a subset of R_2 . $R_1\{S\}$ denotes the smallest differential subring of R_2 containing R_1 . $R_1\{S\}$ is the ring (over R_1) generated by S and their derivatives of all orders.

4/37

Linear differential equations and Dyson series

Let
$$a_0, \ldots, a_n \in \mathbb{C}(z)$$
, $a_n(z)\partial^n y(z) + \ldots + a_1(z)\partial y(z) + a_0(z)y(z) = 0$.
(ED)
$$\begin{cases} \partial q(z) = A(z)q(z), & A(z) \in \mathcal{M}_{n,n}(\mathbb{C}(z)), \\ q(z_0) = \eta, & \lambda \in \mathcal{M}_{1,n}(\mathbb{C}), \\ y(z) = \lambda q(z), & \eta \in \mathcal{M}_{n,1}(\mathbb{C}). \end{cases}$$

By successive Picard iterations, with the initial point $q(z_0) = \eta$, we get² $y(z) = \lambda U(z_0; z)\eta$, where $U(z_0; z)$ is the following functional expansion $U(z_0; z) = \sum_{z_0} \int_{z_0}^{z} A(z_1) dz_1 \int_{z_0}^{z_1} A(z_2) dz_2 \dots \int_{z_0}^{z_{k-1}} A(z_k) dz_k$, (Dyson series) and $(z_0, z_1, \ldots, z_k, z)$ is a subdivision of the path of integration $z_0 \rightsquigarrow z$.

In order to find the matrix $\Omega(z_0; z)$ s.t.

 $U(z_0; z) = \exp[\Omega(z_0; z)] = \top \exp\left(\int_{z_0}^{z} A(s) ds\right), \quad (\text{Feynman's notation})$

Magnus computed $\Omega(z_0; z)$ as limit of the following Lie-integral-functionals

$$\Omega_{1}(z_{0}; z) = \int_{z_{0}}^{z} A(z) ds,$$

$$\Omega_{k}(z_{0}; z) = \int_{z_{0}}^{z} [A(z) + [A(z), \Omega_{k-1}(z_{0}; s)]/2 + [[A(z), \Omega_{k-1}(z_{0}; s)]/12 + ...) ds.$$

Subject to convergence.

2. Subject to convergence.

Fuchsian linear differential equations

Let Ω be a simply connected domain and $\mathcal{H}(\Omega)$ be the ring of holomorphic functions over Ω (with $1_{\mathcal{H}(\Omega)}$ as neutral element). Let us consider, here,

$$\sigma = \{s_i\}_{i=0,..,m}, m \ge 1, \text{ as set of simple poles of } (ED) \text{ and } \Omega = \widetilde{\mathbb{C} \setminus \sigma}.$$

$$A(z) = \sum_{i=0}^{m} M_i u_i(z), \text{ where } \begin{cases} M_i \in \mathcal{M}_{n,n}(\mathbb{C}), \\ u_i(z) = (z - s_i)^{-1} \in \mathbb{C}(z). \end{cases}$$

$$\left\{ \begin{array}{l} \partial q(z) = \left(\sum_{i=0}^{m} M_i u_i(z)\right) q(z), \\ q(z_0) = \eta, \\ y(z) = \lambda q(z). \end{array}\right\}$$
Let X* be the set of words over X = $\{x_0, \ldots, x_m\}$ and $\alpha_{z_0}^z \otimes \mathcal{M} : \mathbb{C}\langle X \rangle \otimes \mathbb{C}\langle X \rangle \to \mathcal{M}_{n,n}(\mathcal{H}(\Omega))$

$$(z_0 \rightsquigarrow z \text{ is the path of integration previously introduced) s.t.}$$

$$\mathcal{M}(1_{X^*}) = Id_n \text{ and } \mathcal{M}(x_{i_1} \cdots x_{i_k}) = \int_{z_0}^{z} \frac{dz_1}{z_1 - s_{i_1}} \cdots \int_{z_0}^{z_{k-1}} \frac{dz_k}{z_k - s_{i_k}}.$$
Then ${}^3 y(z) = \lambda U(z_0; z)\eta$ with $U(z_0; z) = \sum_{w \in X^*} \mathcal{M}(w) \alpha_{z_0}^z(w) = (\mathcal{M} \otimes \alpha_{z_0}) \sum_{w \in X^*} w \otimes w.$

6/37

3. Subject to convergence.

Examples of linear dynamical systems

Example 2 (Hypergeometric equation)

Let
$$t_0, t_1, t_2$$
 be parameters and
 $z(1-z)\ddot{y}(z) + [t_2 - (t_0 + t_1 + 1)z]\dot{y}(z) - t_0t_1y(z) = 0.$
Let $q_1(z) = -y(z)$ and $q_2(z) = (1-z)\dot{y}(z)$. Hence, one has
 $y(z) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix}$

and

$$\begin{pmatrix} \dot{q}_1(z) \\ \dot{q}_2(z) \end{pmatrix} = \begin{pmatrix} M_0 \\ z \end{pmatrix} + \frac{M_1}{1-z} \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix}$$

$$= (u_0(z)M_0 + u_1(z)M_1) \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix},$$
where $u_0(z) = z^{-1}, u_1(z) = (1-z)^{-1}$ and
$$M_0 = -\begin{pmatrix} 0 & 0 \\ t_0t_1 & t_2 \end{pmatrix} \text{ and } M_1 = -\begin{pmatrix} 0 & 1 \\ 0 & t_2 - t_0 - t_1 \end{pmatrix}.$$

Nonlinear differential equations

(NED)
$$\begin{cases} \partial q(z) = \left(\sum_{i=0}^{m} T_i(q) u_i(z)\right)(q), \\ q(z_0) = q_0, \\ y(z) = f(q(z)), \end{cases}$$

where

- ▶ $u_i \in (\mathbf{k}, \partial)$,
- ► the state q = (q₁,..., q_n) belongs the complex analytic manifold Q of dimension n and q₀ is the initial state,
- the observation $f \in \mathcal{O}$, with \mathcal{O} the ring of analytic functions over Q,
- ▶ for i = 0..1, $T_i = (T_i^1(q)\partial/\partial q_1 + \cdots + T_i^m(q)\partial/\partial q_m)$ is an analytic vector field over Q, with $T_i^j(q) \in \mathcal{O}$, for j = 1, ..., n.

With X and $\alpha_{z_0}^z$ given as previously, let the morphism τ be defined by $\tau(\mathbf{1}_{X^*}) = \mathrm{Id}$ and $\tau(x_{i_1} \cdots x_{i_k}) = T_{i_1} \cdots T_{i_k}$. Then ${}^4 y(z) = \mathcal{T} \circ f_{|_{q_0}}$ with $\mathcal{T} = \sum_{w \in X^*} \tau(w) \alpha_{z_0}^z(w) = (\tau \otimes \alpha_{z_0}) \sum_{w \in X^*} w \otimes w.$

4. Subject to convergence.

・ロト・(型ト・(型ト・(型ト・(ロト))
 ・ロト・(型ト・(型ト・(ロト))

Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let k_1, k_2 be parameters and $\partial^2 y(z) + k_1 y(z) + k_2 y^2(z) = u_1(z)$ which can be represented by the following state equations (with n = 1)

$$\begin{array}{rcl} y(z) &=& q(z),\\ \partial q(z) &=& A_0(q)u_0(z) + A_1(q)u_1(z),\\ \text{where} & A_0 &=& -(k_1q + k_2q^2)\frac{\partial}{\partial q} \quad \text{and} \quad A_1 &=& \frac{\partial}{\partial q} \end{array}$$

Example 4 (Duffing equation)

Let a, b, c be parameters and $\partial^2 y(z) + a \partial y(z) + b y(z) + c y^3(z) = u_1(z)$ which can be represented by the following state equations (with n = 2)

$$\begin{array}{rcl} y(z) &=& q_1(z), \\ \begin{pmatrix} \partial q_1(z) \\ \partial q_2(z) \end{pmatrix} &=& \begin{pmatrix} q_2 \\ -(aq_2+b^2q_1+cq_1^3) \end{pmatrix} u_0(z) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_1(z) \\ &=& A_0(q)u_0(z) + A_1(q)u_1(z), \\ \end{array} \\ \text{where} \quad A_0 &=& -(aq_2+b^2q_1+cq_1^3) \frac{\partial}{\partial q_2} + q_2 \frac{\partial}{\partial q_1} \quad \text{and} \quad A_1 &=& \frac{\partial}{\partial q_2}. \end{array}$$

9/37

Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)

