On universal differential equations

V. Hoang Ngoc Minh
Université Lille, 1 Place Déliot, 59024 Lille, France.

Séminaire Combinatoire, Informatique et Physique
23 Février, 2, 16, 23, 30 Mars, 06 \& 13 Avril 2021,
Villetaneuse

Outline

1. Introduction

1.1 Picard-Vessiot theory of ordinary differential equation
1.2 Fuchsian linear differential equations
1.3 Nonlinear differential equations
2. Dual laws and representative series
2.1 conc-shuffle and conc-stuffle bialgebras
2.2 Dualizable laws in conc-shuffle bialgebras
2.3 Representative series and Sweedler's dual
3. Continuity over Chen series
3.1 Iterated integrals and Chen series
3.2 Continuity, indiscernability and growth condition
3.3 Chen series and differential equations
4. Noncommutative PV theory and independences via words
4.1 First step of noncommutative PV theory
4.2 Independences over differential ring
4.3 The case of a family of eulerian function
5. $\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$ and $\operatorname{Dom}\left(\mathrm{H}_{\bullet}\right)$
5.1 Back to polylogarithms, harmonic sums and polyzetas
5.2 Extended polymorphism ζ
5.3 Polyzetas and extended eulerian functions

INTRODUCTION

Picard-Vessiot theory of ordinary differential equation

(\mathbf{k}, ∂) a commutative differential ring without zero divisors.
Const(\mathbf{k}) $=\{c \in \mathbf{k} \mid \partial c=0\}$ is supposed to be a field.
$(O D E) \quad\left(a_{n} \partial^{n}+a_{n-1} \partial^{n-1}+\ldots+a_{0}\right) y=0, \quad a_{0}, \ldots, a_{n-1}, a_{n} \in \mathbf{k}$.
a_{n}^{-1} is supposed to exist.

Definition 1

1. Let y_{1}, \ldots, y_{n} be Const(\mathbf{k})-linearly independent solutions of (ODE). Then $\left\{y_{1}, \ldots, y_{n}\right\}$ is called a fundamental set of solutions of (ODE) and it generates a Const(\mathbf{k})-vector subspace of dimension at most n.
2. If ${ }^{1} M=\mathbf{k}\left\{y_{1}, \ldots, y_{n}\right\}$ and $\operatorname{Const}(M)=\operatorname{Const}(\mathbf{k})$ then M is called a Picard-Vessiot extension related to (ODE)
3. Let $\mathbf{k} \subset \mathbb{K}_{1}$ and $\mathbf{k} \subset \mathbb{K}_{2}$ be differential rings. An isomorphism of rings $\sigma: \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$ is a differential \mathbf{k}-isomorphism if
$\forall a \in \mathbb{K}_{1}, \quad \partial(\sigma(a))=\sigma(\partial a)$ and, if $a \in \mathbf{k}, \sigma(a)=a$.
If $\mathbb{K}_{1}=\mathbb{K}_{2}=\mathbb{K}$, the differential galois group of \mathbb{K} over \mathbf{k} is by $\operatorname{Gal}_{\mathbf{k}}(\mathbb{K})=\{\sigma \mid \sigma$ is a differential \mathbf{k}-automorphism of $\mathbb{K}\}$.
4. Let R_{1}, R_{2} be differential rings s.t. $R_{1} \subset R_{2}$. Let S be a subset of R_{2}.
$R_{1}\{S\}$ denotes the smallest differential subring of R_{2} containing R_{1}.
$R_{1}\{S\}$ is the ring (over R_{1}) generated by S and their derivatives of all orders.

Linear differential equations and Dyson series

Let $a_{0}, \ldots, a_{n} \in \mathbb{C}(z), \quad\left(a_{n}(z) \partial^{n}+\ldots+a_{1}(z) \partial+a_{0}(z)\right) y(z)=0$.

$$
(E D) \quad\left\{\begin{array}{rlrl}
\partial q(z) & =A(z) q(z), & A(z) \in \mathcal{M}_{n, n}(\mathbb{C}(z)) \\
q\left(z_{0}\right) & =\eta, & \lambda \in \mathcal{M}_{1, n}(\mathbb{C}) \\
y(z) & =\lambda q(z), & & \eta \in \mathcal{M}_{n, 1}(\mathbb{C})
\end{array}\right.
$$

By successive Picard iterations, with the initial point $q\left(z_{0}\right)=\eta$, we get ${ }^{2}$ $y(z)=\lambda U\left(z_{0} ; z\right) \eta$, where $U\left(z_{0} ; z\right)$ is the following functional expansion

$$
U\left(z_{0} ; z\right)=\sum_{k \geq 0} \int_{z_{0}}^{z} A\left(z_{1}\right) d z_{1} \int_{z_{0}}^{z_{1}} A\left(z_{2}\right) d z_{2} \ldots \int_{z_{0}}^{z_{k}-1} A\left(z_{k}\right) d z_{k}, \text { (Dyson series) }
$$

and $\left(z_{0}, z_{1} \ldots, z_{k}, z\right)$ is a subdivision of the path of integration $z_{0} \rightsquigarrow z$. In order to find the matrix $\Omega\left(z_{0} ; z\right)$ s.t.

$$
U\left(z_{0} ; z\right)=\exp \left[\Omega\left(z_{0} ; z\right)\right]=\top \exp \int_{z_{0}}^{z} A(s) d s, \quad \text { (Feynman's notation) }
$$

Magnus computed $\Omega\left(z_{0} ; z\right)$ as limit of the following Lie-integral-functionals

$$
\begin{aligned}
\Omega_{1}\left(z_{0} ; z\right)= & \int_{z_{0}}^{z} A(z) d s \\
\Omega_{k}\left(z_{0} ; z\right)= & \int_{z_{0}}^{z}\left[A(z)+\left[A(z), \Omega_{k-1}\left(z_{0} ; s\right)\right] / 2\right. \\
& \left.+\left[\left[A(z), \Omega_{k-1}\left(z_{0} ; s\right)\right], \Omega_{k-1}\left(z_{0} ; s\right)\right] / 12+\ldots\right) d s
\end{aligned}
$$

2. Subject to convergence.

Fuchsian linear differential equations

Let us consider, here, $\sigma=\left\{s_{i}\right\}_{i=0, . ., m}$ as set of simple poles of $(E D)$.

$$
\begin{aligned}
A(z)=\sum_{i=0}^{m} M_{i} u_{i}(z), \quad \text { where } \quad\left\{\begin{aligned}
& M_{i} \in \mathcal{M}_{n, n}(\mathbb{C}) \\
& u_{i}(z)=\left(z-s_{i}\right)^{-1} \\
& \in \mathbb{C}(z)
\end{aligned}\right. \\
(E D)\left\{\begin{aligned}
\partial q(z) & =\left(\sum_{i=0}^{m} M_{i} u_{i}(z)\right) q(z) \\
q\left(z_{0}\right) & =\eta, \\
y(z) & =\lambda q(z)
\end{aligned}\right.
\end{aligned}
$$

Let $\mathcal{H}(\Omega)$ be the ring of holomorphic functions (1_{Ω} : neutral element) over the multi-cleft complex plane Ω (from s_{i} 's to infinities without crossing). Let X^{*} be the set of words over $X=\left\{x_{0}, \ldots, x_{m}\right\}$ and

$$
\alpha_{z_{0}}^{z} \otimes \mathcal{M}: \mathbb{C}\langle X\rangle \otimes \mathbb{C}\langle X\rangle \rightarrow \mathcal{M}_{n, n}(\mathcal{H}(\Omega))
$$

($z_{0} \rightsquigarrow z$ is the path of integration previously introduced) s.t.

$$
\mathcal{M}\left(1_{X^{*}}\right)=\operatorname{Id}_{n} \quad \text { and } \quad \mathcal{M}\left(x_{i_{1}} \cdots x_{i_{k}}\right)=M_{i_{1}} \ldots M_{i_{k}}
$$

$$
\alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1_{\mathcal{H}(\Omega)} \quad \text { and } \quad \alpha_{z_{0}}^{z}\left(x_{i_{1}} \cdots x_{i_{k}}\right)=\int_{z_{0}}^{z} \frac{d z_{1}}{z_{1}-s_{i_{1}}} \cdots \int_{z_{0}}^{z_{k-1}} \frac{d z_{k}}{z_{k}-s_{i_{k}}}
$$

Then ${ }^{3} y(z)=\lambda U\left(z_{0} ; z\right) \eta$ with

$$
U\left(z_{0} ; z\right)=\sum_{w \in X^{*}} \mathcal{M}(w) \alpha_{z_{0}}^{z}(w)=\left(\mathcal{M} \otimes \alpha_{z_{0}}\right) \sum_{w \in X^{*}} w \otimes w
$$

3. Subject to convergence.

Examples of linear dynamical systems

Example 2 (Hypergeometric equation)

Let t_{0}, t_{1}, t_{2} be parameters and

$$
z(1-z) \ddot{y}(z)+\left[t_{2}-\left(t_{0}+t_{1}+1\right) z\right] \dot{y}(z)-t_{0} t_{1} y(z)=0 .
$$

Let $q_{1}(z)=-y(z)$ and $q_{2}(z)=(1-z) \dot{y}(z)$. Hence, one has

$$
y(z)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{q_{1}(z)}{q_{2}(z)}
$$

and

$$
\begin{aligned}
\binom{\dot{q}_{1}(z)}{\dot{q}_{2}(z)} & =\left(\frac{M_{0}}{z}+\frac{M_{1}}{1-z}\right)\binom{q_{1}(z)}{q_{2}(z)} \\
& =\left(u_{0}(z) M_{0}+u_{1}(z) M_{1}\right)\binom{q_{1}(z)}{q_{2}(z)},
\end{aligned}
$$

where $u_{0}(z)=z^{-1}, u_{1}(z)=(1-z)^{-1}$ and

$$
M_{0}=-\left(\begin{array}{cc}
0 & 0 \\
t_{0} t_{1} & t_{2}
\end{array}\right) \quad \text { and } \quad M_{1}=-\left(\begin{array}{lc}
0 & 1 \\
0 & t_{2}-t_{0}-t_{1}
\end{array}\right) .
$$

Nonlinear differential equations

$$
(N E D)\left\{\begin{aligned}
\partial q(z) & =\left(\sum_{i=0}^{m} T_{i}(q) u_{i}(z)\right)(q), \\
q\left(z_{0}\right) & =q_{0} \\
y(z) & =f(q(z))
\end{aligned}\right.
$$

where

- $u_{i} \in(\mathbf{k}, \partial)$,
the state $q=\left(q_{1}, \ldots, q_{n}\right)$ belongs the complex analytic manifold Q of dimension n and q_{0} is the initial state,
the observation $f \in \mathcal{O}$, with \mathcal{O} the ring of analytic functions over Q,
- for $i=0 . .1, T_{i}=\left(T_{i}^{1}(q) \partial / \partial q_{1}+\cdots+T_{i}^{m}(q) \partial / \partial q_{m}\right)$ is an analytic vector field over Q, with $T_{i}^{j}(q) \in \mathcal{O}$, for $j=1, \ldots, n$.

With X and $\alpha_{z_{0}}^{z}$ given as previously, let the morphism τ be defined by $\tau\left(1_{X^{*}}\right)=\operatorname{Id}$ and $\tau\left(x_{i_{1}} \cdots x_{i_{k}}\right)=T_{i_{1}} \ldots T_{i_{k}}$. Then ${ }^{4} y(z)=\mathcal{T} \circ f_{\left.\right|_{q_{0}}}$ with

$$
\mathcal{T}=\sum_{w \in X^{*}} \tau(w) \alpha_{z_{0}}^{z}(w)=\left(\tau \otimes \alpha_{z_{0}}^{z}\right) \sum_{w \in X^{*}} w \otimes w
$$

4. Subject to convergence.

Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let k_{1}, k_{2} be parameters and $\partial^{2} y(z)+k_{1} y(z)+k_{2} y^{2}(z)=u_{1}(z)$ which can be represented by the following state equations (with $n=1$)

$$
\begin{aligned}
y(z) & =q(z), \\
\partial q(z) & =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\
\text { where } A_{0} & =-\left(k_{1} q+k_{2} q^{2}\right) \frac{\partial}{\partial q} \text { and } A_{1}=\frac{\partial}{\partial q} .
\end{aligned}
$$

Example 4 (Duffing equation)

Let a, b, c be parameters and $\partial^{2} y(z)+a \partial y(z)+b y(z)+c y^{3}(z)=u_{1}(z)$ which can be represented by the following state equations (with $n=2$)

$$
\begin{aligned}
y(z) & =q_{1}(z), \\
\binom{\partial q_{1}(z)}{\partial q_{2}(z)} & =\binom{q_{2}}{-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right)} u_{0}(z)+\binom{0}{1} u_{1}(z) \\
& =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\
\text { where } A_{0} & =-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right) \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}} \quad \text { and } \quad A_{1}=\frac{\partial}{\partial q_{2}} .
\end{aligned}
$$

Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)

Let γ, g be parameters and

$$
\partial^{2} x(z)-\gamma\left[1+x(z)^{2}\right] \partial x(z)+x(z)=g \cos (\omega z)
$$

which can be tranformed into (with C is some constant of integration)

$$
\partial x(z)=\gamma\left[1+x(z)^{2} / 3\right] x(z)-\int_{z_{0}}^{z} x(s) d s+\frac{g}{\omega} \sin (\omega z)+C .
$$

Supposing $x=\partial y$ and $u_{1}(z)=g \sin (\omega z) / \omega+C$, it leads then to

$$
\partial^{2} y(z)=\gamma\left[\partial y(z)+(\partial y(z))^{3} / 3\right]+y(z)+u_{1}(z)
$$

which can be represented by the following state equations (with $n=2$)

$$
\begin{aligned}
y(z) & =q_{1}(z), \\
\binom{\partial q_{1}(z)}{\partial q_{2}(z)} & =\binom{q_{2}}{\gamma\left(q_{2}+q_{2}^{3} / 3\right)+q_{1}} u_{0}(z)+\binom{0}{1} u_{1}(z) \\
& =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\
\text { where } A_{0} & =\left[\gamma\left(q_{2}+q_{2}^{3} / 3\right)+q_{1}\right] \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}} \text { and } A_{1}=\frac{\partial}{\partial q_{2}} .
\end{aligned}
$$

DUAL LAWS AND REPRESENTATIVE SERIES

Dual laws in bialgebras

Startting with a \mathbf{k} - AAU (k is a ring) \mathcal{A}. Dualizing $\mu: \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \rightarrow \mathcal{A}$, we get the transpose ${ }^{t} \mu: \mathcal{A}^{\vee} \rightarrow\left(\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A}\right)^{\vee}$ so that we do not get a co-multiplication in general.

- Remark that when \mathbf{k} is a field, the following arrow is into (due to the fact that $\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}$ is torsionfree)

$$
\Phi: \mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee} \rightarrow\left(\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A}\right)^{\vee}
$$

- One restricts the codomain of ${ }^{t} \mu$ to $\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}$ and then the domain to $\left({ }^{t} \mu\right)^{-1} \Phi\left(\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}\right)=: \mathcal{A}^{\circ}$.

The descent stops at first step for a field \mathbf{k} and then $\mathcal{A}^{\circ \circ}=\mathcal{A}^{\circ}$. The coalgebra $\left(\mathcal{A}^{\circ}, \Delta_{\mu}\right)$ is called the Sweedler's dual of (\mathcal{A}, μ).

Case of algebras noncommutative series

- \mathcal{X} denotes the ordered alphabets $Y:=\left\{y_{k}\right\}_{k \geq 1}$ or $X:=\left\{x_{0}, x_{1}\right\}$.

On the free monoid (\mathcal{X}^{*}, conc, $1_{\mathcal{X}^{*}}$), we use the correspondences

$$
x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} \in X^{*} x_{1} \stackrel{\pi_{r}}{\pi_{X}} y_{s_{1}} \ldots y_{s_{r}} \in Y^{*} \leftrightarrow\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}_{+}^{r} .
$$

Let $\mathcal{L} y n \mathcal{X}$ denote the set of Lyndon words generated by \mathcal{X}.