Let γ, g be parameters and

 $\partial^2 x(z) - \gamma [1 + x(z)^2] \partial x(z) + x(z) = g \cos(\omega z)$

which can be tranformed into (with C is some constant of integration)

$$\partial x(z) = \gamma [1 + x(z)^2/3] x(z) - \int_{z_0}^z x(s) ds + \frac{g}{\omega} \sin(\omega z) + C.$$

using $x = \partial y$ and $y_1(z) = g \sin(\omega z)/\omega + C$, it leads then to

Supposing $x = \partial y$ and $u_1(z) = g \sin(\omega z)/\omega + C$, it leads then to $\partial^2 y(z) = \gamma [\partial y(z) + (\partial y(z))^3/3] + y(z) + u_1(z)$

which can be represented by the following state equations (with n = 2)

$$\begin{array}{rcl} y(z) &=& q_1(z), \\ \begin{pmatrix} \partial q_1(z) \\ \partial q_2(z) \end{pmatrix} &=& \begin{pmatrix} q_2 \\ \gamma(q_2+q_2^3/3)+q_1 \end{pmatrix} u_0(z) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_1(z) \\ &=& A_0(q)u_0(z) + A_1(q)u_1(z), \\ \\ \text{where} \quad A_0 &=& [\gamma(q_2+q_2^3/3)+q_1] \frac{\partial}{\partial q_2} + q_2 \frac{\partial}{\partial q_1} \quad \text{and} \quad A_1 &=& \frac{\partial}{\partial q_2}. \end{array}$$

DUAL LAWS AND REPRESENTATIVE SERIES

11/37

Dual law in bialgebra

Startting with a **k** – **AAU** (**k** is a ring) \mathcal{A} . Dualizing $\mu : \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \to \mathcal{A}$, we get the transpose ${}^{t}\mu : \mathcal{A}^{\vee} \to (\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A})^{\vee}$ so that we do not get a co-multiplication in general.

► Remark that when **k** is a field, the following arrow is into (due to the fact that $\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}$ is torsionfree)

$$\Phi: \mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee} \to (\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A})^{\vee}.$$

One restricts the codomain of ^tµ to A[∨] ⊗_k A[∨] and then the domain to (^tµ)⁻¹Φ(A[∨] ⊗_k A[∨]) =: A[◦].

The coalgebra $(\mathcal{A}^{\circ}, \Delta_{\mu})$ is called the Sweedler's dual of (\mathcal{A}, μ) .

イロト 不得 トイヨト イヨト 二日

Case of algebras noncommutative series

- ▶ Denoting the (ordered) alphabets $Y := \{y_k\}_{k \ge 1}$ (with $y_1 \succ y_2 \succ ...$) or $X := \{x_0, x_1\}$ (with $x_1 \succ x_0$) by \mathcal{X} , we use the correspondence among words of the free monoid (\mathcal{X}^* , conc, $1_{\mathcal{X}^*}$) : $(s_1, ..., s_r) \in \mathbb{N}^r_+ \leftrightarrow y_{s_1} \dots y_{s_r} \in Y^* \stackrel{\pi_{\mathcal{X}}}{=} x_0^{s_1-1} x_1 \dots x_0^{s_r-1} x_1 \in \mathcal{X}^* x_1$.
- Let $\mathcal{L}yn\mathcal{X}$ denote the set of Lyndon words generated by \mathcal{X} .
- Let (*Lie_A*⟨⟨*X*⟩⟩, [.]) and (*A*⟨⟨*X*⟩⟩, conc) (resp. *Lie_A*⟨*X*⟩, [.]) and (*A*⟨*X*⟩, conc)) denote the algebras of (Lie) series (resp. polynomials) with coefficients in the ring *A*, over *X*.

$$\begin{array}{l} \blacktriangleright \hspace{0.5cm} \mathcal{H}_{\scriptscriptstyle \sqcup \hspace{-.5cm}\sqcup} \left(\mathcal{X} \right) := \left(A \langle \mathcal{X} \rangle, \operatorname{conc}, 1_{\mathcal{X}^*}, \Delta_{\scriptscriptstyle \sqcup \hspace{-.5cm}\sqcup} , e \right) \text{ and } \\ \mathcal{H}_{\scriptscriptstyle \sqcup \hspace{-.5cm}\sqcup} \left(Y \right) := \left(A \langle Y \rangle, \operatorname{conc}, 1_{Y^*}, \Delta_{\scriptscriptstyle \sqcup \hspace{-.5cm}\sqcup} , e \right) \text{ with }^5 \\ \forall x \in \mathcal{X}, \quad \Delta_{\scriptscriptstyle \sqcup \hspace{-.5cm}\sqcup} x = x \otimes 1_{\mathcal{X}^*} + 1_{\mathcal{X}^*} \otimes x, \\ \forall y_i \in Y, \quad \Delta_{\scriptscriptstyle \sqcup \hspace{-.5cm}\sqcup} y_i = y_i \otimes 1_{Y^*} + 1_{Y^*} \otimes y_i + \sum_{k+l=i} y_k \otimes y_l. \end{array}$$

► The dual law associated to conc is defined by $\forall w \in \mathcal{X}^*, \quad \Delta_{\text{conc}}(w) = \sum_{u,v \in \mathcal{X}^*, uv=w} u \otimes v.$

5. Or equivalently, for $x, y \in \mathcal{X}, y_i, y_j \in Y$ and $u, v \in \mathcal{X}^*$ (resp. Y^*), $u \sqcup 1_{\mathcal{X}^*} = 1_{\mathcal{X}^*} \sqcup u = u$ and $xu \sqcup yv = x(u \sqcup yv) + y(xu \sqcup v)$, $u \sqcup 1_{Y^*} = 1_{Y^*} \sqcup u = u$ and $x_i u \sqcup y_j v = y_i(u \sqcup y_j v) + y_j(y_i u \sqcup v) + y_{i+j}(u \sqcup v)$.

Dualizable laws in conc-shuffle bialgebras (1/2)

We can exploit the basis of words as follows

- Any bilinear law (shuffle, stuffle or any) μ : A⟨X⟩ ⊗_A A⟨X⟩ → A⟨X⟩ can be decribed through its structure constants wrt to the basis of words, *i.e.* for u, v, w ∈ X*, Γ^w_{u,v} := ⟨μ(u ⊗ v)|w⟩ so that μ(u ⊗ v) = ∑_{w∈X*} Γ^w_{u,v}w.
- In the case when Γ^w_{u,v} is locally finite in w, we say that the given law is dualizable, the arrow ^tµ restricts nicely to A⟨X⟩ → A⟨⟨X⟩⟩ and one can define on the polynomials a comultiplication by
 Δ_µ(w) := Σ_{µ v∈X*} Γ^w_{u,v} u ⊗ v.
- 3. When the law μ is dualizable, we have

$$\begin{array}{ccc} A\langle\!\langle \mathcal{X} \rangle\!\rangle & \xrightarrow{t_{\mu}} & A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle \\ \hline can & & \uparrow^{\Phi|_{A\langle \mathcal{X} \rangle \otimes_A A\langle \mathcal{X} \rangle}} \\ A\langle \mathcal{X} \rangle & \xrightarrow{\Delta_{\mu}} & A\langle \mathcal{X} \rangle \otimes_A A\langle \mathcal{X} \rangle \end{array}$$

The arrow Δ_{μ} is unique to be able to close the rectangle and $\Delta_{\mu}(P)$ is defined as above.

Dualizable laws in conc-shuffle bialgebras (2/2)

4. Proof that the arrow $A\langle \mathcal{X} \rangle \otimes_A A\langle \mathcal{X} \rangle \longrightarrow A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle$ is into :

Let $T = \sum_{i=1}^{n} P_i \otimes_A Q_i$ such that $\Phi(T) = 0$. Rewriting T as a finitely supported sum $T = \sum_{u,v \in \mathcal{X}^*} c_{u,v} u \otimes v$ (this is indeed the iso between $A\langle \mathcal{X} \rangle \otimes_A A\langle \mathcal{X} \rangle$ and $A[\mathcal{X}^* \times \mathcal{X}^*]$), $\Phi(T)$ is by definition of Φ the double series (here a polynomial) s.t. $\langle \Phi(T) | u \otimes v \rangle = c_{u,v}$. If $\Phi(T) = 0$, then for all $(u, v) \in \mathcal{X}^* \times \mathcal{X}^*$, $c_{u,v} = 0$ entailing T = 0.