- Let $\left.\left(\mathcal{L i e} e_{A}\langle\mathcal{X}\rangle\right\rangle,[].\right)$ and $(A\langle\langle\mathcal{X}\rangle\rangle$, conc $)$ (resp. $\left(\mathcal{L i e} e_{A}\langle\mathcal{X}\rangle,[].\right)$ and ($A\langle\mathcal{X}\rangle$, conc)) are the algebras of (Lie) series (resp. polynomials). $\left\{P_{l}\right\}_{I \in \mathcal{L} y n \mathcal{X}}$ (resp. $\left\{\Pi_{l}\right\}_{I \in \mathcal{L} y n Y}$) is a basis of Lie algebra of primitive elements and $\left\{S_{l}\right\}_{l \in \mathcal{L y n \mathcal { X }}}$ (resp. $\left\{\Sigma_{1}\right\}_{l \in \mathcal{L y n Y} Y}$) is a transcendence basis of $\left(A\langle\mathcal{X}\rangle, ш, 1_{\mathcal{X}^{*}}\right)\left(\right.$ resp. $\left.\left(A\langle Y\rangle, \amalg, 1_{Y^{*}}\right)\right)$.
- $\mathcal{H}_{ш}(\mathcal{X}):=\left(A\langle\mathcal{X}\rangle\right.$, conc, $\left.1_{\mathcal{X}^{*}}, \Delta_{ш}, e\right)$ and
$\mathcal{H}_{ \pm \pm}(Y):=\left(A\langle Y\rangle\right.$, conc, $1_{Y^{*}}, \Delta_{ \pm \pm}$, e) with 5 (for $\left.x \in \mathcal{X}, y_{i} \in Y\right)$

$$
\begin{aligned}
& \Delta_{\amalg} x=x \otimes 1_{\mathcal{X}^{*}}+1_{\mathcal{X}^{*}} \otimes x, \\
& \Delta_{ \pm+1} y_{i}=y_{i} \otimes 1_{Y^{*}}+1_{Y^{*}} \otimes y_{i}+\sum_{k+l=i} y_{k} \otimes y_{l} .
\end{aligned}
$$

- The dual law associated to conc is defined, for $w \in \mathcal{X}^{*}$, by

$$
\Delta_{\text {conc }}(w)=\sum_{u, v \in \mathcal{X}^{*}, u v=w} u \otimes v .
$$

> 5. Or equivalently, for $x, y \in \mathcal{X}, y_{i}, y_{j} \in Y$ and $u, v \in \mathcal{X}^{*}$ (resp. Y^{*}),
> $u ш 1_{\mathcal{X}^{*}}=1_{\mathcal{X}^{*}} ш u=u$ and $x u ш y v=x(u ш y v)+y(x u ш v)$,
> $u \uplus 1_{\gamma^{*}}=1_{Y^{*}} \uplus u=u$ and $x_{i} u \uplus y_{j} v=y_{i}\left(u \pm y_{j} v\right)+a y_{j}\left(y_{i} u \uplus v\right)+y_{i \neq j}(u \pm v)$,

Dualizable laws in conc-shuffle bialgebras $(1 / 2)$

We can exploit the basis of words as follows

1. Any bilinear law (shuffle, stuffle or any) $\mu: A\langle\mathcal{X}\rangle \otimes_{A} A\langle\mathcal{X}\rangle \rightarrow A\langle\mathcal{X}\rangle$ can be decribed through its structure constants wrt to the basis of words, i.e. for $u, v, w \in \mathcal{X}^{*}, \Gamma_{u, v}^{w}:=\langle\mu(u \otimes v) \mid w\rangle$ so that

$$
\mu(u \otimes v)=\sum_{w \in \mathcal{X}^{*}} \Gamma_{u, v}^{w} w .
$$

2. In the case when $\Gamma_{u, v}^{w}$ is locally finite in w, we say that the given law is dualizable, the arrow ${ }^{t} \mu$ restricts nicely to $A\langle\mathcal{X}\rangle \hookrightarrow A\langle\langle\mathcal{X}\rangle\rangle$ and one can define on the polynomials a comultiplication by

$$
\Delta_{\mu}(w):=\sum_{u, v \in \mathcal{X}^{*}} \Gamma_{u, v}^{w} u \otimes v
$$

3. When the law μ is dualizable, we have

The arrow Δ_{μ} is unique to be able to close the rectangle and $\Delta_{\mu}(P)$ is defined as above.

Dualizable laws in conc-shuffle bialgebras (2/2)

4. Proof that the arrow $A\langle\mathcal{X}\rangle \otimes_{A} A\langle\mathcal{X}\rangle \longrightarrow A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle$ is into :

Let $T=\sum_{i=1}^{n} P_{i} \otimes_{A} Q_{i}$ such that $\Phi(T)=0$. Rewriting T as a finitely supported sum $T=\sum_{u, v \in \mathcal{X}^{*}} c_{u, v} u \otimes v$ (this is indeed the iso between $A\langle\mathcal{X}\rangle \otimes_{A} A\langle\mathcal{X}\rangle$ and $\left.A\left[\mathcal{X}^{*} \times \mathcal{X}^{*}\right]\right), \Phi(T)$ is by definition of Φ the double series (here a polynomial) s.t. $\langle\Phi(T) \mid u \otimes v\rangle=c_{u, v}$. If $\Phi(T)=0$, then for all $(u, v) \in \mathcal{X}^{*} \times \mathcal{X}^{*}, c_{u, v}=0$ entailing $T=0$. We extend by linearity and infinite sums, for $S \in \hat{A}\langle\langle Y\rangle$ (resp. $A\langle\langle\mathcal{X}\rangle)$), by

$$
\begin{aligned}
& \Delta_{ \pm \pm} S=\sum_{w \in Y^{*}}\langle S \mid w\rangle \Delta_{ \pm w} w \quad \in A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right\rangle, \\
& \Delta_{\text {conc }} S=\sum^{w \in Y^{*}}\langle S \mid w\rangle \Delta_{\text {conc }} w \in A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle, \\
& \Delta_{ш} S=\sum_{w \in \mathcal{X}^{*}}^{w \in \mathcal{X}^{*}}\langle S \mid w\rangle \Delta_{w} w \in A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle .
\end{aligned}
$$

$\underline{A\langle\langle\mathcal{X}\rangle\rangle \otimes A\langle\langle\mathcal{X}\rangle\rangle \text { does not embed injectively in }{ }^{6} A\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle \cong[A\langle\langle\mathcal{X}\rangle\rangle]\langle\langle\mathcal{X}\rangle\rangle .}$
6. $A\langle\langle\mathcal{X}\rangle\rangle \otimes A\langle\langle\mathcal{X}\rangle\rangle$ contains the elements of the form $\sum_{i \in I}$ finite $G_{i} \otimes D_{i}$ (with $\left.\left(G_{i}, D_{i}\right) \in A\langle\langle\mathcal{X}\rangle\rangle \times A\langle\langle\mathcal{X}\rangle\rangle\right)$ which can be interpreted as double series. But, a priori, the images of different dual laws cannot be, in general reduced to such sums. Furthermore, the arrow tensor products of series \rightarrow double series may not be into, when A is only a ring.

Extended Ree's theorem

Let $S \in A\langle\langle Y\rangle\rangle($ resp. $A\langle\langle\mathcal{X}\rangle\rangle), A$ is a commutative ring containing \mathbb{Q}.
The series S is said to be

1. a \pm (resp. conc, w)-character iff, for any $w, v \in Y^{*}\left(r e s p . \mathcal{X}^{*}\right)$, $\langle S \mid w\rangle\langle S \mid v\rangle=\langle S \mid w ゅ v\rangle(r e s p .\langle S \mid w v\rangle,\langle S \mid w ш v\rangle)$ and $\langle S \mid 1\rangle=1$.
2. an infinitesimal $\pm+$ (resp. conc, $ш$)-character iff, for any $w, v \in Y^{*}\left(\right.$ resp. $\left.\mathcal{X}^{*}\right),\langle S \mid w 屯 v\rangle=\langle S \mid w\rangle\left\langle v \mid 1_{Y^{*}}\right\rangle+\left\langle w \mid 1_{Y^{*}}\right\rangle\langle S \mid v\rangle$ (resp. $\langle S \mid w v\rangle=\langle S \mid w\rangle\left\langle v \mid 1_{\mathcal{X}^{*}}\right\rangle+\left\langle w \mid 1_{\mathcal{X}^{*}}\right\rangle\langle S \mid v\rangle$, $\left.\langle S \mid w ш v\rangle=\langle S \mid w\rangle\left\langle v \mid 1_{\mathcal{X}^{*}}\right\rangle+\left\langle w \mid 1_{\mathcal{X} *}\right\rangle\langle S \mid v\rangle\right)$.
3. a group-like series iff $\left\langle S \mid 1_{\mathcal{X}^{*}}\right\rangle=1$ and $\Delta_{++1} S=\Phi(S \otimes S)$ (resp. $\left.\Delta_{\text {conc }} S=\Phi(S \otimes S), \Delta_{ \pm+} S=\Phi(S \otimes S)\right)$.
4. a primitive series iff $\Delta_{t^{+}} S=1_{Y^{*}} \otimes S+S \otimes 1_{Y^{*}}$ (resp.
$\left.\Delta_{\text {conc }} S=1_{\mathcal{X}^{*}} \otimes S+S \otimes 1_{\mathcal{X}^{*}}, \Delta_{ш} S=1_{\mathcal{X}^{*}} \otimes S+S \otimes 1_{\mathcal{X}^{*}}\right)$.
Then the following assertions are equivalent
5. S is a \downarrow (resp. conc and $ш$)-character.
6. $\log S$ an infinitesimal $+ \pm$ (resp. conc and $ш$)-character.
7. S is group-like, for $\Delta_{ \pm \pm}\left(\right.$resp. $\Delta_{\text {conc }}$ and $\left.\Delta_{ш}\right)$.
8. $\log S$ is primitive, for $\Delta_{\text {t }}\left(\right.$ resp. $\Delta_{\text {conc }}$ and $\left.\Delta_{\text {ш }}\right)$.

Extension by continuity (infinite sums)

Now, suppose that the ring A (containing \mathbb{Q}) is a field \mathbf{k}. Then

$$
\Delta_{ш}: \mathbf{k}\langle\mathcal{X}\rangle \rightarrow \mathbf{k}\langle\mathcal{X}\rangle \otimes \mathbf{k}\langle\mathcal{X}\rangle \text { and } \Delta_{+ \pm}: \mathbf{k}\langle Y\rangle \rightarrow \mathbf{k}\langle Y\rangle \otimes \mathbf{k}\langle Y\rangle
$$

are graded for the multidegree. Then $\Delta_{ \pm+}$is graded for the length. Their extension to the completions (i.e. $\mathbf{k}\langle\langle\mathcal{X}\rangle\rangle$ and $\mathbf{k}\left\langle\left\langle\mathcal{X}^{*} \otimes \mathcal{X}^{*}\right\rangle\right\rangle$) are continuous and then, when exist, commute with infinite sums. Hence ${ }^{7,8}$,

$$
\forall c \in \mathbf{k}, \quad \Delta_{ш}(c x)^{*}=\sum_{n \geq 0} c^{n} \Delta_{\uplus} x^{n}=\sum_{n \geq 0} c^{n} \sum_{j=0}^{n}\binom{n}{j} x^{j} \otimes x^{n-j} .
$$

For $c \in \mathbb{N}_{\geq 2}$ which is neither a field nor a ring (containing \mathbb{Q}), we also get

$$
\begin{gathered}
(c x)^{*}=(c-1)^{-1} \sum_{a, b \in \mathbb{N} \geq 1, a+b=c}(a x)^{*} ш(b x)^{*} \quad \in \mathbb{N} \geq 2\langle\langle\mathcal{X}\rangle\rangle, \\
\Delta_{\amalg}(c x)^{*} \neq(c-1)^{-1} \sum_{a, b \in \mathbb{N} \geq 1, a+b=c}(a x)^{*} \otimes(b x)^{*} \quad \in \mathbb{Q}\langle\langle\mathcal{X}\rangle\rangle \otimes \mathbb{Q}\langle\langle\mathcal{X}\rangle\rangle,
\end{gathered}
$$

because

$$
\left\langle\mathrm{LHS} \mid x \otimes 1_{\mathcal{X}^{*}}\right\rangle=c \quad \text { and } \quad\left\langle\operatorname{RHS} \mid x \otimes 1_{\mathcal{X}^{*}}\right\rangle=(c-1)^{-1} \sum_{a=1}^{c-1} a=\frac{c}{2} .
$$

For $c \in \mathbb{Z}$ (or even $\mathbb{Q}, \mathbb{R}, \mathbb{C}$), the such decomposition is not finite.
7. For $S \in A\langle\langle\mathcal{X}\rangle\rangle$ s.t. $\left\langle S \mid 1_{\mathcal{X}^{*}}\right\rangle=0, S^{*}=\sum_{n \geq 0} S^{n}$ is called Kleene star of S.
8. $\Delta_{ш} x^{n}=\left(\Delta_{ш} x\right)^{n}=\left(1_{\mathcal{X}^{*}} \otimes x+x \otimes 1_{\mathcal{X}^{*}}\right)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} \otimes x^{n-j}$.

Case of rational series and of $\Delta_{\text {conc }}$

$A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$ denotes the algebraic closure by ${ }^{9}\{$ conc,,$+ *\}$ of $\widehat{A \cdot \mathcal{X}}$ in $A\langle\langle\mathcal{X}\rangle\rangle$.

The dashed arrow may not exist in general, but for any $R \in A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$ admitting (λ, μ, η) as linear representation of dimension n, we can get

$$
{ }^{t} \operatorname{conc}(R)=\Phi\left(\sum_{i=1}^{n} G_{i} \otimes D_{i}\right) .
$$

Indeed, since $\langle R \mid x y\rangle=\lambda \mu(x y) \eta=\lambda \mu(x) \mu(y) \eta(x, y \in \mathcal{X})$ then, letting e_{i} is the vector such that ${ }^{t} e_{i}=\left(\begin{array}{lllllll}0 & \ldots & 0 & 1 & 0 & \ldots & 0\end{array}\right)$, one has

$$
\langle R \mid x y\rangle=\sum_{i=1}^{n} \lambda \mu(x) e_{i}^{t} e_{i} \mu(y) \eta=\sum_{i=1}^{n}\left\langle G_{i} \mid x\right\rangle\left\langle D_{i} \mid y\right\rangle=\sum_{i=1}^{n}\left\langle G_{i} \otimes D_{i} \mid x \otimes y\right\rangle .
$$

$G_{i}\left(\right.$ resp. $\left.D_{i}\right)$ admits then $\left(\lambda, \mu, e_{i}\right)$ (resp. $\left.\left({ }^{t} e_{i}, \mu, \eta\right)\right)$ as linear representation. If $A=\mathbf{k}$ being a field then, due to the injectivity of Φ, all expressions of the type $\sum_{i=1}^{n} G_{i} \otimes D_{i}$, of course, coincide. Hence, the dashed arrow (a restriction of $\Delta_{\text {conc }}$) in the above diagram is well-defined.
9. $A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$ is closed under $ш . A^{\text {rat }}\langle\langle Y\rangle\rangle$ is also closed under $\downarrow+$.

Representative series and Sweedler's dual

Theorem 6 (representative series)
Let $S \in A\langle\mathcal{X}\rangle$. The following assertions are equivalent

1. The series S belongs to $A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$.
2. There exists a linear representation (ν, μ, η), of rank n, for S with $\nu \in M_{1, n}(A), \eta \in M_{n, 1}(A)$ and a morphism of monoids $\mu: \mathcal{X}^{*} \rightarrow M_{n, n}(A)$ s.t., for any $w \in \mathcal{X}^{*},\langle S \mid w\rangle=\nu \mu(w) \eta$.
3. The shifts ${ }^{10}\{S \triangleleft w\}_{w \in \mathcal{X}^{*}}$ (resp. $\{w \triangleright S\}_{w \in \mathcal{X}^{*}}$) lie within a finitely generated shift-invariant A-module.

Moreover, if A is a field \mathbf{k}, the previous assertions are equivalent to
4. There exist $\left(G_{i}, D_{i}\right)_{i \in F \text { finite }}$ s.t. $\Delta_{\text {conc }}(S)=\sum_{i \in F \text { finite }} G_{i} \otimes D_{i}$.