We extend by linearity and infinite sums, for $S \in A\langle\!\langle Y \rangle\!\rangle$ (resp. $A\langle\!\langle \mathcal{X} \rangle\!\rangle$), by

$$\begin{split} \Delta_{\amalg} S &= \sum_{w \in Y^*} \langle S | w \rangle \Delta_{\amalg} w \quad \in A \langle\!\langle Y^* \otimes Y^* \rangle\!\rangle, \\ \Delta_{\text{conc}} S &= \sum_{w \in \mathcal{X}^*} \langle S | w \rangle \Delta_{\text{conc}} w \quad \in A \langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle, \\ \Delta_{\amalg} S &= \sum_{w \in \mathcal{X}^*} \langle S | w \rangle \Delta_{\amalg} w \quad \in A \langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle. \end{split}$$

 $\underline{A\langle\!\langle \mathcal{X}\rangle\!\rangle \otimes A\langle\!\langle \mathcal{X}\rangle\!\rangle} \text{ embeds injectively in }^6 A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^*\rangle\!\rangle \cong [A\langle\!\langle \mathcal{X}\rangle\!\rangle] \langle\!\langle \mathcal{X}\rangle\!\rangle.$

6. $A\langle\!\langle \mathcal{X} \rangle\!\rangle \otimes A\langle\!\langle \mathcal{X} \rangle\!\rangle$ contains the elements of the form $\sum_{i \in I} \text{ finite } G_i \otimes D_i$, for $(G_i, D_i) \in A\langle\!\langle \mathcal{X} \rangle\!\rangle \times A\langle\!\langle \mathcal{X} \rangle\!\rangle$. But since elements of $M \otimes N$ are finite combination of $m_i \otimes n_i, m_i \in M, n_i \in N$ then $\sum_{i \ge 0} u^i \otimes v^i$ belongs to $A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle$ and does not belong to $A\langle\!\langle \mathcal{X} \rangle\!\rangle \otimes A\langle\!\langle \mathcal{X} \rangle\!\rangle$, for $u, v \in \mathcal{X}^{\ge 1}$.

Extended Ree's theorem

Let $S \in A\langle\!\langle Y \rangle\!\rangle$ (resp. $A\langle\!\langle X \rangle\!\rangle$), A is a commutative ring containing \mathbb{Q} . The series S is said to be

- 1. a \bowtie (resp. conc, \bowtie)-character iff, for any $w, v \in Y^*$ (resp. \mathcal{X}^*), $\langle S|w \rangle \langle S|v \rangle = \langle S|w \bowtie v \rangle$ (resp. $\langle S|wv \rangle, \langle S|w \amalg v \rangle$) and $\langle S|1 \rangle = 1$.
- 2. an infinitesimal \bowtie (resp. conc, \bowtie)-character iff, for any $w, v \in Y^*$ (resp. \mathcal{X}^*), $\langle S|w \bowtie v \rangle = \langle S|w \rangle \langle v|1_{Y^*} \rangle + \langle w|1_{Y^*} \rangle \langle S|v \rangle$ (resp. $\langle S|wv \rangle = \langle S|w \rangle \langle v|1_{\mathcal{X}^*} \rangle + \langle w|1_{\mathcal{X}^*} \rangle \langle S|v \rangle$, $\langle S|w \sqcup v \rangle = \langle S|w \rangle \langle v|1_{\mathcal{X}^*} \rangle + \langle w|1_{\mathcal{X}^*} \rangle \langle S|v \rangle$).
- 3. a group-like series iff $\langle S|1_{\mathcal{X}^*}\rangle = 1$ and $\Delta_{\sqcup \sqcup} S = \Phi(S \otimes S)$ (resp. $\Delta_{conc}S = \Phi(S \otimes S), \Delta_{\sqcup \sqcup} S = \Phi(S \otimes S)$).
- 4. a primitive series iff $\Delta_{\perp} S = 1_{Y^*} \otimes S + S \otimes 1_{Y^*}$ (resp. $\Delta_{conc} S = 1_{\mathcal{X}^*} \otimes S + S \otimes 1_{\mathcal{X}^*}, \Delta_{\perp} S = 1_{\mathcal{X}^*} \otimes S + S \otimes 1_{\mathcal{X}^*}$).

Then the following assertions are equivalent

- 1. S is a \bowtie (resp. conc and \bowtie)-character.
- 2. $\log S$ an infinitesimal ratio = (resp. conc and resp. -)-character.
- 3. S is group-like, for Δ_{\perp} (resp. Δ_{conc} and Δ_{\perp}).

Extension by continuity (infinite sums)

Now, suppose that the ring A (containing \mathbb{Q}) is a field **k**. Then

$$\forall c \in \mathbf{k}, \quad \Delta_{\scriptscriptstyle \sqcup\!\!\sqcup} (cx)^* = \sum_{n \geq 0} c^n \Delta_{\scriptscriptstyle \perp\!\!\sqcup} x^n = \sum_{n \geq 0} c^n \sum_{j=0}^n \binom{n}{j} x^j \otimes x^{n-j}.$$

For $c \in \mathbb{N}_{\geq 2}$ which is neither a field nor a ring (containing \mathbb{Q}), we also get

$$(cx)^* = (c-1)^{-1} \sum_{\substack{a,b \in \mathbb{N}_{\geq 1}, a+b=c \\ a,b \in \mathbb{N}_{\geq 1}, a+b=c}} (ax)^* \sqcup (bx)^* \quad \in \mathbb{N}_{\geq 2} \langle\!\langle \mathcal{X} \rangle\!\rangle,$$
$$\Delta_{\sqcup \sqcup} (cx)^* \neq (c-1)^{-1} \sum_{\substack{a,b \in \mathbb{N}_{\geq 1}, a+b=c \\ a,b \in \mathbb{N}_{\geq 1}, a+b=c}} (ax)^* \otimes (bx)^* \quad \in \mathbb{Q} \langle\!\langle \mathcal{X} \rangle\!\rangle \otimes \mathbb{Q} \langle\!\langle \mathcal{X} \rangle\!\rangle,$$

because

$$\langle \text{LHS}|x \otimes 1_{\mathcal{X}^*} \rangle = c$$
 and $\langle \text{RHS}|x \otimes 1_{\mathcal{X}^*} \rangle = (c-1)^{-1} \sum_{\substack{a=1\\a=1\\a=1}}^{c-1} a = \frac{c}{2}.$

For $c \in \mathbb{Z}$ (or even $\mathbb{Q}, \mathbb{R}, \mathbb{C}$), the such decomposition is not finite.

7. For $S \in A(\langle \mathcal{X} \rangle)$ s.t. $\langle S|1_{\mathcal{X}^*} \rangle = 0$, $S^* = \sum_{n \ge 0} S^n$ is called Kleene star of S. 8. $\Delta_{\sqcup \sqcup} x^n = (\Delta_{\sqcup \sqcup} x)^n = (1_{\mathcal{X}^*} \otimes x + x \otimes 1_{\mathcal{X}^*})^n = \sum_{j=0}^n {n \choose j} x^j \otimes x^{n-j} \ge \sum_{\substack{n \ge 0 \\ n \neq n \neq n}} \sum_{j=1}^n \sum_{j=0}^n {n \choose j} x^j \otimes x^{n-j} \ge \sum_{j=0}^n {n \choose j} x^{j-j} \ge \sum_$ Case of rational series and of Δ_{conc} $A^{\text{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ denotes the algebraic closure by ${}^{9}\left\{ \text{conc}, +, * \right\}$ of $\widehat{A.\mathcal{X}}$ in $A\langle\!\langle \mathcal{X} \rangle\!\rangle$.

The dashed arrow may not exist in general, but for any $R \in A^{\operatorname{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ admitting (λ, μ, η) as linear representation of dimension n, we can get $^{t}\operatorname{conc}(R) = \Phi(\sum_{i=1}^{n} G_{i} \otimes D_{i}).$ Indeed, since $\langle R|xy\rangle = \lambda \mu(xy)\eta = \lambda \mu(x)\mu(y)\eta$ $(x, y \in \mathcal{X})$ then, letting e_i is the vector such that ${}^te_i = (0 \ldots 0 \ 1 \ 0 \ldots 0)$, one has $\langle R|xy\rangle = \sum_{i=1}^n \lambda \mu(x) e_i^{t} e_i \mu(y) \eta = \sum_{i=1}^n \langle G_i|x\rangle \langle D_i|y\rangle = \sum_{i=1}^n \langle G_i \otimes D_i|x \otimes y\rangle.$ G_i (resp. D_i) admits then (λ, μ, e_i) (resp. $({}^te_i, \mu, \eta)$) as linear representation. If $A = \mathbf{k}$ being a field then, due to the injectivity of Φ , all expressions of the type $\sum_{i=1}^{n} G_i \otimes D_i$, of course, coincide. Hence, the dashed arrow (a restriction of Δ_{conc}) in the above diagram is well-defined.

Representative series and Sweedler's dual Theorem 6 (representative series)

Let $S \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$. The following assertions are equivalent

- 1. The series S belongs to $A^{rat}\langle\!\langle \mathcal{X} \rangle\!\rangle$.
- 2. There exists a linear representation (ν, μ, η) , of rank n, for S with $\nu \in M_{1,n}(A), \eta \in M_{n,1}(A)$ and a morphism of monoids $\mu : \mathcal{X}^* \to M_{n,n}(A)$ s.t., for any $w \in \mathcal{X}^*$, $\langle S | w \rangle = \nu \mu(w) \eta$.
- 3. The shifts ¹⁰ { $S \triangleleft w$ }_{$w \in \mathcal{X}^*$} (resp. { $w \triangleright S$ }_{$w \in \mathcal{X}^*$}) lie within a finitely generated shift-invariant A-module.

Moreover, if A is a field \mathbf{k} , the previous assertions are equivalent to

4. There exist (G_i, D_i)_{i∈Ffinite} s.t. Δ_{conc}(S) = ∑_{i∈Ffinite} G_i ⊗ D_i.
Hence, H^o_{LL} (X) = (k^{rat}⟨⟨X⟩⟩, □ , 1_{X*}, Δ_{conc}, e) and
H^o_{LL} (Y) = (k^{rat}⟨⟨Y⟩⟩, □ , 1_{X*}, Δ_{conc}, e).
Now, let A_{exc}⟨⟨X⟩⟩ (resp. A^{rat}_{exc}⟨⟨X⟩⟩) be the set of exchangeable ¹¹ series (resp. series admitting a linear representation with commuting matrices).
10. The left (resp. right) shift of S by P is P ⊳ S (resp. S ⊲ P) defined by, for w ∈ X*, ⟨P ⊳ S|w⟩ = ⟨S|wP⟩ (resp. ⟨S ⊲ P|w⟩ = ⟨S|Pw⟩).
11. i.e. if S ∈ A_{exc}⟨⟨X⟩⟩ then (∀u, v ∈ X*)((∀x ∈ X)(|u|_x = |v|_x) ⇒ ⟨S|u⟩ = ⟨S|v⟩).

Kleene stars of the plane and conc-characters For any $S \in A(\langle X \rangle)$, let ∇S denotes $S - 1_{X^*}$.

Theorem 7 (rational exchangeable series)

- 1. $A_{\text{exc}}^{\text{rat}}\langle\!\langle X \rangle\!\rangle \subset A^{\text{rat}}\langle\!\langle X \rangle\!\rangle \cap A_{\text{exc}}\langle\!\langle X \rangle\!\rangle$. If A is a field then the equality holds and $A_{\text{exc}}^{\text{rat}}\langle\!\langle X \rangle\!\rangle = A^{\text{rat}}\langle\!\langle X_0 \rangle\!\rangle \amalg A^{\text{rat}}\langle\!\langle x_1 \rangle\!\rangle$ and, for the algebra of series over subalphabets $A_{\text{fin}}^{\text{rat}}\langle\!\langle Y \rangle\!\rangle := \cup_{F \subset \text{finite}\,Y} A^{\text{rat}}\langle\!\langle F \rangle\!\rangle$, we get¹² $A_{\text{exc}}^{\text{rat}}\langle\!\langle Y \rangle\!\rangle = \cup_{k \ge 0} A^{\text{rat}}\langle\!\langle y_1 \rangle\!\rangle \amalg \ldots \amalg A^{\text{rat}}\langle\!\langle y_k \rangle\!\rangle \subsetneq A_{\text{exc}}^{\text{rat}}\langle\!\langle Y \rangle\!\rangle$.
- 2. $\forall x \in \mathcal{X}, A^{\mathrm{rat}}\langle\!\langle x \rangle\!\rangle = \{P(1-xQ)^{-1}\}_{P,Q \in A[x]}.$ If **k** is an algebraically closed field then $\mathbf{k}^{\mathrm{rat}}\langle\!\langle x \rangle\!\rangle = \mathrm{span}_{\mathbf{k}}\{(ax)^* \sqcup \mathbf{k}\langle x \rangle\!| a \in K\}.$
- If A is a Q-algebra without zero divisors, {x*}_{x∈X} (resp. {y*}_{y∈Y}) are conc-character and algebraically independent over (A⟨X⟩, □□) (resp. (A⟨Y⟩, □□)) within (A^{rat}⟨⟨X⟩⟩, □□) (resp. (A^{rat}⟨⟨Y⟩⟩, □□)).
- 4. Let $S \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$. If $A = \mathbf{k}$, a field, then t.f.a.e.

a) S is groupe-like, for
$$\Delta_{\text{conc}}$$
.
b) There exists $M := \sum_{x \in \mathcal{X}} c_x x \in \widehat{\mathbf{k}}. \widehat{\mathcal{X}}$ s.t. $S = M^*$.
c) There exists $M := \sum_{x \in \mathcal{X}} c_x x \in \widehat{\mathbf{k}}. \widehat{\mathcal{X}}$ s.t. $\nabla S = MS = SM$.
12. The following identity lives in $A_{\text{exc}}^{\text{rat}} \langle \langle Y \rangle \rangle$ but not in $A_{\text{exc}}^{\text{rat}} \langle \langle Y \rangle \rangle \cap A_{\text{fin}}^{\text{rat}} \langle \langle Y \rangle \rangle$,
 $(y_1 + \ldots)^* = \lim_{k \to +\infty} (y_1 + \ldots + y_k)^* = \lim_{k \to +\infty} y_1^* \lim_{k \to +\infty} y_k^* = \lim_{k \to +\infty} y_k^* = \lim_{k \to +\infty} y_k^*$

CONTINUITY OVER CHEN SERIES

Continuity, indiscernability and growth condition For i = 0, 2, let $(\mathbf{k}_i, \|.\|_i)$ be a semi-normed space and $g_i \in \mathbb{Z}$. Definition 8

- 1. Let \mathcal{C} be a class of $\mathbf{k}_1 \langle\!\langle \mathcal{X} \rangle\!\rangle$. Let $S \in \mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle$ and it is said to be
 - a) continuous over Cl if, for $\Phi \in Cl$, the following sum is convergent $\sum_{w \in Cl} \|\langle S|w \rangle\|_{2} \|\langle \Phi|w \rangle\|_{2}.$

We will denote $\langle S || \Phi \rangle$ the sum $\sum_{w \in \mathcal{X}^*} \langle S | w \rangle \langle \Phi | w \rangle$ and $\mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle^{\text{cont}}$ the set of continuous power series over $\mathcal{C}l$. b) *indiscernable* over $\mathcal{C}l$ iff, for any $\Phi \in \mathcal{C}l$, $\langle S || \Phi \rangle = 0$.

2. Let χ_1 and χ_2 be real positive functions over \mathcal{X}^* . Let $S \in \mathbf{k}_1 \langle\!\langle \mathcal{X} \rangle\!\rangle$.

a) S satisfies the χ₁-growth condition of order g₁ if it satisfies ∃K ∈ ℝ₊, ∃n ∈ ℕ, ∀w ∈ X^{≥n}, ||⟨S|w⟩||₁ ≤ Kχ₁(w) |w|!^{g₁}. We denote by k₁^(χ₁,g₁)⟨⟨X⟩⟩ the set of formal power series in k₁⟨⟨X⟩⟩ satisfying the χ₁-growth condition of order g₁.
b) If S is continuous over k₂^(χ₂,g₂)⟨⟨X⟩⟩ then it will be said to be (χ₂, g₂)-continuous. The set of formal power series which are (χ₂, g₂)-continuous is denoted by k₂^(χ₂,g₂)⟨⟨X⟩⟩^{cont}.

Convergence condition

Proposition 1

Let χ_1 and χ_2 be real positive functions over \mathcal{X}^* . Let g_1 and $g_2 \in \mathbb{Z}$ such that $g_1 + g_2 \leq 0$.

1. Let
$$\mathbf{k}_{1}^{(\chi_{1},g_{1})}\langle\!\langle \mathcal{X} \rangle\!\rangle$$
 and let $P \in \mathbf{k}_{1}\langle \mathcal{X} \rangle$.
The right residual of S by P belongs to $\mathbf{k}_{1}^{(\chi_{1},g_{1})}\langle\!\langle \mathcal{X} \rangle\!\rangle$.

- 2. Let $R \in \mathbf{k}_{2}^{(\chi_{2},g_{2})}\langle\!\langle \mathcal{X} \rangle\!\rangle$ and let $Q \in \mathbf{k}_{2}\langle \mathcal{X} \rangle$. The concatenation QR belongs to $\mathbf{k}_{2}^{(\chi_{2},g_{2})}\langle\!\langle \mathcal{X} \rangle\!\rangle$.
- 3. χ_1, χ_2 are morphisms over \mathcal{X}^* satisfying $\sum_{\mathbf{x} \in \mathbf{X}} \chi_1(\mathbf{x})\chi_2(\mathbf{x}) < 1$. If $F_1 \in \mathbf{k}_1^{(\chi_1, g_1)} \langle\!\langle \mathcal{X} \rangle\!\rangle$ (resp. $F_2 \in \mathbf{k}_2^{(\chi_2, g_2)} \langle\!\langle \mathcal{X} \rangle\!\rangle$) then F_1 (resp. F_2) is continuous over $\mathbf{k}_2^{(\chi_2, g_2)} \langle\!\langle \mathcal{X} \rangle\!\rangle$ (resp. $\mathbf{k}_1^{(\chi_1, g_1)} \langle\!\langle \mathcal{X} \rangle\!\rangle$).