Hence, $\left.\mathcal{H}^{\circ}{ }_{\boldsymbol{w}}(\mathcal{X})=\left(\mathbf{k}^{\text {rat }}\langle\mathcal{X}\rangle\right\rangle, ш, 1_{\mathcal{X} *}, \Delta_{\text {conc }}, \mathrm{e}\right)$ and
$\mathcal{H}_{\dot{+}}^{\circ}(Y)=\left(\mathbf{k}^{\mathrm{rat}}\langle\langle Y\rangle\rangle, \mathrm{m}^{\prime}, 1_{\mathcal{X}^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right)$.
Now, let $A_{\text {exc }}\langle\langle\mathcal{X}\rangle\rangle$ (resp. $A_{\text {exc }}^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle$) be the set of exchangeable ${ }^{11}$ series (resp. series admitting a linear representation with commuting matrices).
10. The left (resp. right) shift of S by P is $P \triangleright S$ (resp. $S \triangleleft P$) defined by, for $w \in \mathcal{X}^{*},\langle P \triangleright S \mid w\rangle=\langle S \mid w P\rangle($ resp. $\langle S \triangleleft P \mid w\rangle=\langle S \mid P w\rangle)$.
11. i.e. if $S \in A_{\text {exc }}\langle\langle\mathcal{X}\rangle\rangle$ then $\left(\forall u, v \in \mathcal{X}^{*}\right)\left((\forall x \in \mathcal{X})\left(|u|_{x}=|v|_{x}\right) \Rightarrow\langle S \mid u\rangle=\langle S \mid \nabla\rangle\right)$.

Kleene stars of the plane and conc-characters

For any $S \in A\langle\langle\mathcal{X}\rangle\rangle$, let ∇S denotes $S-1_{\mathcal{X}}$.
Theorem 7 (rational exchangeable series)

1. $A_{\text {exc }}^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle \subset A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle \cap A_{\text {exc }}\langle\langle\mathcal{X}\rangle\rangle$. If A is a field then the equality holds and $A_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle=A^{\text {rat }}\left\langle\left\langle x_{0}\right\rangle\right\rangle ш A^{\text {rat }}\left\langle\left\langle x_{1}\right\rangle\right\rangle$ and, for the algebra of series over subalphabets $A_{\text {fin }}^{\text {rat }}\langle\langle Y\rangle\rangle:=\cup_{F \subset_{\text {finite }}} Y A^{\text {rat }}\langle\langle F\rangle\rangle$, we get ${ }^{12}$ $A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle \cap A_{\mathrm{fin}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle=\cup_{k \geq 0} A^{\mathrm{rat}}\left\langle\left\langle y_{1}\right\rangle\right\rangle ш \ldots ш A^{\mathrm{rat}}\left\langle\left\langle y_{k}\right\rangle\right\rangle \subsetneq A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle$.
2. $\forall x \in \mathcal{X}, A^{\text {rat }}\langle\langle x\rangle\rangle=\left\{P(1-x Q)^{-1}\right\}_{P, Q \in A[x] \text {. If } \mathbf{k} \text { is an algebraically }}$ closed field then $\mathbf{k}^{\text {rat }}\langle\langle x\rangle\rangle=\operatorname{span}_{\mathbf{k}}\left\{(a x)^{*} ш \mathbf{k}\langle x\rangle \mid a \in K\right\}$.
3. If A is a \mathbb{Q}-algebra, $\left\{x^{*}\right\}_{x \in \mathcal{X}}$ (resp. $\left\{y^{*}\right\}_{y \in Y}$) are conc-character and alg. free over $\left(A\langle\mathcal{X}\rangle\right.$, ш, $\left.1_{\mathcal{X}^{*}}\right)\left(\right.$ resp. $\left.\left(A\langle Y\rangle, \amalg, 1_{Y^{*}}\right)\right)$ within $\left(A^{\text {rat }}\langle\langle\mathcal{X}\rangle\rangle, ш, 1_{\mathcal{X}^{*}}\right)\left(r e s p .\left(A^{\text {rat }}\langle\langle Y\rangle\rangle, ш, 1_{Y^{*}}\right)\right)$.
4. Let $S \in A\langle\langle\mathcal{X}\rangle\rangle$. If $A=\mathbf{k}$, a field, then t.f.a.e.
a) S is groupe-like, for $\Delta_{\text {conc }}$.
b) There exists $M:=\sum_{x \in \mathcal{X}} c_{x} x \in \widehat{\mathbf{k} . \mathcal{X}}$ s.t. $S=M^{*}$.
c) There exists $M:=\sum_{x \in \mathcal{X}} c_{X} x \in \widehat{\mathbf{k} . \mathcal{X}}$ s.t. $\nabla S=M S=S M$.
5. The following identity lives in $A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle$ but not in $A_{\mathrm{exc}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle \cap A_{\mathrm{fin}}^{\mathrm{rat}}\langle\langle Y\rangle\rangle$, $\left(y_{1}+\ldots\right)^{*}=\lim _{k \rightarrow+\infty}\left(y_{1}+\ldots+y_{k}\right)^{*}=\lim _{k \rightarrow+\infty} y_{1}^{*} \amalg \ldots$.

Triangular sub bialgebras of $\left(A^{\mathrm{rat}}\langle\langle X\rangle\rangle, ш, 1_{X^{*}}, \Delta_{\text {conc }}, \mathrm{e}\right)$

Let (ν, μ, η) be a linear representation of $R \in A^{\mathrm{rat}}\langle\langle X\rangle\rangle$ and \mathcal{L} be the Lie algebra generated by $\{\mu(x)\}_{x \in X}$.
Let $M(x):=\mu(x) x$, for $x \in X$. Then $R=\nu M\left(X^{*}\right) \eta$. If $\{\mu(x)\}_{x \in X}$ are triangular then let $D(X)$ (resp. $N(X)$) be the diagonal (resp. nilpotent) letter matrix s.t. $M(X)=D(X)+N(X)$ then
$M\left(X^{*}\right)=\left(\left(D\left(X^{*}\right) T(X)\right)^{*} D\left(X^{*}\right)\right)$. Moreover, if $X=\left\{x_{0}, x_{1}\right\}$ then
$M\left(X^{*}\right)=\left(M\left(x_{1}^{*}\right) M\left(x_{0}\right)\right)^{*} M\left(x_{1}^{*}\right)=\left(M\left(x_{0}^{*}\right) M\left(x_{1}\right)\right)^{*} M\left(x_{0}^{*}\right)$.
If A is an algabraically closed field, the modules generated by the following families are closed by conc, $ш$ and coproducts:
(F_{0}) $E_{1} x_{1} \ldots E_{j} x_{1} E_{j+1}$, where $E_{k} \in A^{\mathrm{rat}}\left\langle\left\langle x_{0}\right\rangle\right\rangle$,
(F_{1}) $E_{1} x_{0} \ldots E_{j} x_{0} E_{j+1}$, where $E_{k} \in A^{\mathrm{rat}}\left\langle\left\langle x_{1}\right\rangle\right\rangle$,
(F_{2}) $E_{1} x_{i_{1}} \ldots E_{j} x_{i_{j}} E_{j+1}$, where $\left.E_{k} \in A_{\mathrm{exc}}^{\mathrm{rat}}\langle X\rangle\right\rangle, x_{i_{k}} \in X$.
It follows then that

1. R is a linear combination of expressions in the form $\left(F_{0}\right)$ (resp. $\left(F_{1}\right)$) iff $M\left(x_{1}^{*}\right) M\left(x_{0}\right)\left(\right.$ resp. $\left.M\left(x_{0}^{*}\right) M\left(x_{1}\right)\right)$ is nilpotent,
2. R is a linear combination of expressions in the form $\left(F_{2}\right)$ iff \mathcal{L} is solvable. Thus, if $R \in A_{\text {exc }}^{\text {rat }}\langle\langle X\rangle ш A\langle X\rangle$ then \mathcal{L} is nilpotent.

CONTINUITY OVER CHEN SERIES

Iterated integrals over $\omega_{i}(z)=u_{x_{i}}(z) d z$ and along $z_{0} \rightsquigarrow z$

Now, let Ω be a simply connected domain admitting 1_{Ω} as neutral element. Let $\mathcal{A}:=(\mathcal{H}(\Omega), \partial)$ and let \mathcal{C}_{0} be a differential subring of $\mathcal{A}\left(\partial \mathcal{C}_{0} \subset \mathcal{C}_{0}\right)$ which is an integral domain containing \mathbb{C}.
$\mathbb{C}\left\{\left\{\left(g_{i}\right)_{i \in 1}\right\}\right\}$ denotes the differential subalgebra of \mathcal{A} generated by $\left(g_{i}\right)_{i \in I}$, i.e. the \mathbb{C}-algebra generated by g_{i} 's and their derivatives $\left\{u_{x}\right\}_{x \in \mathcal{X}}$: elements ${ }^{13}$ in $\mathcal{C}_{0} \cap \mathcal{A}^{-1}$, correspondent to $\left\{\theta_{x}\right\}_{x \in \mathcal{X}}\left(\theta_{x}=u_{x}^{-1} \partial\right)$. The iterated integral ${ }^{14}$ associated to $x_{i_{1}} \ldots x_{i_{k}} \in \mathcal{X}^{*}$, over the differential forms $\omega_{i}(z)=u_{x_{i}}(z) d z, i \geq 1$, and along a path $z_{0} \rightsquigarrow z$ on Ω, is defined by

$$
\begin{aligned}
\alpha_{z_{0}}^{z}\left(1_{\mathcal{X}}\right) & =1_{\Omega} \\
\alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right) & =\int_{z_{0}}^{z} \omega_{i_{1}}\left(z_{1}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right) . \\
\partial \alpha_{z_{0}}^{z}\left(x_{i_{1}} \ldots x_{i_{k}}\right) & =u_{x_{i_{1}}}(z) \int_{z_{0}}^{z} \omega_{i_{2}}\left(z_{2}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{span}_{\mathbb{C}}\left\{\partial^{\prime} \alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}, l \geq 0} & \subset \operatorname{span}_{\mathbb{C}\left\{\left\{\left(u_{\chi}\right)_{x \in \mathcal{X}}\right\}\right.}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}} \\
& \subset \operatorname{span}_{\mathbb{C}\left\{\left\{\left(u^{ \pm 1}\right)_{\mathcal{X}}\right\}\right.}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}} \\
& \left.\cong \mathbb{C}\left\{\left\{\left(u_{x}^{ \pm 1}\right)_{x \in \mathcal{X}}\right\}\right\}\right\} \otimes_{\mathbb{C}} \operatorname{span}_{\mathbb{C}}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}} ?
\end{aligned}
$$

13. In control theory, these are called "inputs" and they may vary (see bellow).
14. The value of $\alpha_{z_{0}}^{2}\left(x_{i_{1}} \ldots x_{i_{k}}\right)$ depends on $\left\{\omega_{i}\right\}_{i \geq 1}$, or equivalently on $\left\{u_{x}\right\}_{x \in \mathcal{X}}$

Iterated integrals and integro differential operators

Let $\mathcal{C}=\mathbb{C}\left\{\left\{\left(u_{x}^{ \pm 1}\right)_{x \in \mathcal{X}}\right\}\right\}$. One has $\theta_{x} \in \mathcal{C}\langle\partial\rangle$, for $x \in \mathcal{X}$, and $\forall x, y \in \mathcal{X}, \quad \forall w \in \mathcal{X}^{*}, \quad \theta_{x} \alpha_{z_{0}}^{z}(y w)=u_{x}^{-1}(z) u_{y}(z) \alpha_{z_{0}}^{z}(w)$.
Now, let Θ be the morphism $\mathbb{C}\langle\mathcal{X}\rangle \longrightarrow \mathcal{C}\langle\partial\rangle$ defined as follows

$$
\Theta(w)=\left\{\begin{array}{cll}
\text { Id } & \text { if } & w=1_{\mathcal{X}} \\
\Theta(u) \theta_{x} & \text { if } & w=u x \in \mathcal{X}^{*} \mathcal{X} .
\end{array}\right.
$$

One has, for any $w \in \mathcal{X}^{*}$,

1. $\Theta(\tilde{w}) \alpha_{z_{0}}^{z}(w)=1_{\Omega}$, and then $\partial\left(\Theta(\tilde{w}) \alpha_{z_{0}}^{z}(w)\right)=0$.
2. $L_{w} \alpha_{z_{0}}^{z}(\tilde{w})=0$, where $L_{w}:=\partial \Theta(w) \in \mathcal{C}\langle\partial\rangle$.

For any $x_{i} \in \mathcal{X}$, let us consider a section of $\theta_{x_{i}}: \theta_{x_{i}} l_{x_{i}}^{z_{0}}=I d$, i.e.

$$
\forall f \in \mathcal{H}(\Omega), \quad l_{x_{i}}^{z_{0}} f(z)=\int_{z_{0}}^{z} \omega_{i}(s) f(s) .
$$

The operator $\theta_{y} l_{x}^{z_{0}}$, for $x \neq y$, admits $u_{y} u_{x}^{-1}$ as eigenvalue, i.e.
$\forall f \in \mathcal{H}(\Omega), \quad\left(\theta_{y} l_{x}^{z_{0}}\right) f=u_{y} u_{x}^{-1} f, \quad$ in particular, $\quad\left(\theta_{y} l_{x}^{z_{0}}\right) 1_{\Omega}=u_{y} u_{x}^{-1}$.
Now, let $\Im^{z_{0}}$ be the morphism defined as follows

$$
\Im^{z_{0}}(w)=\left\{\begin{array}{cll}
\text { Id } & \text { if } & w=1_{\mathcal{X}}, \\
\Im^{I_{0}}(u) \iota_{x}^{z_{0}} & \text { if } & w=u x \in \mathcal{X}^{*} \mathcal{X} .
\end{array}\right.
$$

Hence, for any $w \in X^{*}, \Im^{z_{0}}(w) 1_{\Omega}=\alpha_{z_{0}}^{z}(w)$.

Practical example (polylogarithms)

For $X=\left\{x_{0}, x_{1}\right\}$ and $\left.\Omega=\mathbb{C} \backslash(]-\infty, 0\right] \cup[1,+\infty[)$, let us consider

$$
u_{x_{0}}(z)=z^{-1} \quad \text { and } \quad u_{x_{1}}(z)=(1-z)^{-1} .
$$

Then, on the other hand,

$$
\begin{array}{cc}
\omega_{0}(z)=u_{x_{0}}(z) d z=z^{-1} d z \quad \text { and } \quad \omega_{1}(z)=u_{x_{1}}(z) d z=(1-z)^{-1} d z, \\
\theta_{x_{0}}=u_{x_{0}}^{-1}(z) \partial=z \partial \quad \text { and } \quad \theta_{x_{1}}=u_{x_{1}}^{-1}(z) \partial=(1-z) \partial .
\end{array}
$$

On the other hand ${ }^{15}, \mathcal{C}=\mathbb{C}\left\{\left\{\left(u_{x}^{ \pm 1}\right)_{x \in X}\right\}\right\}=\mathbb{C}\left[z, z^{-1},(1-z)^{-1}\right]$ being closed by $\theta_{x_{0}}, \theta_{x_{1}}$ and then by $\partial=\theta_{x_{0}}+\theta_{x_{1}}=\Theta\left(x_{0}+x_{1}\right)$. One also has

1. $\Theta\left(\left[x_{1}, x_{0}\right]\right)=\left[\theta_{x_{1}}, \theta_{x_{0}}\right]=\partial$.
2. $\forall w \in X^{*} x_{1}, \Im^{0}(w) 1_{\Omega}=\alpha_{0}^{z}(w)=\operatorname{Li}_{w}(z)$.
3. $\left(\theta_{x_{0}} \iota_{x_{1}}^{Z_{0}}\right) 1_{\Omega}=z(1-z)^{-1}$ and $\left(\theta_{x_{1}} \iota_{x_{0}}^{Z_{0}}\right) 1_{\Omega}=z^{-1}-1$.
4. $\left[\theta_{x_{0}} L_{x_{1}}^{z_{0}}, \theta_{x_{1}} z_{x_{0}}^{z_{0}}\right]=0$.
5. $\left(\theta_{x_{0}} L_{x_{1}}^{z_{0}}\right)\left(\theta_{x_{1}} L_{x_{0}}^{z_{0}}\right)=\left(\theta_{x_{1}} L_{x_{0}} L_{0}\right)\left(\theta_{x_{0}} L_{x_{1}}^{z_{0}}\right)=\mathrm{Id}$.

For any $L \in \mathcal{C}\langle\partial\rangle$, there is $P \in \mathcal{C}\langle X\rangle$ s.t $L=\Theta(P)$, meaning that Θ is surjective and non injective. Moreover, $\operatorname{ker} \Theta$ is the left principal ideal generated by $\left[x_{1}, x_{0}\right]-x_{0}-x_{1}$.
15. Any $p \in \mathcal{C}$ is polynomial on z, z^{-1} and $(1-z)^{-1}$ and admits 0 and 1 as poles.