Proposition 2

Let $\mathcal{C} l \subset \mathbf{k}_1 \langle\!\langle \mathcal{X} \rangle\!\rangle$ be a monoid containing $\{e^{tx}\}_{x \in \mathcal{X}}^{t \in \mathbf{k}_1}$. Let $S \in \mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle^{cont}$.

- 1. If S is indiscernable over Cl then for any $x \in \mathcal{X}$, $x \triangleleft S$ and $S \triangleright x$ belong to $\mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle^{cont}$ and they are indiscernable over Cl.
- 2. S is indiscernable over Cl iff S = 0.

Iterated integrals over $\omega_i(z) = u_{x_i}(z)dz$ and along $z_0 \rightsquigarrow z$

Recall that Ω is a simply connected domain with $\mathbf{1}_{\mathcal{H}(\Omega)}$ as neutral element, $\mathcal{A} := \mathcal{H}(\Omega)$ and \mathcal{C}_0 is a differential subring of \mathcal{A} ($\partial(\mathcal{C}_0) \subset \mathcal{C}_0$).

 $\mathbb{C}\{\{(g_i)_{i \in I}\}\}\$ denotes the differential subalgebra of \mathcal{A} generated by $(g_i)_{i \in I}$, *i.e.* the \mathbb{C} -algebra generated by g_i 's and their derivatives

$$\begin{split} & \{ u_x \}_{x \in \mathcal{X}} : \text{elements in } \mathcal{C}_0 \cap \mathcal{A}^{-1} \text{ in correspondence with } \{ \theta_x \}_{x \in \mathcal{X}} \ (\theta_x = u_x^{-1} \partial). \\ & \text{Let } \Theta \text{ be defined by } \Theta(w) = \theta_x \Theta(u), \text{ for } w = xu \in \mathcal{X}\mathcal{X}^*, \text{ and } \Theta(1_{\mathcal{X}^*}) = \mathrm{Id}. \end{split}$$

The iterated integral over $\omega_i(z) = u_{x_i}(z)dz$ and along $z_0 \rightsquigarrow z$ is defined by

$$\begin{array}{lll} \alpha^{z}_{z_{0}}(1_{\mathcal{X}^{*}}) &=& 1_{\Omega}, \\ \alpha^{z}_{z_{0}}(x_{i_{1}}\ldots x_{i_{k}}) &=& \int_{z_{0}}^{z} \omega_{i_{1}}(z_{1})\ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}(z_{k}). \\ \partial \alpha^{z}_{z_{0}}(x_{i_{1}}\ldots x_{i_{k}}) &=& u_{x_{i_{1}}}(z) \int_{z_{0}}^{z} \omega_{i_{2}}(z_{2})\ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}(z_{k}). \end{array}$$

 $\forall w \in \mathcal{X}^*, \quad \Theta(ilde{w}) lpha^z_{z_0}(w) = 1_\Omega.$

 $\begin{aligned} \operatorname{span}_{\mathbb{C}} \{\partial^{l} \alpha_{z_{0}}^{z}(w)\}_{w \in \mathcal{X}^{*}, l \geq 0} &\subset \operatorname{span}_{\mathbb{C}\{\{(u_{x})_{x \in \mathcal{X}}\}\}} \{\alpha_{z_{0}}^{z}(w)\}_{w \in \mathcal{X}^{*}} \\ &\subset \operatorname{span}_{\mathbb{C}\{\{(u_{x}^{\pm 1})_{x \in \mathcal{X}}\}\}} \{\alpha_{z_{0}}^{z}(w)\}_{w \in \mathcal{X}^{*}} \\ &\cong \mathbb{C}\{\{(u_{x}^{\pm 1})_{x \in \mathcal{X}}\}\} \otimes_{\mathbb{C}} \operatorname{span}_{\mathbb{C}} \{\alpha_{z_{0}}^{z}(w)\}_{w \in \mathcal{X}^{*}}? \end{aligned}$

Examples of linear differential equation

Let us consider the following examples, with $\mathbf{k} = \mathbb{C}(z)$

$$(\partial - z)y = y' - zy = 0. \tag{1}$$

1. $e^{z^2/2}$ is solution of (1).

- 2. $ce^{z^2/2} = e^{z^2/2}e^{\log c}$ is an other solution $(c \in \mathbb{R} \setminus \{0\}).$
- 3. $\{e^{z^2/2}\}$ is a fundamental set of solutions of (1).
- 4. $\mathbf{k}\{e^{z^2/2}\}$ is a Picard-Vessiot extension related to (1).

For $\theta_0 = z\partial, \theta_1 = (1 - z)\partial$, since $\partial \theta_1 \theta_0 \in \mathbf{k}[\partial]$ then let us consider

$$(\partial \theta_1 \theta_0) y = (z(1-z)\partial^3 + (2-3z)\partial^2 - 1)y$$
 (2)

$$= z(1-z)y^{(3)} + (2-3z)y'' - y' = 0.$$
 (3)

- 1. $(\partial \theta_1 \theta_0) \operatorname{Li}_2 = 0$ meaning that Li_2 is solution of (3).
- 2. $c \operatorname{Li}_2 = \operatorname{Li}_2 e^{\log c}$ is an other solution $(c \in \mathbb{R} \setminus \{0\})$ but it is not independent to Li_2 .
- 3. ${Li_2, log, 1_\Omega}$ is a fundamental set of solutions of (3).
- 4. $\textbf{k}\{\mathrm{Li}_2, \text{log}, \mathbf{1}_\Omega\}$ is a Picard-Vessiot extension 13 related to (3).

13. \mathbf{k} {Li₂(z)} = $\mathbf{k} \otimes \mathbb{C}$ [Li₂(z), log(1 - z), log(z)].

Chen series of $\{\omega_i\}_{i\geq 1}$ and along $z_0 \rightsquigarrow z$

Since iterated integrals satisfy the Chen's lemma (or Friedrichs criterion), i.e. $\alpha_{z_0}^z(u \perp v) = \alpha_{z_0}^z(u)\alpha_{z_0}^z(v)$ $(u, v \in \mathcal{X}^*)$, then the Chen series is given by ¹⁴

$$C_{z_0 \rightsquigarrow z} := \sum_{w \in \mathcal{X}^*} \alpha_{z_0}^z(w) w = (\alpha_{z_0}^z \otimes \mathrm{Id}) \mathcal{D}_{\mathcal{X}} = \prod_{l \in \mathcal{L}yn\mathcal{X}}^{\searrow} e^{\alpha_{z_0}^z(S_l) P_l} \in \mathcal{H}(\Omega) \langle\!\langle \mathcal{X} \rangle\!\rangle.$$

Theorem 9

wh

If $R \in \mathbb{C}^{\mathrm{rat}}\langle\!\langle X \rangle\!\rangle$ with minimal representation of dimension n then¹⁵ $y(z_0, z) = \alpha_{z_0}^z(R) = \langle R \| C_{z_0 \rightsquigarrow z} \rangle$ and there exists l = 0, .., n-1 s.t. $\{\partial^k y\}_{0 \le k \le l}$ is \mathcal{C}_0 -linearly independent and $a_l, \ldots, a_1, a_0 \in \mathcal{C}_0$ s.t. $(a_1\partial^l + a_{l-1}\partial^{l-1} + \ldots + a_1\partial + a_0)v = 0.$

14. A is supposed contain \mathbb{Q} . On $\mathcal{H}_{\sqcup \sqcup}(\mathcal{X})$ and $\mathcal{H}_{\sqcup \sqcup}(Y)$, we also get

$$\begin{aligned} \mathcal{D}_{\mathcal{X}} &:= \sum_{w \in \mathcal{X}^*} w \otimes w = \sum_{w \in \mathcal{X}^*} S_w \otimes P_w = \prod_{l \in \mathcal{L}yn\mathcal{X}} e^{S_l \otimes P_l}, \\ \mathcal{D}_{\mathbf{Y}} &:= \sum_{w \in \mathcal{Y}^*} w \otimes w = \sum_{w \in \mathcal{Y}^*} \Sigma_w \otimes \Pi_w = \prod_{l \in \mathcal{L}yn\mathcal{Y}} e^{\Sigma_l \otimes \Pi_l}, \\ \text{where } \{P_l\}_{l \in \mathcal{L}yn\mathcal{X}} \text{ (resp. } \{\Pi_l\}_{l \in \mathcal{L}yn\mathcal{Y}} \text{) is a basis of Lie algebra of primitive elements and } \{S_l\}_{l \in \mathcal{L}yn\mathcal{X}} \text{ (resp. } \{\Sigma_l\}_{l \in \mathcal{L}yn\mathcal{Y}} \text{) is a transcendence basis of } \\ (\mathcal{A}\langle \mathcal{X} \rangle, \ & \exists \ , 1_{\mathcal{X}^*} \text{) (resp. } (\mathcal{A}\langle \mathcal{Y} \rangle, \ \exists \ , 1_{\mathcal{Y}^*}) \text{).} \end{aligned}$$
15. Subject to convergence.

26 / 37

Chen series and differential equations

For any
$$n \ge 0$$
, one has ¹⁶ $\mathbf{d}^n C_{z_0 \to z} = p_n C_{z_0 \to z}$ with

$$p_n = \sum_{\text{wgtr}=n} \sum_{w \in \mathcal{X}^n} \prod_{i=1}^{\deg r} {\binom{\sum_{j=1}^i r_j + j - 1}{r_i}} \tau_r(w) \in \mathcal{C}_0 \langle \mathcal{X} \rangle,$$

where, for any word $w = x_{i_1} \dots x_{i_k} \in \mathcal{X}^*$ associated to the derivation multi-index $\mathbf{r} = (r_1, \dots, r_k) \in \mathbb{N}^k$ of degree deg $\mathbf{r} = |w|$ and of weight $\operatorname{wgt} \mathbf{r} = |w| + \sum_{i=1}^k r_i, \ \tau_{\mathbf{r}}(w) := \tau_{r_1}(x_{i_1}) \dots \tau_{r_k}(x_{i_k})$. Proposition 3

Let K be a compact on Ω . There is $c_{K} \in \mathbb{R}_{\geq 0}$ and a morphism M_{K} s.t. $\forall w \in \mathcal{X}^{*}, \quad \|\langle C_{z_{0} \rightsquigarrow z} | w \rangle\|_{K} \leq c_{K} M_{K}(w) | w |!^{-1}.$ Let $R \in \mathbb{C}^{\mathrm{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ s.t. $\langle R \| C_{z_{0} \rightsquigarrow z} \rangle$ exists and $\alpha_{z_{0}}^{z}(R) = \langle R \| C_{z_{0} \rightsquigarrow z} \rangle$. Thus, $\forall y \in \mathcal{X}, \quad \theta_{y} \alpha_{z_{0}}^{z}(R) = \sum_{x \in \mathcal{X}} u_{x}(z) u_{y}^{-1}(z) \alpha_{z_{0}}^{z}(R \triangleright x).$

The following assertions are equivalent :

1. $\alpha_{z_0}^{z}(R)$ satisfies a ODE with coefficients in $(\mathcal{C}_0, \partial)$.

2. There is $p \in \mathcal{C}_0(\mathcal{X})$ s.t. $\langle R \| p C_{z_0 \rightsquigarrow z} \rangle = \langle R \triangleright p \| C_{z_0 \rightsquigarrow z} \rangle = 0$.

16. Considering $A = (\mathcal{H}(\Omega), \partial)$ as the differential ring of holomorphic functions on Ω , equipped 1_{Ω} as the neutral element, the differential ring $(\mathcal{H}(\Omega)\langle\!\langle \mathcal{X} \rangle\!\rangle, \mathbf{d})$ is defined, for any $S \in \mathcal{H}(\Omega)\langle\!\langle \mathcal{X} \rangle\!\rangle$, by $\mathbf{d}S = \sum_{w \in \mathcal{X}^*} (\partial \langle S | w \rangle) w \in \mathcal{H}(\Omega) \langle\!\langle \mathcal{X} \rangle\!\rangle$.

More about Chen series

 $\begin{array}{l} \text{Chen series } C_{z_{0} \rightsquigarrow z} \text{ of } \{\omega_{i}\}_{i \geq 1} \text{ satisfies the following Freidrichs criterion} \\ \forall u, v \in \mathcal{X}^{*}, \quad \langle C_{z_{0} \rightsquigarrow z} | u \sqcup v \rangle = \langle C_{z_{0} \rightsquigarrow z} | u \rangle \langle C_{z_{0} \rightsquigarrow z} | v \rangle. \\ \text{On the other hand, for any u and } v \in \mathcal{X}^{*}, \\ \quad \langle C_{z_{0} \rightsquigarrow z} | u \rangle \langle C_{z_{0} \rightsquigarrow z} | v \rangle = \langle C_{z_{0} \rightsquigarrow z} \otimes C_{z_{0} \rightsquigarrow z} | u \otimes v \rangle, \\ \quad \langle C_{z_{0} \rightsquigarrow z} | u \sqcup v \rangle = \langle \Delta_{\sqcup} C_{z_{0} \rightsquigarrow z} | u \otimes v \rangle. \\ \text{Hence, } \Delta_{\amalg} C_{z_{0} \rightsquigarrow z} = C_{z_{0} \rightsquigarrow z} \otimes C_{z_{0} \rightsquigarrow z} \text{ and } \langle C_{z_{0} \rightsquigarrow z} | 1_{\mathcal{X}^{*}} \rangle = 1. \\ \text{Note that } C_{z_{0} \rightsquigarrow z} \text{ only depends on the homotopy class of } z_{0} \rightsquigarrow z \text{ and the endpoints } z_{0}, z. \text{ One has } C_{z_{0} \rightsquigarrow z} C_{z_{1} \rightsquigarrow z_{0}} = C_{z_{1} \rightsquigarrow z}. \\ \forall w \in \mathcal{X}^{*}, \quad \langle C_{z_{1} \rightsquigarrow z} | w \rangle = \sum_{u,v \in \mathcal{X}^{*}, uv = w} \langle C_{z_{0} \rightsquigarrow z} | u \rangle \langle C_{z_{1} \rightsquigarrow z_{0}} | v \rangle. \end{array}$

Note also that, for $g \in \mathcal{H}(\Omega)$, one has $C_{g(z_0) \rightsquigarrow g(z)} = g_* C_{z_0 \rightsquigarrow z}$, *i.e.* the Chen series of $\{g^* \omega_i\}_{i \ge 1}$ along the path $g^*(z_0 \rightsquigarrow z)$.

Example 10 (with $\omega_0(z) = z^{-1}dz$ and $\omega_1(z) = (1-z)^{-1}dz$)						
g(z)	Z	z^{-1}	$(z-1)z^{-1}$	$z(z-1)^{-1}$	$(1-z)^{-1}$	1-z
$g^*\omega_0$	ω_0	$-\omega_0$	$-\omega_1 - \omega_0$	$\omega_1 + \omega_0$	ω_1	$-\omega_1$
$g^*\omega_1$	ω_1	$\omega_1 + \omega_0$	$-\omega_0$	$-\omega_1$	$-\omega_1 - \omega_0$	$-\omega_0$

17. Although $\Delta_{\operatorname{conc}} w = \sum_{u,v \in \mathcal{X}^*, uv=w} u \otimes v$ but $\Delta_{\operatorname{conc}} C_{z_1 \rightsquigarrow z_2} \neq C_{z_0 \rightsquigarrow z} \otimes C_{z_1 \rightsquigarrow z_0}$.

NONCOMMUTATIVE PV THEORY AND INDEPENDENCE VIA WORDS

Noncommutative differential equations

Considering $A = (\mathcal{H}(\Omega), \partial)$ as the differential ring of holomorphic functions on Ω , the differential ring $(\mathcal{H}(\Omega)\langle\!\langle \mathcal{X} \rangle\!\rangle, \mathbf{d})$ is defined, for any $S \in \mathcal{H}(\Omega)\langle\!\langle \mathcal{X} \rangle\!\rangle$, by

$$\mathsf{d}S = \sum_{w \in \mathcal{X}^*} (\partial \langle S | w \rangle) w \in \mathcal{H}(\Omega) \langle\!\langle \mathcal{X}
angle.$$

The Chen series $C_{z_0 \rightsquigarrow z}$ satisfies the following differential equation

(*NCDE*)
$$\mathbf{d}S = \mathbf{M}S$$
, with $\mathbf{M} = \sum_{x \in \mathcal{X}} u_x x$.

$$\Delta_{\amalg} M = \sum_{x \in \mathcal{X}} u_x (1_{\mathcal{X}^*} \otimes x + x \otimes 1_{\mathcal{X}^*}) = 1_{\mathcal{X}^*} \otimes M + M \otimes 1_{\mathcal{X}^*}.$$

More generally, for any $k \ge 1$, $C_{z_0 \rightsquigarrow z}$ satisfies $\mathbf{d}^k S = Q_k S$ with $Q_k \in \mathbb{C}\{\{(u_x^{\pm 1})_{x \in \mathcal{X}}\}\}\langle \mathcal{X} \rangle$ satisfying the recursion $Q_0 = 1$ and $Q_k = Q_{k-1}M + \mathbf{d}Q_{k-1}$.