Structure of iterated integrals

Proposition 1

Let $\mathcal{C}=\mathbb{C}\left\{\left\{\left(u_{x}^{ \pm 1}\right)_{x \in \mathcal{X}}\right\}\right\}$ and $z_{0} \rightsquigarrow z$ be a path on Ω. Then TFAE

1. The morphism $\left(\mathcal{C}\langle\mathcal{X}\rangle\right.$, w, $\left.1_{\mathcal{X}^{*}}\right) \rightarrow\left(\operatorname{span}_{\mathcal{C}}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}, \times, 1_{\Omega}\right)$ is injective.
2. $\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}$ is \mathcal{C}-linearly independent.
3. $\left\{\alpha_{z_{0}}^{z}(I)\right\}_{l \in \mathcal{L} y n \mathcal{X}}$ is \mathcal{C}-algebraically independent.
4. $\left\{\alpha_{z_{0}}^{z}(x)\right\}_{x \in \mathcal{X}}$ is \mathcal{C}-algebraically independent.
5. $\left\{\alpha_{z_{0}}^{z}(x)\right\}_{x \in \mathcal{X} \cup\left\{1_{\left.\mathcal{X}^{*}\right\}}\right.}$ is \mathcal{C}-linearly independent.

If one of the above assertions holds then

1. $\mathcal{C}\left[\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}\right]$ forms the universal \mathcal{C}-module of solutions of all differential equations $L y=0$,
2. $\mathcal{C}\left\{\alpha_{z_{0}}^{z}(w)\right\}_{w \in \mathcal{X}^{*}}$ forms the universal Picard-Vessiot extension related to all differential equations $L y=0$,
where ${ }^{16} L^{\prime}$'s are linear differential operators belonging to $\mathcal{C}\langle\partial\rangle$.
3. For any $w \in X^{*}$, let $\mathcal{I}_{w}:=\left\{L \in \mathcal{C}\langle\partial\rangle\right.$ s.t. $\left.L \alpha_{z_{0}}^{z}(w)=0\right\}$. Then \mathcal{I}_{w} is a left ideal.

Examples of linear differential equation

Example 8 (with $\mathcal{C}=\mathbb{C}(z)$)

$$
\begin{equation*}
(\partial-z) y=0 . \tag{1}
\end{equation*}
$$

1. $e^{z^{2} / 2}$ is solution of (1).
2. $c e^{z^{2} / 2}=e^{z^{2} / 2} e^{\log c}$ is an other solution $(c \in \mathbb{R} \backslash\{0\}$).
3. $\left\{e^{z^{2} / 2}\right\}$ is a fundamental set of solutions of (1).
4. $\mathcal{C}\left\{e^{z^{2} / 2}\right\}$ is a Picard-Vessiot extension related to (1).

For $\theta_{x_{0}}=z \partial$ and $\theta_{x_{1}}=(1-z) \partial$, since $L_{x_{1} x_{0}}=\partial \theta_{x_{1}} \theta_{x_{0}} \in \mathcal{C}\langle\partial\rangle$ then let

$$
\begin{equation*}
L_{x_{1} x_{0}} y=\left(z(1-z) \partial^{3}+(2-3 z) \partial^{2}-\partial\right) y=0 \tag{2}
\end{equation*}
$$

1. $L_{x_{1} X_{0}} \mathrm{Li}_{2}=0$ meaning that Li_{2} is solution of (2).
2. $c \operatorname{Li}_{2}=\operatorname{Li}_{2} e^{\log c}$ is an other solution $(c \in \mathbb{R} \backslash\{0\})$ but it is not independent to Li_{2}.
3. $\left\{\mathrm{Li}_{2}, \log , 1_{\Omega}\right\}$ is a fundamental set of solutions of (2).
4. $\mathcal{C}\left\{\mathrm{Li}_{2}, \log , 1_{\Omega}\right\}$ is a Picard-Vessiot extension ${ }^{17}$ related to (2).
5. $\mathcal{C}\left\{\operatorname{Li}_{2}(z)\right\}=\mathcal{C} \otimes \mathbb{C}\left[\operatorname{Li}_{2}(z), \log (1-z), \log (z)\right]$.

Chen series of $\left\{\omega_{i}\right\}_{i \geq 1}$ and along $z_{0} \rightsquigarrow z$

We get on the bialgebras $\mathcal{H}_{ш}(\mathcal{X})$ and $\mathcal{H}_{ \pm}(Y)$ (over a commutative ring A containing \mathbb{Q})

$$
\mathcal{D}_{\mathcal{X}}:=\sum_{w \in \mathcal{X}^{*}} w \otimes w=\prod_{l \in \mathcal{L} y n \mathcal{X}}^{\searrow} e^{s_{l} \otimes P_{l}} \text { and } \mathcal{D}_{Y}:=\sum_{w \in \boldsymbol{Y}^{*}} w \otimes w=\prod_{l \in \mathcal{L} y n Y}^{\searrow} e^{\Sigma_{l} \otimes \Pi_{l}} .
$$

Hence, since $\alpha_{z_{0}}^{z}(u ш v)=\alpha_{z_{0}}^{z}(u) \alpha_{z_{0}}^{z}(v)$, for $u, v \in \mathcal{X}^{*}$, then the Chen series, $\left.C_{z_{0} \rightsquigarrow z} \in \mathcal{H}(\Omega)\langle\mathcal{X}\rangle\right\rangle$, is given by

$$
C_{z_{0} \rightsquigarrow z z}:=\sum_{w \in \mathcal{X}^{*}} \alpha_{z_{0}}^{z}(w) w=\left(\alpha_{z_{0}}^{z} \otimes \operatorname{Id}\right) \mathcal{D}_{\mathcal{X}}=\prod_{l \in \mathcal{L} y n \mathcal{X}}^{\mathcal{Y}} e^{\alpha_{z_{0}}^{z}\left(S_{l}\right) P_{l}}
$$

and then ${ }^{18} \Delta_{ш} C_{z_{0} \rightsquigarrow z}=C_{z_{0} \rightsquigarrow z} \otimes C_{z_{0} \rightsquigarrow z}$ and $\left\langle C_{z_{0} \rightsquigarrow z} \mid 1_{\mathcal{X}^{*}}\right\rangle=1$.
Note that $C_{z_{0} \rightsquigarrow z}$ only depends on the homotopy class of $z_{0} \rightsquigarrow z$ and the endpoints z_{0}, z. One has $C_{z_{0} \rightsquigarrow z} C_{z_{1} \rightsquigarrow z_{0}}=C_{z_{1} \rightsquigarrow z z}$. Or equivalently,

$$
\forall w \in \mathcal{X}^{*}, \quad\left\langle C_{z_{1} \rightsquigarrow z} \mid w\right\rangle=\sum_{u, v \in \mathcal{X}^{*}, u v=w}\left\langle C_{z_{0} \rightsquigarrow z} \mid u\right\rangle\left\langle C_{z_{1} \rightsquigarrow z_{0}} \mid v\right\rangle .
$$

Although $\Delta_{\text {conc }} w=\sum_{u, v \in \mathcal{X}^{*}, u v=w} u \otimes v$ but $\Delta_{\text {conc }} C_{z_{1} \rightsquigarrow z} \neq C_{z_{0} \rightsquigarrow z} \otimes C_{z_{1} \rightsquigarrow z_{0}}$.
18. $\left\langle C_{z_{0} \rightsquigarrow z} \mid u ш v\right\rangle=\left\langle C_{z_{0} \rightsquigarrow z} \mid u\right\rangle\left\langle C_{z_{0} \rightsquigarrow z z} \mid v\right\rangle$ and on the other hand, $\left\langle C_{z_{0} \rightsquigarrow \sim z} \mid u ш v\right\rangle=\left\langle\Delta ш C_{z_{0} \rightsquigarrow z} \mid u \otimes v\right\rangle,\left\langle C_{z_{0} \rightsquigarrow z} \mid u\right\rangle\left\langle C_{z_{0} \cdots z} \mid v\right\rangle=\left\langle C_{z_{0} \rightsquigarrow \bar{z}} \otimes C_{\overline{z_{0}} \cdots z} \mid u \in v\right\rangle_{0}$

More about Chen series

Note also that, for $g \in \mathcal{H}(\Omega)$, one has $C_{g\left(z_{0}\right) \rightsquigarrow g(z)}=g_{*} C_{z_{0} \rightsquigarrow z}$, i.e. the Chen series of $\left\{g^{*} \omega_{i}\right\}_{i \geq 1}$ along the path $g^{*}\left(z_{0} \rightsquigarrow z\right)$.
Example 9 (with $\omega_{0}(z)=z^{-1} d z$ and $\left.\omega_{1}(z)=(1-z)^{-1} d z\right)$

$g(z)$	z	z^{-1}	$(z-1) z^{-1}$	$z(z-1)^{-1}$	$(1-z)^{-1}$	$1-z$
$g^{*} \omega_{0}$	ω_{0}	$-\omega_{0}$	$-\omega_{1}-\omega_{0}$	$\omega_{1}+\omega_{0}$	ω_{1}	$-\omega_{1}$
$g^{*} \omega_{1}$	ω_{1}	$\omega_{1}+\omega_{0}$	$-\omega_{0}$	$-\omega_{1}$	$-\omega_{1}-\omega_{0}$	$-\omega_{0}$

For any $n \geq 0$, one has

$$
\mathrm{d}^{n} C_{z_{0} \rightsquigarrow z}=p_{n} C_{z_{0} \rightsquigarrow z},
$$

where, for any $S \in \mathcal{H}(\Omega)\langle\langle\mathcal{X}\rangle\rangle, \mathrm{d} S \in \mathcal{H}(\Omega)\langle\mathcal{X}\rangle\rangle$ is defined as follows

$$
\mathbf{d} S=\sum_{w \in \mathcal{X}^{*}}(\partial\langle S \mid w\rangle) w,
$$

$p_{n} \in \mathcal{C}\langle\mathcal{X}\rangle$ is defined as follows

$$
p_{n}=\sum_{\mathrm{wgtr}=n} \sum_{w \in \mathcal{X}^{n}} \prod_{i=1}^{\operatorname{deg} \mathrm{r}}\binom{\sum_{j=1}^{i} r_{j}+j-1}{r_{i}} \tau_{\mathbf{r}}(w)
$$

and, for $w=x_{i_{1}} \ldots x_{i_{k}} \in \mathcal{X}^{*}$ associated to the derivation multiindex $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right) \in \mathbb{N}^{k}$ of weight wgtr $=|w|+\sum_{i=1}^{k} r_{i}$ and of degree $\operatorname{deg} \mathbf{r}=|w|, \tau_{\mathbf{r}}(w):=\tau_{r_{1}}\left(x_{i_{1}}\right) \ldots \tau_{r_{k}}\left(x_{i_{k}}\right)=\left(\partial^{r_{1}} u_{x_{i_{1}}}\right) x_{i_{1}} \ldots\left(\partial^{r_{k}} u_{x_{i_{k}}}\right) x_{i_{\underline{k}}}$.

Continuity, indiscernability and growth condition

For $i=0,2$, let $\left(\mathbf{k}_{i},\|\cdot\|_{i}\right)$ be a semi-normed space and $g_{i} \in \mathbb{Z}$.
Definition 10

1. Let $\mathcal{C l}$ be a class of $\mathbf{k}_{1}\left\langle\langle\mathcal{X}\rangle\right.$. Let $S \in \mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle$ and it is said to be
a) continuous over $\mathcal{C l}$ if, for $\Phi \in \mathcal{C l}$, the following sum is convergent

$$
\sum_{w \in \mathcal{X}^{*}}\|\langle S \mid w\rangle\|_{2}\|\langle\Phi \mid w\rangle\|_{1}
$$

We will denote $\langle S \| \Phi\rangle$ the sum $\sum_{w \in \mathcal{X}^{*}}\langle S \mid w\rangle\langle\Phi \mid w\rangle$ and $\mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle{ }^{\text {Cont }}$ the set of continuous power series over $\mathcal{C l}$.
b) indiscernable over $\mathcal{C l}$ iff, for any $\Phi \in \mathcal{C l},\langle S \| \Phi\rangle=0$.
2. Let χ_{1} and χ_{2} be real positive functions over \mathcal{X}^{*}. Let $\left.S \in \mathbf{k}_{1}\langle\mathcal{X}\rangle\right\rangle$.
a) S satisfies the $\chi_{1}-$ growth condition of order g_{1} if it satisfies

$$
\exists K \in \mathbb{R}_{+}, \exists n \in \mathbb{N}, \forall w \in \mathcal{X} \geq n, \quad\|\langle S \mid w\rangle\|_{1} \leq K \chi_{1}(w)|w|!^{g_{1}} .
$$

We denote by $\left.\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\mathcal{X}\rangle\right\rangle$ the set of formal power series in $\left.\mathbf{k}_{1}\langle\mathcal{X}\rangle\right\rangle$ satisfying the χ_{1}-growth condition of order g_{1}.
b) If S is continuous over $\left.\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\mathcal{X}\rangle\right\rangle$ then it will be said to be $\left(\chi_{2}, g_{2}\right)$-continuous. The set of formal power series which are $\left(\chi_{2}, g_{2}\right)$-continuous is denoted by $\left.\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\langle\mathcal{X}\rangle\rangle\right\rangle^{\text {cont }}$.

Convergence condition

Proposition 2

Let χ_{1} and χ_{2} be real positive functions over \mathcal{X}^{*}.
Let g_{1} and $g_{2} \in \mathbb{Z}$ such that $g_{1}+g_{2} \leq 0$.

1. Let $\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\langle\mathcal{X}\rangle\rangle, g_{1} \geq 0$, and let $P \in \mathbf{k}_{1}\langle\mathcal{X}\rangle$.

The right residual of S by P belongs to $\left.\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\mathcal{X}\rangle\right\rangle$.
2. Let $R \in \mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\langle\mathcal{X}\rangle\rangle, g_{2}<0$, and let $Q \in \mathbf{k}_{2}\langle\mathcal{X}\rangle$.

The concatenation $Q R$ belongs to $\left.\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\mathcal{X}\rangle\right\rangle$.
3. χ_{1}, χ_{2} are morphisms over \mathcal{X}^{*} satisfying $\sum_{x \in \mathcal{X}} \chi_{1}(x) \chi_{2}(x)<1$. If $F_{1} \in \mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\langle\mathcal{X}\rangle\rangle$ (resp. $\left.F_{2} \in \mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\mathcal{X}\rangle\right\rangle$) then F_{1} (resp. F_{2}) is continuous over $\mathbf{k}_{2}^{\left(\chi_{2}, g_{2}\right)}\langle\langle\mathcal{X}\rangle\rangle$ (resp. $\left.\mathbf{k}_{1}^{\left(\chi_{1}, g_{1}\right)}\langle\langle\mathcal{X}\rangle\rangle\right)$.
Proposition 3
Let $\mathcal{C l} \subset \mathbf{k}_{1}\langle\langle\mathcal{X}\rangle\rangle$ be a monoid containing $\left\{e^{t x}\right\}_{x \in \mathcal{X}}^{t \in \mathbf{k}_{1}}$. Let $S \in \mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle$ cont.

1. If S is indiscernable over $\mathcal{C l}$ then for any $x \in \mathcal{X}, x \triangleleft S$ and $S \triangleright x$ belong to $\mathbf{k}_{2}\langle\langle\mathcal{X}\rangle\rangle{ }^{\text {cont }}$ and they are indiscernable over $\mathcal{C l}$.
2. S is indiscernable over $\mathcal{C l}$ iff $S=0$.

Chen series and differential equations

Let K be a compact on Ω. There is $c_{K} \in \mathbb{R}_{\geq 0}$ and a morphism M_{K} s.t.

$$
\forall w \in \mathcal{X}^{*}, \quad\left\|\left\langle C_{z_{0} \rightsquigarrow z z} \mid w\right\rangle\right\|_{K} \leq c_{K} M_{K}(w)|w|!^{-1} .
$$

Let $R \in \mathbb{C}^{\text {rat }}\langle\langle X\rangle\rangle$ of minimal representation (λ, μ, η) of dimension n. Then

$$
\forall w \in \mathcal{X}^{*}, \quad|\langle R \mid w\rangle| \leq\|\lambda\|_{\infty}^{1, n}\|\mu(w)\|_{\infty}^{n, n}\|\eta\|_{\infty}^{n, 1} .
$$

With these data, we have
Theorem 11
If $c_{K}\|\lambda\|_{\infty}^{1, n}\|\eta\|_{\infty}^{n, 1} \sum_{x \in \mathcal{X}} M_{K}(x)\|\mu(x)\|_{\infty}^{n, n}<1$ then $\alpha_{z_{0}}^{z}(R)=\left\langle R \| C_{z_{0} \rightsquigarrow z}\right\rangle$ and

$$
\forall x \in \mathcal{X}, \quad \theta_{x} \alpha_{z_{0}}^{z}(R)=\sum_{x^{\prime} \in \mathcal{X}} u_{x}^{-1}(z) u_{x^{\prime}}(z) \alpha_{z_{0}}^{z}\left(R \triangleleft x^{\prime}\right) .
$$

Letting $y\left(z_{0}, z\right):=\left\langle R \| C_{z_{0} \rightsquigarrow z}\right\rangle$, the following assertions are equivalent:

1. There is $p \in \mathcal{C}_{0}\langle\mathcal{X}\rangle$ s.t. $\left\langle R \| p C_{z_{0} \rightsquigarrow z}\right\rangle=\left\langle R \triangleleft p \| C_{z_{0} \leadsto z}\right\rangle=0$.
2. There is $I=0, . ., n-1$ s.t. $\left\{\partial^{k} y\right\}_{0 \leq k \leq I}$ is \mathcal{C}_{0}-linearly independent and $a_{l}, \ldots, a_{1}, a_{0} \in \mathcal{C}_{0}$ s.t. $\left(a_{l} \partial^{l}+\ldots+a_{1} \partial+a_{0}\right) y=0$.
Proposition 4
Let $G \in \mathbb{C}\langle\langle X\rangle\rangle$ and $H \in \mathbb{C}_{\text {exc }}\langle\langle X\rangle\rangle$ s.t. $\alpha_{z_{0}}^{z}(G)=\left\langle G \| C_{z_{0} \rightsquigarrow z}\right\rangle$ and $h\left(\alpha_{z_{0}}^{z}\left(x_{0}\right), \alpha_{z_{0}}^{z}\left(x_{1}\right)\right):=\alpha_{z_{0}}^{z}(H)=\left\langle H \| C_{z_{0} \leadsto z z}\right\rangle$ exist $\left(X=\left\{x_{0}, x_{1}\right\}\right)$. Then

$$
\alpha_{z_{0}}^{z}(H G)=\left\langle G \mid 1_{X^{*}}\right\rangle \alpha_{z_{0}}^{z}(H)+\int_{z_{0}}^{z} h\left(\alpha_{s}^{z}\left(x_{0}\right), \alpha_{s}^{z}\left(x_{1}\right)\right) d \alpha_{z_{0}}^{s}(G) .
$$

Practical examples (eulerian functions)

For any $z \in \Omega=\mathbb{C},|z|<1$, in all the sequel, let us consider

$$
\ell_{1}(z):=\gamma z-\sum_{k \geq 2} \zeta(k) \frac{(-z)^{k}}{k} \quad \text { and } \forall r \geq 2, \quad \ell_{r}(z):=-\sum_{k \geq 1} \zeta(k r) \frac{\left(-z^{r}\right)^{k}}{k} .
$$

Recall that $y^{n}=y^{ш n} / n!$, for $y \in \mathcal{X}^{*}, n \in \mathbb{N}$ and $t \in \mathbb{C},|t|<1$. Then

$$
\alpha_{z_{0}}^{z}\left(y^{n}\right)=\frac{\left[\alpha_{z_{0}}^{z}(y)\right]^{n}}{n!} \quad \text { and } \quad \alpha_{z_{0}}^{z}\left((t y)^{*}\right)=e^{t \alpha_{z_{0}}^{z}(y)}
$$

Example 12 (extension of eulerian functions)
For any $z \in \Omega=\mathbb{C},|z|<1$ and $k \geq 1$, one has

$u_{y_{k}}$	$\alpha_{0}^{z}\left(y_{k}\right)$	$\alpha_{0}^{z}\left(y_{k}^{*}\right)$
1_{Ω}	z	e^{z}
$\partial \ell_{k}$	$\ell_{k}(z)$	$e^{\ell_{k}(z)}=: \Gamma_{V_{k}}^{-1}(1+z)$
$e^{\ell_{k}} \partial \ell_{k}$	$e^{\ell_{k}(z)}=: \Gamma_{y_{k}}^{-1}(1+z)$	$e^{e_{k}(z)}-1$

The function ℓ_{1} is already considered by Legendre for studying the eulerian Gamma function, Γ, noted here by $\Gamma_{y_{1}}$ (Legendre cited Euler). What are $\left\{\alpha_{0}^{z}(w)\right\}_{w \in Y^{*} Y}$? Similarly, in the case of $\left\{\alpha_{0}^{z}(w)\right\}_{w \in\left(Y \cup\left\{y_{0}\right\}\right)^{*}}$ and with the new input $u_{y_{0}}(z)=z^{-1} d z$?

First properties of extended eulerian functions

Let G_{r} (resp. \mathcal{G}_{r}) denote the set (resp. group) of solutions, $\left\{\xi_{0}, \ldots, \xi_{r-1}\right\}$, of $z^{r}=(-1)^{r-1}$ (resp. $z^{r}=1$), for $r \geq 1$. If r is odd, it is a group as $G_{r}=\mathcal{G}_{r}$ otherwise it is an orbit as $G_{r}=\xi \mathcal{G}_{r}$, where ξ is any solution of $\xi^{r}=-1$ (or equivalently, $\xi \in \mathcal{G}_{2 r}$ and $\xi \notin \mathcal{G}_{r}$).

Proposition 5 (Weierstrass factorization)

1. For $r \geq 1, \chi \in \mathcal{G}_{r}$ and $z \in \mathbb{C},|z|<1$, the functions ℓ_{r} and $e^{\ell_{r}}$ have the symmetry, $\ell_{r}(z)=\ell_{r}(\chi z)$ and $e^{\ell_{r}(z)}=e^{\ell_{r}(\chi z)}$. In particular, for r even, as $-1 \in \mathcal{G}_{r}$, these functions are even.
2. For $|z|<1$, we have

$$
\ell_{r}(z)=\sum_{\chi \in G_{r}} \log \frac{1}{\Gamma(1+\chi z)} \text { and } e^{\ell_{r}(z)}=\prod_{\chi \in G_{r}} e^{\gamma \chi z} \prod_{n \geq 1}\left(1+\frac{\chi z}{n}\right) e^{-\frac{\chi z}{n}} .
$$

3. For any odd $r \geq 2, \Gamma_{y_{r}}^{-1}(1+z)=e^{\ell_{r}(z)}=\Gamma^{-1}(1+z) \prod_{\chi \in G_{\Gamma} \backslash\{1\}} e^{\ell_{1}(\chi z)}$.
4. In general, for any odd or even $r \geq 2$,

$$
e^{\ell_{r}(z)}=\prod_{\chi \in G_{r}} e^{\ell_{1}(\chi z)}=\prod_{n \geq 1}\left(1+\frac{z^{r}}{n^{r}}\right)
$$

Other practical examples $(1 / 2)$

Example $13\left(\omega_{1}(z)=(1-z)^{-1} d z\right.$ and $\left.\omega_{0}(z)=z^{-1} d z\right)$

1. For any $a, z \in \mathbb{C}$ s.t. $|a|<1,|z|<1$, one has

$$
\begin{aligned}
\operatorname{Li}_{\left(a x_{0}\right)^{*} x_{1}}(z) & =\alpha_{0}^{z}\left(\left(a x_{0}\right)^{*} x_{1}\right) \\
& =\int_{0}^{z} e^{a \log \left(\frac{z}{s}\right)} \omega_{1}(s)=z^{a} \int_{0}^{z} \sum_{n \geq 0} s^{n-a} d s=\sum_{n \geq 1} \frac{z^{n}}{n-a} .
\end{aligned}
$$

2. For any $n \in \mathbb{N}$ and $a, b \in \mathbb{C}$ s.t. $|a|<1,|b|<1$, one has

$$
\begin{aligned}
& \operatorname{Li}_{x_{0}^{n}}(z)=\alpha_{1}^{z}\left(x_{0}^{n}\right)=\log ^{n}(z) / n!, \quad \operatorname{Li}_{x_{1}^{n}}(z)=\alpha_{0}^{z}\left(x_{1}^{n}\right)=\log ^{n}\left((1-z)^{-1}\right) / n!, \\
& \operatorname{Li}_{\left(a x_{0}\right)^{*}}(z)=\alpha_{1}^{z}\left(\left(a x_{0}\right)^{*}\right)=z^{a}, \quad \operatorname{Li}_{\left(b x_{1}\right)^{*}}(z)=\alpha_{0}^{z}\left(\left(b x_{1}\right)^{*}\right)=(1-z)^{-b} . \\
& \operatorname{Let} \mathcal{C}=\mathbb{C}\left[z^{a},(1-z)^{b}\right]_{a, b \in \mathbb{C}} \text { and } S \in \mathbb{C}_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle ш \mathbb{C}\langle X\rangle(\text { resp. } \\
& \left.\mathbb{C}_{\text {exc }}^{\text {rat }}\langle X X\rangle=\mathbb{C}_{\text {exc }}^{\text {rat }}\left\langle\left\langle x_{0}\right\rangle\right\rangle \mathbb{C}_{\text {exc }}^{\text {eat }}\left\langle\left\langle x_{1}\right\rangle\right\rangle\right), \text { we get } \\
& \left.\operatorname{Li}_{S}(z) \in \mathcal{C}\left[\left\{\operatorname{Li}_{l}\right\} \mid \in \mathcal{L} y n X\right] \text { (resp. } \mathcal{C}[\log (z), \log (1-z)]\right) .
\end{aligned}
$$

3. For any $z, a, b \in \mathbb{C}$ s.t. $|z|<1$ and $\Re a>0, \Re b>0$, we get the partial Beta function and the eulerian Beta function, $\mathrm{B}(a, b)=\mathrm{B}(1 ; a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$, as follows ${ }^{19}$

$$
\mathrm{B}(z ; a, b):=\int_{0}^{z} d t t^{a-1}(1-t)^{b-1}=\left\{\begin{array}{c}
\operatorname{Li}_{x_{0}\left[\left(a x_{0}\right)^{*} ш\left((1-b) x_{1}\right)^{*}\right]}(z) \\
\operatorname{Li}_{x_{1}\left[\left((a-1) x_{0}\right)^{*} ш\left(-b x_{1}\right)^{*}\right]}(z)
\end{array}\right\}
$$

19. $x_{0}\left[\left(a x_{0}\right)^{*} ш\left((1-b) x_{1}\right)^{*}\right.$ and $x_{1}\left[\left((a-1) x_{0}\right)^{*} ш\left(-b x_{1}\right)^{*}\right]$ are of the form $\left(F_{2}\right)$. What is $\alpha_{0}^{z}(S)$, for S of the form $\left(F_{2}\right)$?

Other on practical examples $(2 / 2)$

Example 14 (Polylogarithms indexed by non positive integers)
Now, let us use the noncommutative multivariate exponential transforms, i.e., for any rational exchangeable series, we get the following transform

$$
\sum_{i_{0}, i_{1} \geq 0} s_{i_{0}, i_{1}} x_{0}^{i_{0}} \amalg x_{1}^{i_{1}} \longmapsto \sum_{i_{0}, i_{1} \geq 0} \frac{s_{i_{0}, i_{1}}}{i_{0}!i_{1}!} \log ^{i_{0}}(z) \log ^{i_{1}}\left((1-z)^{-1}\right)
$$

In particular, for any $n \in \mathbb{N}$, we have $x_{0}^{n} \mapsto \log ^{n}(z) / n$! and
$x_{1}^{n} \mapsto \log ^{n}\left((1-z)^{-1}\right) / n!$. Then $\left(t x_{0}\right)^{*} \mapsto z^{t}$ and $\left(t x_{1}\right)^{*} \mapsto(1-z)^{-t}$.
We then obtain the following polylogarithms indexed by rational series

$$
\operatorname{Li}_{x_{0}^{*}}(z)=z, \quad \operatorname{Li}_{x_{1}^{*}}(z)=(1-z)^{-1}, \quad \operatorname{Li}_{\left(a x_{0}+b x_{1}\right)^{*}}(z)=z^{a}(1-z)^{-b}
$$

Thus, for any $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}_{+}^{r}$, there exists an unique series $R_{y_{s_{1}} \ldots y_{s_{r}}}$ belonging to $\left(\mathbb{Z}\left[x_{1}^{*}\right]\right.$, ш, $\left.1_{X^{*}}\right)$ s.t. $\mathrm{Li}_{-s_{1}, \ldots,-s_{r}}=\operatorname{Li}_{R_{y_{s_{1}} \ldots y_{s_{r}}}}$. More precisely,

$$
R_{y_{s_{1}} \ldots y_{s_{r}}}=\sum_{k_{1}=0}^{s_{1}} \ldots \sum_{k_{r}=0}^{\substack{\left(s_{1}+\ldots+s_{r}\right)-\\\left(k_{1}+\ldots+k_{r-1}\right)}}\binom{s_{1}}{k_{1}} \ldots\left(\sum_{i=1}^{r} s_{i}-\sum_{i=1}^{r-1} k_{i}\right) \rho_{k_{1}} ш \ldots ш \rho_{k_{r}}
$$

where, for any $i=1, \ldots, r$, if $k_{i}=0$ then $\rho_{k_{i}}=x_{1}^{*}-1_{X^{*}}$ else

$$
\rho_{k_{i}}=x_{1}^{*} ш \sum_{j=1}^{k_{i}} S_{2}\left(k_{i}, j\right) j!\left(x_{1}^{*}-1_{X^{*}}\right)^{\varpi j}
$$

the $S_{2}\left(k_{i}, j\right)$ being the Stirling numbers of second kind.

NONCOMMUTATIVE PV THEORY AND INDEPENDENCE VIA WORDS

First step of noncommutative PV theory

The Chen series $C_{z_{0} \rightsquigarrow z}$ of $\left\{\omega_{k}\right\}_{k \geq 1}$ and along the path $z_{0} \rightsquigarrow z$ over Ω satisfies the following differential equation
$(N C D E) \quad \mathbf{d} S=M S, \quad$ with $\quad M=\sum_{x \in \mathcal{X}} u_{x} x \quad$ and $\quad u_{x} \in \mathcal{C}_{0} \cap \mathcal{A}^{-1}$.

$$
\Delta_{\amalg} M=\sum_{x \in \mathcal{X}} u_{x}\left(1_{\mathcal{X}^{*}} \otimes x+x \otimes 1_{\mathcal{X}^{*}}\right)=1_{\mathcal{X}^{*}} \otimes M+M \otimes 1_{\mathcal{X}^{*}}
$$

The space of solutions of $(N C D E)$ is a right free $\mathbb{C}\langle\langle X\rangle\rangle$-module of rank 1 . By a theorem of Ree, $C_{z_{0} \rightsquigarrow z}$ is a $ш-$ group-like solution ${ }^{20}$ of (NCDE). Moreover, if G, H are $ш$-group-like solutions there is a constant Lie series C s.t. $G=\mathrm{He}^{C}$ (and conversely). From this, it follows that

- the Hausdorff group $\left.\left\{e^{C}\right\}_{C \in \mathcal{L} e_{\mathbb{C}}}\langle\mathcal{X}\rangle\right\rangle$, group of characters of $\mathcal{H}_{ш}(\mathcal{X})$, plays the role of the differential Galois group of $(N C D E)+ш$-group-like.

Which leads us to the following definition

- the PV extension related to $(N C D E)$ is $\widehat{\mathcal{C}_{0} \cdot \mathcal{X}}\left\{C_{z_{0} \rightsquigarrow z}\right\}$.
$\left.\underline{\text { It, of course, is such that } \operatorname{Const}\left(\mathcal{C}_{0}\right.}\langle\langle\mathcal{X}\rangle\rangle\right)=\operatorname{ker} \mathbf{d}=\mathbb{C} .1_{\Omega}\langle\langle\mathcal{X}\rangle\rangle$.

20. It can be obtained as the limit of a convergent Picard iteration, initialized at $\left\langle C_{z_{0} \rightsquigarrow z} \mid 1_{\mathcal{X}^{*}}\right\rangle=1_{\mathcal{H}(\Omega)}$, for ultrametric distance.