 Q_k can be computed explicitly by (summing over words $w = x_{i_1} \dots x_{i_k}$ and derivation multiindices $\mathbf{r} = (r_1, \dots, r_k)$ of degree deg $\mathbf{r} = |w| = k$ and of weight wgt $\mathbf{r} = k + r_1 + \dots + r_k$)

$$\begin{aligned} \boldsymbol{Q}_{k} &= \sum_{\substack{\text{wgt } \mathbf{r} = k, w \in \mathcal{X}^{\deg} \mathbf{r} \\ r_{k} = 1}} \prod_{j=1}^{\deg \mathbf{r}} \left(\sum_{j=1}^{j} r_{j} + j - 1 \\ r_{k} \right) \tau_{\mathbf{r}}(w), \text{ where} \\ \tau_{\mathbf{r}}(w) &= \tau_{r_{1}}(x_{i_{1}}) \dots \tau_{r_{k}}(x_{i_{k}}) = (\partial^{r_{1}} u_{x_{i_{1}}}) x_{i_{1}} \dots (\partial^{r_{k}} u_{x_{i_{k}}}) x_{i_{k}} \in \mathbb{C}\{\{(u_{x}^{\pm 1})_{x \in \mathcal{X}}\}\} \langle \mathcal{X} \rangle \leq 0 \\ 30/37 \end{aligned}$$

First step of noncommutative PV theory

 $1. \ \ {\rm The \ space \ of \ solutions \ of}$

(NCDE)
$$dS = MS$$
, with $M = \sum_{x \in \mathcal{X}} u_x x$.

is a right free $\mathbb{C}\langle\!\langle X \rangle\!\rangle$ -module of rank 1.

- 2. By a theorem of Ree, $C_{z_0 \to z}$ is a \square -group-like solution of (*NCDE*) and it can be obtained as the limit of a convergent Picard iteration, initialized at $\langle C_{z_0 \to z} | 1_{\mathcal{X}^*} \rangle = 1_{\mathcal{H}(\Omega)} 1_{\mathcal{X}^*}$, for ultrametric distance.
- 3. If G and H are -group-like solutions (*NCDE*) there is a constant Lie series C such that $G = He^{C}$ (and conversely).

From this, it follows that

be the differential Galois group of (NCDE) + □ −group-like is the group ¹⁸ {e^C}_{C∈LieC,1Q} ⟨⟨𝑋⟩.

Which leads us to the following definition

• the PV extension related to (*NCDE*) is $\widehat{\mathcal{C}_{0},\mathcal{X}}\{\mathcal{C}_{z_0 \rightsquigarrow z}\}$.

It, of course, is such that $\operatorname{Const}(\mathcal{C}_0\langle\!\langle \mathcal{X} \rangle\!\rangle) = \ker d = \mathbb{C}.1_{\Omega}\langle\!\langle \mathcal{X} \rangle\!\rangle.$ 18. In fact, the Hausdorff group (group of characters) of $\mathcal{H}_{\mathbb{C}}(\mathcal{X})$.

31 / 37

Basic triangular theorem over a differential ring

Suppose that the \mathbb{C} -commutative ring \mathcal{A} is without zero divisors and equipped with a differential operator ∂ such that $\mathbb{C} = \ker \partial$. Let $S \in \mathcal{A}\langle\!\langle \mathcal{X} \rangle\!\rangle$ be a group-like solution of (*NCDE*) in the following form

$$S = \sum_{w \in \mathcal{X}^*} \langle S | w \rangle w = \sum_{w \in \mathcal{X}^*} \langle S | S_w \rangle P_w = \prod_{l \in \mathcal{L}yn\mathcal{X}}^{\times} e^{\langle S | S_l \rangle P_l}$$

Then

- 1. If $H \in \mathcal{A}\langle\!\langle \mathcal{X} \rangle\!\rangle$ is another grouplike solution then there exists $C \in \mathcal{L}ie_{\mathcal{A}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ such that $S = He^{C}$ (and conversely).
- 2. The following assertions are equivalent
 - a) $\{\langle S|w\rangle\}_{w\in\mathcal{X}^*}$ is \mathcal{C}_0 -linearly independent,
 - b) $\{\langle S|I \rangle\}_{I \in \mathcal{L}yn\mathcal{X}}$ is \mathcal{C}_0 -algebraically independent,
 - c) $\{\langle S|x\rangle\}_{x\in\mathcal{X}}$ is \mathcal{C}_0 -algebraically independent,
 - d) $\{\langle S|x \rangle\}_{x \in \mathcal{X} \cup \{1_{\mathcal{X}^*}\}}$ is \mathcal{C}_0 -linearly independent,
 - e) $\{u_x\}_{x\in\mathcal{X}}$ is such that, for $f \in \operatorname{Frac}(\mathcal{C}_0)$ and $(c_x)_{x\in\mathcal{X}} \in \mathbb{C}^{(\mathcal{X})}$,

$$\sum_{x\in\mathcal{X}}c_{x}u_{x}=\partial f \implies (\forall x\in\mathcal{X})(c_{x}=0).$$

f) $(u_x)_{x \in \mathcal{X}}$ is free over \mathbb{C} and $\partial \operatorname{Frac}(\mathcal{C}_0) \cap \operatorname{span}_{\mathbb{C}} \{ u_x \}_{x \in \mathcal{X}} \rightleftharpoons \{ 0 \}_{\mathbb{R}} \xrightarrow{\mathfrak{S} \setminus \mathcal{S}}_{32/37}$

Examples of positive cases over $\mathcal{X} = \{x\}, \mathcal{A} = (\mathcal{H}(\Omega), \partial)$

1.
$$\Omega = \mathbb{C}, u_x(z) = 1_\Omega, C_0 = \mathbb{C}\{\{u_x^{\pm 1}\}\} = \mathbb{C}.$$

 $\alpha_0^z(x^n) = z^n/n!, \text{ for } n \ge 1. \text{ Thus, } \mathbf{d}S = xS \text{ and}$

$$S = \sum_{n \ge 0} \alpha_0^z(x^n) x^n = \sum_{n \ge 0} \frac{z^n}{n!} x^n = e^{zx}.$$

Moreover, $\alpha_0^z(x) = z$ which is transcendent over C_0 and the family $\{\alpha_0^z(x^n)\}_{n\geq 0}$ is C_0 -free. Let $f \in C_0$ then $\partial f = 0$. Thus, if $\partial f = cu_x$ then c = 0.

2. $\Omega = \mathbb{C} \setminus] - \infty, 0], u_x(z) = z^{-1}, \mathcal{C}_0 = \mathbb{C} \{ \{ z^{\pm 1} \} \} = \mathbb{C}[z^{\pm 1}] \subset \mathbb{C}(z).$ $\alpha_1^z(x^n) = \log^n(z)/n!, \text{ for } n \ge 1. \text{ Thus } \mathbf{d}S = z^{-1}xS \text{ and}$

$$S = \sum_{n\geq 0} \alpha_1^z(x^n) x^n = \sum_{n\geq 0} \frac{\log^n(z)}{n!} x^n = z^x.$$

Moreover, $\alpha_1^z(x) = \log(z)$ which is transcendent over $\mathbb{C}(z)$ then over $\mathbb{C}[z^{\pm 1}]$. The family the family $\{\alpha_1^z(x^n)\}_{n\geq 0}$ is $\mathbb{C}(z)$ -free and then \mathcal{C}_0 -free. Let $f \in \mathcal{C}_0$ then $\partial f \in \operatorname{span}_{\mathbb{C}}\{z^{\pm n}\}_{n\neq 1}$. Thus, if $\partial f = cu_x$ then c = 0. Examples of negative cases over $\mathcal{X} = \{x\}, \mathcal{A} = (\mathcal{H}(\Omega), \partial)$

1.
$$\Omega = \mathbb{C}, u_x(z) = e^z, \mathcal{C}_0 = \mathbb{C}\{\{e^{\pm z}\}\} = \mathbb{C}[e^{\pm z}].$$
$$\alpha_0^z(x^n) = (e^z - 1)^n / n!, \text{ for } n \ge 1. \text{ Thus, } \mathbf{d}S = e^z xS \text{ and}$$
$$S = \sum_{n \ge 0} \alpha_0^z(x^n) x^n = \sum_{n \ge 0} \frac{(e^z - 1)^n}{n!} x^n = e^{(e^z - 1)x}.$$

Moreover, $\alpha_0^z(x) = e^z - 1$ which is not transcendent over C_0 and and $\{\alpha_0^z(x^n)\}_{n\geq 0}$ is not C_0 -free. If $f(z) = ce^z \in C_0$ $(c \neq 0)$ then $\partial f(z) = ce^z = cu_x(z)$.