Basic triangular theorem over a differential ring (BTT)

If $S \in \mathcal{A}\langle\langle\mathcal{X}\rangle\rangle$ is a group-like solution of ($N C D E$), given as follows ${ }^{21}$

$$
S=\sum_{w \in \mathcal{X}^{*}}\langle S \mid w\rangle w=\sum_{w \in \mathcal{X}^{*}}\left\langle S \mid S_{w}\right\rangle P_{w}=\prod_{l \in \mathcal{L} y n \mathcal{X}}^{\downarrow} e^{\left\langle S \mid S_{l}\right\rangle P_{l}}
$$

then

1. If $H \in \mathcal{A}\langle\langle\mathcal{X}\rangle$ is another grouplike solution then there exists $C \in \mathcal{L} \mathcal{C e}_{\mathcal{A}}\langle\langle\mathcal{X}\rangle\rangle$ such that $S=\mathrm{He}^{C}$ (and conversely).
2. The following assertions are equivalent
a) $\{\langle S \mid w\rangle\}_{w \in \mathcal{X}^{*}}$ is \mathcal{C}_{0}-linearly independent,
b) $\left\{\left\langle S \mid S_{\mid}\right\rangle\right\}_{I \in \mathcal{L} y n \mathcal{X}}$ is \mathcal{C}_{0}-algebraically independent,
c) $\{\langle S \mid x\rangle\}_{x \in \mathcal{X}}$ is \mathcal{C}_{0}-algebraically independent,
d) $\{\langle S \mid x\rangle\}_{x \in \mathcal{X} \cup\left\{1_{\mathcal{X}^{*}}\right\}}$ is \mathcal{C}_{0}-linearly independent,
e) $\left\{u_{x}\right\}_{x \in \mathcal{X}}$ is such that, for $f \in \operatorname{Frac}\left(\mathcal{C}_{0}\right)$ and $\left(c_{x}\right)_{x \in \mathcal{X}} \in \mathbb{C}^{(\mathcal{X})}$,

$$
\sum_{x \in \mathcal{X}} c_{x} u_{x}=\partial f \quad \Longrightarrow \quad(\forall x \in \mathcal{X})\left(c_{x}=0\right)
$$

f) $\left(u_{x}\right)_{x \in \mathcal{X}}$ is free over \mathbb{C} and $\partial \operatorname{Frac}\left(\mathcal{C}_{0}\right) \cap \operatorname{span}_{\mathbb{C}}\left\{u_{x}\right\}_{x \in \mathcal{X}}=\{0\}$.
21. For instance, $S=C_{z_{0} \rightsquigarrow z}=\sum_{w \in \mathcal{X}^{*}} \alpha_{z_{0}}^{z}(w) w$.

Examples of positive cases over $\mathcal{X}=\{x\}, \mathcal{A}=(\mathcal{H}(\Omega), \partial)$

1. $\Omega=\mathbb{C}, u_{x}(z)=1_{\Omega}, \mathcal{C}_{0}=\mathbb{C}\left\{\left\{u_{x}^{ \pm 1}\right\}\right\}=\mathbb{C}$.
$\alpha_{0}^{z}\left(x^{n}\right)=z^{n} / n!$, for $n \geq 1$. Thus, $\mathbf{d} S=x S$ and

$$
S=\sum_{n \geq 0} \alpha_{0}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{z^{n}}{n!} x^{n}=e^{z x} .
$$

Moreover, $\alpha_{0}^{z}(x)=z$ which is transcendent over \mathcal{C}_{0} and the family $\left\{\alpha_{0}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is \mathcal{C}_{0}-free. Let $f \in \mathcal{C}_{0}$ then $\partial f=0$. Thus, if $\partial f=c u_{x}$ then $c=0$.
2. $\Omega=\mathbb{C} \backslash]-\infty, 0], u_{x}(z)=z^{-1}, \mathcal{C}_{0}=\mathbb{C}\left\{\left\{z^{ \pm 1}\right\}\right\}=\mathbb{C}\left[z^{ \pm 1}\right] \subset \mathbb{C}(z)$. $\alpha_{1}^{z}\left(x^{n}\right)=\log ^{n}(z) / n!$, for $n \geq 1$. Thus $\mathbf{d} S=z^{-1} \times S$ and

$$
S=\sum_{n \geq 0} \alpha_{1}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{\log ^{n}(z)}{n!} x^{n}=z^{x} .
$$

Moreover, $\alpha_{1}^{z}(x)=\log (z)$ which is transcendent over $\mathbb{C}(z)$ then over $\mathbb{C}\left[z^{ \pm 1}\right]$. The family the family $\left\{\alpha_{1}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is $\mathbb{C}(z)$-free and then \mathcal{C}_{0}-free. Let $f \in \mathcal{C}_{0}$ then $\partial f \in \operatorname{span}_{\mathbb{C}}\left\{z^{ \pm n}\right\}_{n \neq 1}$. Thus,

$$
\text { if } \partial f=c u_{x} \text { then } c=0
$$

Examples of negative cases over $\mathcal{X}=\{x\}, \mathcal{A}=(\mathcal{H}(\Omega), \partial)$

1. $\Omega=\mathbb{C}, u_{x}(z)=e^{z}, \mathcal{C}_{0}=\mathbb{C}\left\{\left\{e^{ \pm z}\right\}\right\}=\mathbb{C}\left[e^{ \pm z}\right]$.
$\alpha_{0}^{z}\left(x^{n}\right)=\left(e^{z}-1\right)^{n} / n!$, for $n \geq 1$. Thus, $\mathbf{d} S=e^{z} x S$ and

$$
S=\sum_{n \geq 0} \alpha_{0}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{\left(e^{z}-1\right)^{n}}{n!} x^{n}=e^{\left(e^{z}-1\right) x}
$$

Moreover, $\alpha_{0}^{z}(x)=e^{z}-1$ which is not transcendent over \mathcal{C}_{0} and and $\left\{\alpha_{0}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is not \mathcal{C}_{0}-free. If $f(z)=c e^{z} \in \mathcal{C}_{0}(c \neq 0)$ then $\partial f(z)=c e^{z}=c u_{x}(z)$.
2. $\Omega=\mathbb{C} \backslash]-\infty, 0], u_{x}(z)=z^{a}(a \notin \mathbb{Q})$,
$\mathcal{C}_{0}=\mathbb{C}\left\{\left\{z, z^{ \pm a}\right\}\right\}=\operatorname{span}_{\mathbb{C}}\left\{z^{k a+\prime}\right\}_{k, l \in \mathbb{Z}}$.
$\alpha_{0}^{z}\left(x^{n}\right)=(a+1)^{-n} z^{n(a+1)} / n!$, for $n \geq 1$. Thus, $\mathbf{d} S=z^{a} \times S$ and

$$
S=\sum_{n \geq 0} \alpha_{0}^{z}\left(x^{n}\right) x^{n}=\sum_{n \geq 0} \frac{z^{n(a+1)}}{(a+1)^{n} n!} x^{n}=e^{(a+1)^{-1} z^{(a+1)} x}
$$

Moreover, $\alpha_{0}^{z}(x)=z^{a+1} /(a+1)$ which is not transcendent over \mathcal{C}_{0} and $\left\{\alpha_{0}^{z}\left(x^{n}\right)\right\}_{n \geq 0}$ is not \mathcal{C}_{0}-free. If $f(z)=c z^{a+1} /(a+1) \in \mathcal{C}_{0}$ $(c \neq 0)$ then $\partial f(z)=c z^{a}=c u_{x}(z)$.

Independence over \mathbb{C} of extended eulerian functions

Proposition 6

Let $L:=\operatorname{span}_{\mathbb{C}}\left\{\ell_{r}\right\}_{r \geq 1}$ and $E:=\operatorname{span}_{\mathbb{C}}\left\{e^{\ell_{r}}\right\}_{r \geq 1}$. One has

1. The families $\left(\ell_{r}\right)_{r \geq 1}$ and $\left(e^{\ell_{r}}\right)_{r \geq 1}$ are \mathbb{C}-lin. free and free from 1_{Ω}. Hence, with the inputs (see also Example 12)
a) $u_{X_{r}}=e^{\ell_{r}} \partial \ell_{r}, r \geq 1$, the restriction $\alpha_{0}^{z}: \mathbb{C} Y \rightarrow E$ is injective.
b) $u_{x_{r}}=\partial \ell_{r}, r \geq 1$, the restrictions of $\alpha_{0}^{2}, \operatorname{span}_{\mathbb{C}}\left\{y_{r}\right\}_{r \geq 1} \rightarrow L$ and $\operatorname{span}_{\mathbb{C}}\left\{y_{r}^{*}\right\}_{r \geq 1} \rightarrow E$ are injective.
2. The families $\left(\ell_{r}\right)_{r \geq 1}$ and $\left(e^{\ell_{r}}\right)_{r \geq 1}$ are \mathbb{C}-algebraically independent.
3. For any $r \geq 1$, one has
a) The functions ℓ_{r} and $e^{\ell_{r}} \mathbb{C}$-algebraically independent.
b) The function ℓ_{r} is holomorphic on the open unit disc, $D_{<1}$,
c) The function $e^{\ell_{r}}$ (resp. $e^{-\ell_{r}}$) is entire (resp. meromorphic), and admits a countable set of isolated zeroes (resp. poles) on the complex plane which is expressed as $\biguplus_{\chi \in G_{r}} \chi \mathbb{Z}_{\leq-1}$.

Proof of independence over \mathbb{C} of eulerian functions

1. Since $\left(\ell_{r}\right)_{r \geq 1}$ is triangular ${ }^{22}$ then $\left(\ell_{r}\right)_{r \geq 1}$ is \mathbb{C}-lin. free. So is $\left(e^{\ell_{r}}-e^{\ell_{r}(0)}\right)_{r \geq 1}$, being triangular, we get that $\left(e^{\ell_{r}}\right)_{r \geq 1}$ is \mathbb{C}-lin. free and free from 1_{Ω}. Since $\{x\}_{x \in \mathcal{X}}$ and, by Theorem 7.3., $\left\{x^{*}\right\}_{x \in \mathcal{X}}$ are \mathbb{C}-free then it follows the results concerning various restrictions of α_{0}^{2}.
2. Via BTT, using the previous results and the Chen series of $\left\{\omega_{r}\right\}_{r \geq 1}$ defined by the inputs in a) and b) (see also Example 12), $\left\{e^{\ell_{r}}\right\}_{r \geq 1}$ and $\left\{\ell_{r}\right\}_{r \geq 1}$ are the \mathbb{C}-alg. free.
3. a) Since $\ell_{r}(0)=0, \partial e^{\ell_{r}}=e^{\ell_{r}} \partial \ell_{r}$ then ℓ_{r} and $e^{\ell_{r}}$ are \mathbb{C}-alg. free.
b) We have $e^{\ell_{1}(z)}=\Gamma^{-1}(1+z)$ which proves the claim for $r=1$. For $r \geq 2$, note that $1 \leq \zeta(r) \leq \zeta(2)$ which implies that the radius of convergence of the exponent is 1 and means that ℓ_{r} is holomorphic on the open unit disc. This proves the claim.
c) $e^{\ell_{r}(z)}=\Gamma_{y_{r}}^{-1}(1+z)\left(\right.$ resp. $\left.e^{-\ell_{r}(z)}=\Gamma_{y_{r}}(1+z)\right)$ is entire (resp. meromorphic) as finite product of entire (resp. meromorphic) functions and Weierstrass factorization yields zeroes (resp. poles).
4. $\left(g_{i}\right)_{i \geq 1}$ is said to be triangular if the valuation of $g_{i}, \varpi\left(g_{i}\right)$, equals $i \geq 1$. It is easy to check that such a family is \mathbb{C}-lin. free and that is also the case of families s.t. $\left(g_{i}-g(0)\right)_{i \geq 1}$ is triangular.

Independence of $\left\{e^{\ell_{r}}\right\}_{k \geq 1}$ over differential subalgebra

The algebra $\mathbb{C}[L]$ (resp. $\mathbb{C}[E]$) is generated freely by $\left(\ell_{r}\right)_{r \geq 1}$ (resp. $\left.\left(e^{\ell_{r}}\right)_{r \geq 1}\right)$ which are holomorphic on $D_{<1}$ (resp. entire) functions. Moreover, any $f \in \mathbb{C}[L] \backslash \mathbb{C} .1_{\Omega}$ (resp. $g \in \mathbb{C}[E] \backslash \mathbb{C} .1_{\Omega}$) is holomorphic on $D_{<1}$ (resp. entire) and then $f \notin \mathbb{C}[E]$ (resp. $g \notin \mathbb{C}[L]$). Thus, $E \cap L=\{0\}$ and, more generally, $\mathbb{C}[E] \cap \mathbb{C}[L]=\mathbb{C} .1_{\Omega}$. Let $\mathcal{L}:=\mathbb{C}\left\{\left\{\left(\ell_{r}^{ \pm 1}\right)_{r \geq 1}\right\}\right\}=\mathbb{C}\left[\left\{\ell_{r}^{ \pm 1}, \partial^{i} \ell_{r}\right\}_{r, i \geq 1}\right]$ and $\mathcal{E}:=\mathbb{C}\left\{\left\{\left(e^{ \pm \ell_{r}}\right)_{r \geq 1}\right\}\right\}$. Let $\mathcal{L}^{+}:=\mathbb{C}\left[\left\{\partial^{i} \ell_{r}\right\}_{r, i \geq 1}\right]$, being integral domain generated by holomorphic functions, and then $\operatorname{Frac}\left(\mathcal{L}^{+}\right)$is generated by meromorphic functions.
Since there is $0 \neq q_{i, l, k} \in \mathcal{L}^{+}$s.t. $\left(\partial^{i} e^{ \pm \ell_{k}}\right)^{\prime}=q_{i, l, k} e^{ \pm I \ell_{k}}, i, l, k \geq 1$ then

$$
\begin{aligned}
& \mathcal{E}^{+}:=\operatorname{span}_{\mathbb{C}}\left\{\left(\partial^{i_{1}} e^{ \pm \ell_{r_{1}}}\right)^{h_{1}} \ldots\left(\partial^{i_{k}} e^{ \pm \ell_{r_{k}}}\right)^{k_{k}}\right\}_{\left(i_{1}, l_{1}, r_{1}\right), \ldots,\left(i_{k}, l_{k}, r_{k}\right) \in\left(\mathbb{N}_{\geq 1}\right)^{3}, k \geq 1} \\
& =\operatorname{span}_{\mathbb{C}}\left\{q_{i_{1}, l_{1}, r_{1}} \ldots q_{i_{k}, l_{k}, r_{k}}{ }^{l_{1} \ell_{r_{1}}+\ldots+l_{k} l_{r_{k}}}\right\}_{\left(i_{1}, l_{1}, r_{1}\right), \ldots,\left(i_{k}, l_{k}, r_{k}\right) \in \mathbb{N} \geq 1} \times \mathbb{Z}_{\neq 0} \times \mathbb{N}_{\geq 1}, k \geq 1 \\
& \subset \operatorname{span}_{\mathcal{L}^{+}}\left\{e^{r_{1} \ell_{1_{1}}+\ldots+r_{k} \ell_{k}}\right\}_{\left(I_{1}, r_{1}\right), \ldots,\left(l_{k}, r_{k}\right) \in \mathbb{Z}^{*} \times \mathbb{N}_{\geq 1}, k \geq 1}=: \mathcal{C} .
\end{aligned}
$$

Note that $\mathcal{E}^{+} \cap E=\{0\}$ and \mathcal{C} is a differential subring ${ }^{23}$ of $\mathcal{A}=\mathcal{H}(\Omega)$.
Theorem 15

1. The algebras $\mathbb{C}[E]$ and $\mathbb{C}[L]$ are alg. disjoint, within \mathcal{A}.
2. The family $\left(e^{\ell_{r}}\right)_{r \geq 1}\left(\right.$ resp. $\left.\left(\ell_{r}\right)_{r \geq 1}\right)$ is alg. free over $\mathcal{E}^{+}\left(\right.$resp. $\left.\mathcal{L}^{+}\right)$.
3. Hence, $\operatorname{Frac}(\mathcal{C})$ is a differential subfield of $\operatorname{Frac}(\mathcal{A})$.