2.
$$\Omega = \mathbb{C} \setminus] - \infty, 0], u_x(z) = z^a (a \notin \mathbb{Q}),$$

 $C_0 = \mathbb{C} \{ \{z, z^{\pm a}\} \} = \operatorname{span}_{\mathbb{C}} \{z^{ka+l}\}_{k,l \in \mathbb{Z}}.$
 $\alpha_0^z(x^n) = (a+1)^{-n} z^{n(a+1)} / n!, \text{ for } n \ge 1. \text{ Thus, } \mathbf{d}S = z^a xS \text{ and}$
 $S = \sum_{n>0} \alpha_0^z(x^n) x^n = \sum_{n>0} \frac{z^{n(a+1)}}{(a+1)^n n!} x^n = e^{(a+1)^{-1} z^{(a+1)} x}.$

Moreover, $\alpha_0^z(x) = z^{a+1}/(a+1)$ which is not transcendent over \mathcal{C}_0 and $\{\alpha_0^z(x^n)\}_{n\geq 0}$ is not \mathcal{C}_0 -free. If $f(z) = cz^{a+1}/(a+1) \in \mathcal{C}_0$ $(c \neq 0)$ then $\partial f(z) = cz^a = cu_x(z)$. Chen series of $\omega_0(z) = z^{-1}dz$ and $\omega_1(z) = (1-z)^{-1}dz$

Let $\gamma_0(\varepsilon)$ and $\gamma_1(\varepsilon)$ be the circular paths of radius ε encircling 0 and 1 clockwise, respectively. In particular, letting $\beta = \beta_1 - \beta_0$, one considers $\gamma_0(\varepsilon, \beta) = \varepsilon e^{i\beta_0} \rightsquigarrow \varepsilon e^{i\beta_1} \subset \gamma_0(\varepsilon),$ $\gamma_1(\varepsilon, \beta) = 1 - \varepsilon e^{i\beta_0} \rightsquigarrow 1 - \varepsilon e^{i\beta_1} \subset \gamma_1(\varepsilon).$

On the one hand, one has, for any i = 0 or 1 and $w \in X^+$, $|\langle C_{\gamma_i(\varepsilon,\beta)} | w \rangle| \le \varepsilon^{|w|_{x_i}} \beta^{|w|} | w |!^{-1}.$

It follows then

$$C_{\gamma_i(\varepsilon,\beta)} = e^{\mathrm{i}\beta x_i} + o(\varepsilon)$$
 and $C_{\gamma_i(\varepsilon)} = e^{2\mathrm{i}\pi x_i} + o(\varepsilon)$

On the other hand, for $R \in \mathbb{C}^{rat}\langle\!\langle X \rangle\!\rangle$ of minimal representation (λ, μ, η) of dimension *n*, one has, for any $w \in X^*$, $|\langle R | w \rangle| \leq ||\lambda||_{\infty}^{1,n} ||\mu(w)||_{\infty}^{n,n} ||\eta||_{\infty}^{n,1}$.

Hence,

$$\alpha_{z_0}^{\mathsf{z}}(\mathsf{R}) := \langle \mathsf{R} \parallel \mathsf{C}_{z_0 \rightsquigarrow \mathsf{z}} \rangle = \lambda((\alpha_{z_0}^{\mathsf{z}} \otimes \mu) \mathcal{D}_{\mathsf{X}}) \eta = \lambda \left(\prod_{l \in \mathcal{L} yn \mathsf{X}}^{\searrow} e^{\alpha_{z_0}^{\mathsf{z}}(\mathsf{S}_l) \mu(\mathsf{P}_l)}\right) \eta.$$

Note that the map $\alpha_{z_0}^z : \mathbb{C}^{\mathrm{rat}}\langle\!\langle X \rangle\!\rangle \to \mathcal{H}(\Omega)$ is not injective. For example, $\alpha_{z_0}^z(z_0 x_0^* + (1 - z_0)(-x_1)^* - 1_{X^*}) = 0.$

Dom(Li_•)

Let $\mathcal{C}_{\mathbb{C}} := \mathbb{C}[z^a, (1-z)^b]_{a,b\in\mathbb{C}}$ be equipped with ∂ . Proposition 4 Let $\text{Dom}(\text{Li}_{\bullet})$ be the set of $S = \sum_{n \geq 0} S_n$ with $S_n = \sum_{|w|=n} \langle S|w \rangle w$ s.t. $\sum_{n>0} \operatorname{Li}_{S_n}$ converges uniformly on any compact of Ω . Then $\operatorname{Dom}(\operatorname{Li}_{\bullet})$, containing $\mathbb{C}_{\mathrm{exc}}^{\mathrm{rat}}\langle\!\langle X \rangle\!\rangle \sqcup \mathbb{C}\langle X \rangle$, is closed by shuffle. Moreover, $\forall S, T \in \text{Dom}(\text{Li}_{\bullet}), \text{Li}_{S} = \text{Li}_{S} \text{Li}_{T}.$ For $R \in \text{Dom}(\text{Li}_{\bullet})$, let $\rho := \langle R \| L \rangle$. Then, $\forall n \geq 0, \partial^n \rho = \langle R \| \mathbf{d}^n L \rangle$ and $\mathbf{d}^{n}\mathbf{L} = p_{n}\mathbf{L} \text{ with } p_{n} = \sum \sum \prod_{i=1}^{\operatorname{deg} \mathbf{r}} \binom{\sum_{j=1}^{i} r_{j} + j - 1}{r_{i}} \tau_{\mathbf{r}}(w) \in \mathcal{C}\langle X \rangle,$ where, for any word $w = x_{i_1} \dots x_{i_k} \in X^*$ associated to the derivation multi-index $\mathbf{r} = (r_1, \dots, r_k) \in \mathbb{N}^k$ of degree $\deg \mathbf{r} = |w|$ and of weight wgt**r** = $|w| + \sum_{i=1}^{k} r_i, \tau_r(w) := \tau_{r_1}(x_{i_1}) \dots \tau_{r_k}(x_{i_k})$ and, for any $r \ge 0$, $\tau_r(x_0) = -r!(-z)^{-(r+1)}x_0$ and $\tau_r(x_1) = r!(1-z)^{-(r+1)}x_1$.

Proposition 5

The following assertions are equivalent :

- 1. ρ satisfies a differential equation with coefficients in $(\mathcal{C}_{\mathbb{C}}, \partial)$.
- 2. There exists $P \in \mathcal{C}_{\mathbb{C}}\langle X \rangle$ such that $\langle R \| P L \rangle \stackrel{\scriptscriptstyle d}{=} \langle R \triangleright P \| L \rangle \stackrel{\scriptscriptstyle d}{=} 0.$

Bibliography

V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, L. Kane, C. Tollu.– *Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization*, Journal of Symbolic Computation (2015).

C. Costermans, J.Y. Enjalbert and V. Hoang Ngoc Minh.– *Algorithmic and combinatoric aspects of multiple harmonic sums*, Discrete Mathematics & Theoretical Computer Science Proceedings, 2005.

M. Deneufchâtel, G.H.E. Duchamp, V. Hoang Ngoc Minh, A.I. Solomon.- Independence of hyperlogarithms over function fields via algebraic combinatorics, in LNCS (2011), 6742.

G.H.E. Duchamp,V. Hoang Ngoc Minh, Q.H. Ngo, K. Penson, P. Simonnet.- *Mathematical renormalization in quantum electrodynamics via noncommutative generating series*, in Applications of Computer Algebra, Springer Proceedings in Mathematics and Statistics, pp. 59-100 (2017).

G.H.E. Duchamp, V. Hoang Ngoc Minh, K.A. Penson.- *About Some Drinfel'd Associators*, International Workshop on Computer Algebra in Scientific Computing CASC 2018 - Lille, 17-21 September 2018.

G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo.– *Kleene stars of the plane, polylogarithms and symmetries*, Theoretical Computer Science, Volume 800, 31 December 2019, Pages 52-72

V.Hoang Ngoc Minh, G. Jacob.- Symbolic Integration of meromorphic differential equation via Dirichlet functions, Discrete Mathematics 210, pp. 87-116, 2000.

V. Hoang Ngoc Minh.– Differential Galois groups and noncommutative generating series of polylogarithms, Automata, Combinatorics & Geometry, World Multi-conf. on Systemics, Cybernetics & Informatics, Florida, 2003.

V. Hoang Ngoc Minh.– On the solutions of the universal differential equation with three regular singularities (On solutions of KZ_3), CONFLUENTES MATHEMATICI (2020).

THANK YOU FOR YOUR ATTENTION

37 / 37