Proof of independence of eulerian functions

Using the Chen series of $\left\{\omega_{r}\right\}_{r \geq 1}$ defined by $u_{y_{r}}=e^{\ell_{r}} \partial \ell_{r}$, let $Q \in \operatorname{Frac}(\mathcal{L})$ (resp. $\operatorname{Frac}(\mathcal{C})$) and let $\left\{c_{y}\right\}_{y \in Y} \in \mathbb{C}^{(Y)}$, non simultaneously vanishing, s.t.

$$
\partial Q=\sum_{y \in Y} c_{y} u_{y}=\sum_{r \geq 1} c_{y_{r}} \ell^{\ell_{r}} \partial \ell_{r} .
$$

If $\partial Q \neq 0$ then, integrating, $Q \in E$ and then $E \supset \operatorname{Frac}(\mathcal{L}) \supset \mathcal{L} \supset \mathbb{C}[L]$ (resp. $E \supset \operatorname{Frac}(\mathcal{C}) \supset \mathcal{C} \supset \mathcal{E}^{+}$) contradicting with $E \cap \mathbb{C}[L]=\{0\}$ (resp. $E \cap \mathcal{E}^{+}=\{0\}$). It remains that $\partial Q=0$.
Since $\left\{e^{\ell_{r}}\right\}_{r \geq 1}$ and then $\left\{\partial e^{\ell_{r}}\right\}_{r \geq 1}$ are \mathbb{C}-lin. free, then $c_{y_{r}}=0(r \geq 1)$. By BTT, $\left\{\alpha_{0}^{z}\left(S_{l}\right)\right\}_{l \in \mathcal{L} y n Y}$ and then $\left\{\alpha_{0}^{z}\left(S_{y}\right)\right\}_{y \in Y}$ are, respectively,
$-\mathcal{L}$-alg. free yielding the $\mathbb{C}[L]$-alg. independence of $\left(e^{\ell_{r}}\right)_{r \geq 1}$. It follows that $\mathbb{C}[E]$ and $\mathbb{C}[L]$ are alg. disjoint ${ }^{24}$, within $\mathcal{H}(\Omega)$.

- \mathcal{C}-alg. free yielding the alg. independence of $\left(e^{\ell_{r}}\right)_{r \geq 1}$ over \mathcal{E}^{+}.

Now, suppose there is an alg. relation among $\left(\ell_{r}\right)_{r \geq 1}$ over \mathcal{L}^{+}in which, by differentiating and substituting $\partial \ell_{r}$ by $e^{-\ell_{r}} \partial e^{\ell_{r}}$, we get an alg. relation among $\left\{e^{\ell_{r}}\right\}_{r \geq 1}$ over $\mathbb{C}[L]$ and \mathcal{E}^{+}contradicting with two previous items. Hence, $\left(\ell_{r}\right)_{r \geq 1}$ is \mathcal{L}^{+}-alg. free.
24. $\left\{e^{\ell_{r}}\right\}_{r \geq 1},\left\{\ell_{r}\right\}_{r \geq 1}$ are alg. free over the free alg. $\mathbb{C}[L], \mathbb{C}[E]$, respectively. Hence, $\mathbb{C}[E+L]$ is freely generated by $\left\{e^{\ell_{r}}, \ell_{r}\right\}_{r \geq 1}$ and $\mathbb{C}[E] \cap \mathbb{C}[L]=\mathbb{C} 1_{\Omega}$.

Dom(Li.) AND Dom(H.)

Chen series of $\omega_{0}(z)=z^{-1} d z$ and $\omega_{1}(z)=(1-z)^{-1} d z$

Let $\gamma_{0}(\varepsilon)$ and $\gamma_{1}(\varepsilon)$ be the circular paths of radius ε encircling 0 and 1 clockwise, respectively. In particular, letting $\beta=\beta_{1}-\beta_{0}$, one considers

$$
\begin{array}{lll}
\gamma_{0}(\varepsilon, \beta) & = & \varepsilon e^{\mathrm{i} \beta_{0}} \rightsquigarrow \varepsilon \mathrm{i}^{\mathrm{i} \beta_{1}} \\
\gamma_{1}(\varepsilon, \beta) & =1-\varepsilon e^{\mathrm{i} \beta_{0}} \rightsquigarrow 1-\varepsilon e^{\mathrm{i} \beta_{1}} & \subset \\
\gamma_{0}(\varepsilon), \\
\gamma_{1}(\varepsilon) .
\end{array}
$$

On the one hand, one has, for any $i=0$ or 1 and $w \in X^{+}$,

$$
\left|\left\langle C_{\gamma_{i}(\varepsilon, \beta)} \mid w\right\rangle\right| \leq \varepsilon^{\mid m x_{i}} \beta^{|m|}|w|!^{-1} .
$$

It follows then

$$
C_{\gamma_{i}(\varepsilon, \beta)}=e^{\mathrm{i} \beta x_{i}}+o(\varepsilon) \quad \text { and } \quad C_{\gamma_{i}(\varepsilon)}=e^{2 \mathrm{i} \pi x_{i}}+o(\varepsilon)
$$

Hence ${ }^{25}$, for $R \in \mathbb{C}^{\text {rat }}\langle\langle X\rangle\rangle$ of minimal representation (λ, μ, η), one has

$$
\begin{aligned}
\left\langle R \| C_{\gamma_{i}(\varepsilon, \beta)}\right\rangle & =\lambda\left(\prod_{I \in \mathcal{L} y n X}^{\geq} e^{\alpha_{\gamma_{i}(\varepsilon, \beta)}\left(S_{l}\right) \mu\left(P_{l}\right)}\right) \eta, \\
\left\langle R \| C_{\gamma_{i}(\varepsilon)}\right\rangle & =\lambda\left(\prod_{I \in \mathcal{L} y n X}^{\geq} e^{\alpha_{\gamma_{0}(\varepsilon)}\left(S_{l}\right) \mu\left(P_{l}\right)}\right) \eta .
\end{aligned}
$$

25. Recall that the map $\alpha_{z_{0}}^{2}: \mathbb{C}^{\text {rat }}\langle\langle X\rangle \rightarrow \mathcal{H}(\Omega)$ is not injective. For example, $\alpha_{z_{0}}^{z}\left(z_{0} x_{0}^{*}+\left(1-z_{0}\right)\left(-x_{1}\right)^{*}-1_{X^{*}}\right)=0$.

Back to polylogrithms

Here, $(\mathcal{H}(\Omega), \partial)$ denotes the differential ring of holomorphic functions over the simply connected domain $\Omega=\mathbb{C} \backslash(]-\infty, 0] \cup[1,+\infty[)$.

$$
\omega_{0}(z)=u_{x_{0}}(z) d z, \omega_{1}(z)=u_{x_{1}}(z) d z \text { with } u_{x_{0}}(z)=\frac{1}{z}, u_{x_{1}}(z)=\frac{1}{1-z} .
$$

Let us consider the following character
Li. : $\left(\mathbb{C}\langle X\rangle, ш, 1_{X^{*}}\right) \rightarrow\left(\mathcal{H}(\Omega), \times, 1_{\Omega}\right)$ defined by, for $x_{i} v \in \mathcal{L} y n X-X$,

$$
\operatorname{Li}_{x_{0}}(z)=\log (z), \quad \operatorname{Li}_{x_{1}}(z)=\log \frac{1}{1-z} \quad \operatorname{Li}_{x_{i} v}(z)=\int_{0}^{z} \omega_{i}(s) \operatorname{Li}_{v}(s)
$$

Hence, the n.g.s. of $\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}, \mathrm{~L}$, is group-like, for Δ_{w}, and

$$
\mathrm{L}:=\sum_{w \in X^{*}} \mathrm{Li}_{w} w=(\mathrm{Li} \bullet \otimes \mathrm{Id}) \mathcal{D}_{X}=\prod_{l \in \mathcal{L} y n X}^{\searrow} e^{\mathrm{Li}_{s_{l}} P_{l}} .
$$

It follows then the definition of

$$
Z_{\psi}:=\mathrm{L}_{\mathrm{reg}}(1), \text { where } \mathrm{L}_{\mathrm{reg}}:=\prod_{l \in \mathcal{L} y n X-X}^{>} e^{\mathrm{Lis}_{l} P_{l}} .
$$

L satisfies $\mathbf{d} \mathrm{L}=\left(u_{x_{0}} x_{0}+u_{x_{1}} x_{1}\right) \mathrm{L}$ and then $\mathrm{L}(z)=C_{z_{0} \rightsquigarrow z} \mathrm{~L}\left(z_{0}\right)$.
Theorem 16
Li. is injective. It follows then $\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$ is \mathbb{C}-lin. free and $\left\{\mathrm{Li}_{l}\right\}_{\mid \in \mathcal{L} y n X}$ (resp. $\left\{\operatorname{Lis}_{l_{l}}\right\}_{l \in \mathcal{L} y n X}$) is alg. free.

Back to harmonic sums

Let $\pi_{Y}:(\mathbb{C}\langle\langle X\rangle\rangle,.) \rightarrow(\mathbb{C}\langle\langle Y\rangle\rangle,$.$) , maps x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1}$ to $y_{s_{1}} \ldots y_{s_{r}}$.

$$
\forall w \in X^{*} x_{1}, \quad \forall z \in \mathbb{C},|z|<1, \quad \frac{\operatorname{Li}_{w}(z)}{1-z}=\sum_{n \geq 0} \mathrm{H}_{\pi \curlyvee w}(n) z^{n}
$$

Theorem 17
The morphism of algebras $\mathrm{H}_{\bullet}:\left(\mathbb{C}\langle Y\rangle, \pm, 1_{Y^{*}}\right) \rightarrow\left(\mathbb{C}\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}}, ., 1\right)$, mapping u to ${ }^{26} \mathrm{H}_{u}$, is injective. Hence, $\left\{\mathrm{H}_{w}\right\}_{w \in Y *}$ is lin. free. It follows then $\left\{\mathrm{H}_{l}\right\}_{l \in \mathcal{L y n Y}}$ (resp. $\left\{\mathrm{H}_{\Sigma_{I}}\right\}_{l \in \mathcal{L y n Y}}$) is alg. free.
Hence, the n.g.s. of $\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}}, H$, is group-like, for $\Delta_{ \pm \pm}$, and

$$
\mathrm{H}:=\sum_{w \in \boldsymbol{Y}^{*}} \mathrm{H}_{w} w=(\mathrm{H} \bullet \otimes \mathrm{Id}) \mathcal{D}_{Y}=\prod_{I \in \mathcal{L} y n Y}^{\searrow} e^{\mathrm{H}_{\Sigma_{l}} \Pi_{l}} .
$$

It follows then the definition of

$$
Z_{\mid+1}:=H_{r e g}(+\infty), \quad \text { where } \quad H_{r e g}:=\prod_{l \in \mathcal{L} y n Y-\left\{y_{1}\right\}}^{\searrow} e^{\mathrm{H}_{\Sigma_{l}} \Pi_{l}}
$$

Theorem 18

$$
\lim _{z \rightarrow 1} e^{y_{1} \log (1-z)} \pi_{Y} \mathrm{~L}(z)=\lim _{n \rightarrow \infty} e^{\sum_{k \geq 1} \mathrm{H}_{y_{k}}(n)\left(-y_{1}\right)^{k} / k} \mathrm{H}(n)=\pi_{Y} Z_{\amalg}
$$

26. The $\left\{\mathrm{H}_{u}\right\}_{u \in Y^{*}}$'s, so-called harmonic sums, are arithmetical functions.

Back to polyzetas

Definition 19

The polymorphism ζ is defined by
where $\mathcal{Z}:=\operatorname{span}_{\mathbb{Q}}\left\{\zeta\left(s_{1}, \ldots, s_{r}\right)\right\}_{s_{1}, \ldots, s_{r} \in \mathbb{N}, s_{1}>1}$.
It can be extended as the following characters

$$
\zeta_{ш}:\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right) \rightarrow(\mathcal{Z}, ., 1), \quad \zeta_{\Perp}, \gamma_{\bullet}:\left(\mathbb{Q}\langle Y\rangle, \uplus, 1_{Y^{*}}\right) \rightarrow(\mathcal{Z}, ., 1)
$$

by adding $\zeta_{ш}\left(x_{0}\right)=0=\log (1)$ and

$$
\begin{array}{rrr}
\zeta_{\amalg}\left(x_{1}\right)=0=\text { f.p. } \cdot z \rightarrow 1 \\
\zeta_{\Perp \pm}\left(y_{1}\right)=0=\text { f.p. } \log _{n \rightarrow+\infty} H_{1}(n), & \left\{(1-z)^{a} \log ^{b}(1-z)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}, \\
\gamma_{y_{1}}=\gamma=\text { f.p. } n_{n \rightarrow+\infty} \mathrm{H}_{1}(n), & \left\{n^{a} \mathrm{H}_{1}^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}, \\
\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}} .
\end{array}
$$

Theorem 20
$\sum_{w \in X^{*}} \zeta_{\amalg}(w) w=Z_{\amalg}, \sum_{w \in Y^{*}} \zeta_{\amalg \pm}(w) w=Z_{ \pm \pm}, \sum_{w \in Y^{*}} \gamma_{w} w=e^{\gamma y_{1}} Z_{\not \pm \pm}=: Z_{\gamma}$.
Moreover, $\quad Z_{\gamma}=B\left(y_{1}\right) \pi_{Y} Z_{ш} \quad \Longleftrightarrow \quad Z_{ \pm}=\operatorname{Mono}\left(y_{1}\right) \pi_{Y} Z_{\amalg}$, where $B\left(y_{1}\right)=e^{\gamma y_{1}-\sum_{k \geq 2} \zeta(k)\left(-y_{1}\right)^{k} / k}$ and $\operatorname{Mono}\left(y_{1}\right)=e^{-\sum_{k \geq 2} \zeta(k)\left(-y_{1}\right)^{k} / k}$.

$\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right), \operatorname{Dom}_{R}\left(\mathrm{Li}_{\bullet}\right)$ and $\operatorname{Dom}^{\mathrm{Ioc}}\left(\mathrm{Li}_{\bullet}\right)$
 Let $\mathcal{C}:=\mathbb{C}\left[z^{a},(1-z)^{b}\right]_{a, b \in \mathbb{C}}$. Let $[S]_{n}=\sum_{w \in X^{*},|m|=n}\langle S \mid w\rangle w$ denotes the

homogeneous components of S (of degree n). Then $\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$ is the set of $S=\sum_{n \geq 0}[S]_{n}$ s.t. $\sum_{n \geq 0} L_{[S]_{n}}$ is unconditionally convergent for the
standard topology on $\mathcal{H}(\Omega)$.
Denoting the open disk by $D_{<R}(0<R \leq 1)$, let
$\operatorname{Dom}_{R}\left(\mathrm{Li}_{\bullet}\right):=\left\{S \in \mathbb{C}\langle\langle X\rangle\rangle x_{1} \oplus \mathbb{C} 1_{X^{*}} \mid \sum_{n \geq 0} \mathrm{Li}_{[S]_{n}}\right.$ is unconditionally
convergent for the standard topology on $\left.\mathcal{H}\left(D_{<R}\right)\right\}$.

$$
\operatorname{Dom}^{1 o c}\left(\mathrm{Li}_{\bullet}\right):=\underset{0<R \leq 1}{\bigcup} \operatorname{Dom}_{R}\left(\mathrm{Li}_{\bullet}\right) .
$$

Proposition $7\left(\mathrm{~L}(z)=C_{z_{0} \rightsquigarrow z} \mathrm{~L}\left(z_{0}\right)\right)$ Let $\rho:=\langle R \| \mathrm{L}\rangle\left(R \in \operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)\right)$. Then $\partial^{n} \rho=\left\langle R \| \mathbf{d}^{n} \mathrm{~L}\right\rangle$ and $\mathbf{d}^{n} \mathrm{~L}=p_{n} \mathrm{~L}$, where $\left\{p_{n}\right\}_{n \geq 0}$ are given previously, using

$$
\tau_{r}\left(x_{0}\right)=-r!(-z)^{-(r+1)} x_{0} \text { and } \tau_{r}\left(x_{1}\right)=r!(1-z)^{-(r+1)} x_{1} .
$$

The following assertions are equivalent :

1. ρ satisfies a differential equation with coefficients in (\mathcal{C}, ∂).
2. There exists $P \in \mathcal{C}\langle X\rangle$ such that $\langle R \| P \mathrm{~L}\rangle=\langle R \triangleleft P \| \mathrm{L}\rangle=0$.

$\operatorname{Dom}\left(\mathrm{H}_{\bullet}\right)$

Proposition 8

1. $\operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$, containing $\mathbb{C}_{\text {exc }}^{\text {rat }}\langle\langle X\rangle\rangle \mathbb{C}\langle X\rangle$, is closed by $ш$ and then $\mathrm{Li}_{\boldsymbol{\Perp}} T=\mathrm{Li}_{S} \mathrm{Li}_{T}$, for $S, T \in \operatorname{Dom}\left(\mathrm{Li}_{\bullet}\right)$.
2. Let $S \in \mathbb{C}\langle\langle X\rangle\rangle x_{1} \oplus \mathbb{C} 1_{X^{*}}$ and $0<R \leq 1$ s.t. $\sum_{n \geq 0} \operatorname{Li}_{[S]_{n}}$ is unconditionally convergent, for the standard topology, on $\mathcal{H}\left(D_{<R}\right)$. Then $\sum_{N \geq 0} a_{N} z^{N}=(1-z)^{-1} \sum_{n \geq 0} \operatorname{Li}_{[S]_{n}}(z)$ is unconditionally convergent in the same domain and $a_{N}=\sum_{n \geq 0} \mathrm{H}_{\pi_{\gamma}\left(\left[S_{n}\right)\right.}(N)$.
3. $S ш T \in \operatorname{Dom}^{10 c}\left(\mathrm{Li}_{\bullet}\right)$ and $\pi_{X}\left(\pi_{Y}(S) \pm \pi_{Y}(T)\right) \in \operatorname{Dom}^{10 \mathrm{c}}\left(\mathrm{Li}_{\bullet}\right)$, for $S, T \in \operatorname{Dom}^{10 \mathrm{c}}\left(\mathrm{Li}_{\bullet}\right)$. Moreover,

$$
\operatorname{Li}_{\Phi \amalg T}=\operatorname{Li}_{S} \mathrm{Li}_{T} .
$$

$$
\mathrm{H}_{\pi_{Y}(S) \pm \pi_{\curlyvee}(T)}(N)=\mathrm{H}_{\pi_{\curlyvee}(S)}(N) \mathrm{H}_{\pi_{\curlyvee}(T)}(N), \quad N \geq 0 .
$$

$$
\frac{\operatorname{Li}^{\prime}(z)}{1-z} \odot \frac{\operatorname{Li}_{T}(z)}{1-z}=\frac{\operatorname{Li}_{\pi_{X}\left(\pi_{Y}(S)+\pi_{\gamma}(T)\right)}(z)}{1-z}
$$

4. If $S \in \operatorname{Dom}^{10 c}\left(\mathrm{Li}_{\bullet}\right)$ then $\mathrm{H}_{\pi_{\curlyvee}(S)} \in \operatorname{Dom}\left(\mathrm{H}_{\bullet}\right):=\pi_{\curlyvee} \operatorname{Dom}^{10 \mathrm{c}}\left(\mathrm{Li}_{\bullet}\right)$. The last contains $\mathbb{C}_{\text {exc }}^{\text {rat }}\langle Y Y\rangle \pm \mathbb{C}\langle Y\rangle$ and is closed by \uplus. Hence, $\mathrm{H}_{S \pm T}=\mathrm{H}_{S} \mathrm{H}_{T}$, for $S, T \in \operatorname{Dom}\left(\mathrm{H}_{\bullet}\right)$.

Extended polymorphism ζ

With the notations in Example 12, we have
Theorem 21 (Regularization by Newton-Girard formula)
The characters $\zeta_{\text {ш }}, \gamma_{\bullet}$ can be extended algebraically as follows

$$
\begin{aligned}
\zeta_{ш}:\left(\mathbb{C}\langle X\rangle ш \mathbb{C}_{\text {exc }}^{\mathrm{rat}}\langle\langle X\rangle\rangle, ш, 1_{X^{*}}\right) & \rightarrow(\mathbb{C}, ., 1), \\
\forall z \in \mathbb{C},|z|<1,\left(z x_{0}\right)^{*},\left(z x_{1}\right)^{*} & \mapsto 1_{\mathbb{C}} . \\
\gamma_{\bullet}:\left(\mathbb{C}\langle Y\rangle \pm \mathbb{C} \mathbb{C}^{\mathrm{rat}}\left\langle\langle Y\rangle,, \pm, 1_{Y^{*}}\right)\right. & \rightarrow(\mathbb{C}, ., 1), \\
\forall z \in \mathbb{C},|z|<1,\left(z^{r} y_{r}\right)^{*} & \mapsto \Gamma_{y_{r}}^{-1}(1+z), r \geq 1
\end{aligned}
$$

Moreover, with $\omega_{r}=\partial \ell_{r}, r \geq 1$, and for $z \in \mathbb{C},|z|<1$, the following morphism is injective

$$
\begin{aligned}
& \alpha_{0}^{z}:\left(\mathbb{C}\left[\left\{y_{r}^{*}\right\}_{r \geq 1}\right], \iota^{ \pm}, 1_{Y^{*}}\right) \rightarrow\left(\mathbb{C}\left[\left\{e^{\ell_{r}}\right\}_{r \geq 1}\right], \times, 1\right), \\
& \forall z \in \mathbb{C},|z|<1, y_{r}^{*} \mapsto \Gamma_{y_{r}}^{-1}(1+z), r \geq 1, \\
& \text { and } \Gamma_{y_{2 r}}(1+\sqrt[2 r]{ }-1 t)=\Gamma_{y_{r}}(1+t) \Gamma_{y_{r}}(1+\sqrt[r r]{-1} t)
\end{aligned}
$$

Corollary 22

1. $\gamma_{r \geq 1}^{\text {t土 }^{r}\left(z^{r} y_{r}\right)^{*}}=\prod_{r \geq 1} \gamma_{\left(z^{r} y_{r}\right)^{*}}=\prod_{r \geq 1} e^{\ell_{r}(z)}=\prod_{r \geq 1} \Gamma_{y_{r}}^{-1}(1+z)=\alpha_{0}^{z}\left(\underset{r \geq 1}{\amalg} y_{r}^{*}\right)$.
2. One has, for $\left|a_{s}\right|<1,\left|b_{s}\right|<1$ and $\left|a_{s}+b_{s}\right|<1$,

$$
\begin{aligned}
& \gamma_{\left(a_{s} y_{s}+a_{r} y_{r}+a_{s} a_{r} y_{s+r}\right)^{*}}=\gamma_{\left(a_{s} y_{s}\right)} \gamma_{\left(a_{r} y_{r}\right)^{*},} \gamma_{\left(-a_{s}^{2} y_{2 s}\right) *}=\gamma_{\left(a_{s} y_{s}\right) *} \gamma_{\left(-a_{s} y_{s}\right)}{ }^{*} .
\end{aligned}
$$

Polyzetas and extended eulerian functions

Let $R:=t_{0}^{2} t_{1} x_{0}\left[\left(t_{0} x_{0}\right)^{*} ш\left(t_{1} x_{1}\right)^{*}\right] x_{1}\left(t_{0}, t_{1} \in \mathbb{C},\left|t_{0}\right|<1,\left|t_{1}\right|<1\right)$.
With $\omega_{0}(z)=z^{-1} d z$ and $\omega_{1}(z)=(1-z)^{-1} d z$, we get

$$
\begin{aligned}
\operatorname{Li}_{R}(1) & =t_{0}^{2} t_{1} \int_{0}^{1} \frac{d s}{s} \int_{0}^{s}\left(\frac{s}{r}\right)^{t_{0}^{\prime}}\left(\frac{1-r}{1-s}\right)^{t_{1}} \frac{d r}{1-r} \\
& =t_{0}^{2} t_{1} \int_{0}^{1}(1-s)^{t_{0} t_{1}} s^{t_{0}-1} \int_{0}^{s}(1-r)^{t_{0}-1} r^{-t_{0}} d s d r
\end{aligned}
$$

By changes of variables, $r=s t$ and then $y=(1-s) /(1-s t)$, we obtain

$$
\begin{aligned}
\zeta(R) & =t_{0}^{2} t_{1} \int_{0}^{1} \int_{0}^{1}(1-s)^{t_{0} t_{1}}(1-s t)^{t_{0}-1} t^{-t_{0}} d t d s \\
& =t_{0}^{2} t_{1} \int_{0}^{1} \int_{0}^{1}(1-t y)^{-1} t^{-t_{0}} y^{t_{0} t_{1}} d t d y
\end{aligned}
$$

By expending $(1-t y)^{-1}$ and then by integrating, we get on the one hand

$$
\zeta(R)=\sum_{n \geq 1} \frac{t_{0}}{n-t_{0}} \frac{t_{0} t_{1}}{n-t_{0}^{2} t_{1}}=\sum_{k>1>0} \zeta(k) t_{0}^{k} t_{1}^{\prime}
$$

Since $R=t_{0} x_{0}\left(t_{0} x_{0}+t_{1} x_{1}\right)^{*} t_{0} t_{1} x_{1}$ then we get also on the other hand

$$
\zeta(R)=\sum_{k>0} \sum_{l>0} \sum_{s_{1}+\ldots+s_{l}=k, s_{1} \geq 2, s_{2} \ldots, s_{l} \geq 1} \zeta\left(s_{1}, \ldots, s_{l}\right) t_{0}^{k} t_{1}^{\prime}
$$

Identifying the coeffients of $\left\langle\zeta(R) \mid t_{0}^{k} t_{1}^{\prime}\right\rangle$, we deduce the sum formula

$$
\zeta(k)=\quad \zeta\left(s_{1}, \ldots, s_{l}\right)
$$

Zetas and eulerian functions

For $v=-u(|u|<1)$, one gets

$$
\frac{1}{\Gamma_{y_{1}}(1-u) \Gamma_{y_{1}}(1+u)}=\exp \left(-\sum_{k \geq 1} \zeta(2 k) \frac{u^{2 k}}{k}\right)=\frac{\sin (u \pi)}{u \pi}
$$

Taking the logarithms and then taking the Taylor expansions, one obtains

$$
\begin{aligned}
-\sum_{k \geq 1} \zeta(2 k) \frac{u^{2 k}}{k} & =\log \left(1+\sum_{n \geq 1} \frac{(u \mathrm{i} \pi)^{2 n}}{\Gamma_{y_{1}}(2 n)}\right) \\
& =\sum_{l \geq 1} \frac{(-1)^{l-1}}{l} \sum_{k \geq 1}(u \mathrm{i} \pi)^{2 k} \sum_{\substack{n_{1}, \ldots, n_{l} \geq 1 \\
n_{1}+\ldots+n_{l}=k}} \prod_{i=1}^{l} \frac{1}{\Gamma_{y_{1}}\left(2 n_{i}\right)} \\
& =\sum_{k \geq 1}(u \mathrm{i} \pi)^{2 k} \sum_{l \geq 1} \frac{(-1)^{l-1}}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geq 1 \\
n_{1}+\ldots+n_{l}=k}} \prod_{i=1}^{l} \frac{1}{\Gamma_{y_{1}}\left(2 n_{i}\right)}
\end{aligned}
$$

One can deduce then the following expression for $\zeta(2 k)$:

$$
\frac{\zeta(2 k)}{\pi^{2 k}}=k \sum_{l=1}^{k} \frac{(-1)^{k+l}}{l} \sum_{\substack{n_{1}, \ldots, n_{l} \geq \geq \\ n_{1}+\ldots+n_{l}=k}} \prod_{i=1}^{l} \frac{1}{\Gamma_{y_{1}}\left(2 n_{i}\right)} \in \mathbb{Q}
$$

Euler gave an other explicit formula using Bernoulli numbers $\left\{b_{k}\right\}_{k \in \mathbb{N}}$:

$$
\zeta(2 k) /(2 \mathrm{i} \pi)^{2 k}=-b_{2 k} / 2(2 k)!\in \mathbb{Q} .
$$

More about polyzetas and extended eulerian functions

$$
\begin{aligned}
& \begin{array}{cccc}
& \gamma & \gamma_{\left(-t^{2} y_{2}\right)^{*}} & = \\
\Gamma_{y_{2}}^{-1}(1+\mathrm{i} t) & = & \left.\left.\Gamma_{y_{1}}^{-1}(1+t)_{1}\right)^{*} \gamma(-t)_{1}\right)^{*} \\
\Gamma_{y_{1}}^{-1}(1-t)
\end{array} \\
& \Leftrightarrow e^{-\sum_{k \geq 2} \zeta(2 k) t^{2 k} / k}=\frac{\sin (t \pi)}{t \pi}=\sum_{k \geq 1} \frac{(t \mathrm{i} \pi)^{2 k}}{(2 k)!} . \\
& \begin{array}{ccc}
& \gamma\left(-t^{4} y_{4}\right)^{*} & \\
\Leftrightarrow & \gamma\left(t^{2} y_{2}\right)^{*} \gamma\left(-t^{2} y_{2}\right)^{*} \\
\Leftrightarrow & \Gamma_{y_{4}}^{-1}(1+\sqrt[4]{-1} t) & =
\end{array} \Gamma_{y_{2}}^{-1}(1+t) \Gamma_{y_{2}}^{-1}(1+\mathrm{i} t) \\
& \Leftrightarrow e^{-\sum_{k \geq 1} \zeta(4 k) t^{4 k} / k}=\frac{\sin (\mathrm{i} t \pi)}{\mathrm{i} t \pi} \frac{\sin (t \pi)}{t \pi}=\sum_{k \geq 1} \frac{2(-4 t \pi)^{4 k}}{(4 k+2)!} \text {. }
\end{aligned}
$$

Since $\gamma_{\left(-t^{4} y_{4}\right)^{*}}=\zeta\left(\left(-t^{4} y_{4}\right)^{*}\right), \gamma_{\left(-t^{2} y_{2}\right)^{*}}=\zeta\left(\left(-t^{2} y_{2}\right)^{*}\right), \gamma_{\left(t^{2} y_{2}\right)^{*}}=\zeta\left(\left(t^{2} y_{2}\right)^{*}\right)$ then, using the poly-morphism ζ, one deduces

$$
\begin{aligned}
& \zeta\left(\left(-t^{4} y_{4}\right)^{*}\right)=\zeta\left(\left(-t^{2} y_{2}\right)^{*}\right) \zeta\left(\left(t^{2} y_{2}\right)^{*}\right) \\
&\left.=\zeta\left(\left(-t^{2} x_{0} x_{1}\right)^{*} ш\left(t^{2} x_{0} x_{1}\right)^{*}\right)=\zeta\left(\left(-t^{2} x_{0} x_{1}\right)^{*}\right) \zeta\left(\left(t^{2} x_{0} x_{1}\right)^{*}\right)\right) \\
&=\zeta\left(\left(-4 t^{4} x_{0}^{2} x_{1}^{2}\right)^{*}\right)
\end{aligned}
$$

It follows then, by identification the coeffients of $t^{2 k}$ and $t^{4 k}$:

$$
\zeta(\overbrace{2, \ldots, 2}^{\text {ktimes }}) / \pi^{2 k}=1 /(2 k+1)!\in \mathbb{Q}
$$

k times

ktimes

$$
\zeta(\overbrace{3,1, \ldots, 3,1}) / \pi^{4 k}=4^{k} \zeta(\overbrace{4, \ldots, 4}) / \pi^{4 k}=2 /(4 k+2)!\in \mathbb{Q} .
$$

Bibliography I

J. Berstel \& C. Reutenauer.- Rational series and their languages, Spr.-Ver., 1988.
V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, L. Kane, C. Tollu.- Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization, J. of Symbolic Computation (2015).
V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, H. Nguyen, C. Tollu.- Combinatorics of φ-deformed stuffle Hopf algebras, https ://hal.archives-ouvertes.fr/hal-00793118 (2014).
V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo, C. Tollu.- (Pure) transcendence bases in φ-deformed shuffle bialgebras, Journal électronique du Séminaire Lotharingien de Combinatoire B74f (2018).
V.C. Bui, V. Hoang Ngoc Minh, Q.H. Ngo.- Families of eulerian functions involved in regularization of divergent polyzetas, arXiv :2009.03931.
G.H.E. Duchamp,V. Hoang Ngoc Minh, Q.H. Ngo, K. Penson, P. Simonnet.- Mathematical renormalization in quantum electrodynamics via noncommutative generating series, in "Applications of Computer Algebra", Springer Proceedings in Mathematics and Statistics, pp. 59-100 (2017).
G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo.- Kleene stars of the plane, polylogarithms and symmetries, Theoretical Computer Science, Volume 800, 31 December 2019, Pages 52-72
P. Cartier.- Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Séminaire Bourbaki, 687 (1987), 31-52.
P. Cartier.- Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents- Séminaire Bourbaki, $53^{\text {ème },} n^{\circ} 885,2000-2001$.
K.T. Chen.- Iterated integrals and exponential homomorphisms, Proc. Lon. Math. S. 3-4 (1954) 502-512.

Bibliography II

C．Costermans，J．Y．Enjalbert and V．Hoang Ngoc Minh．－Algorithmic and combinatoric aspects of multiple harmonic sums，Discrete Mathematics \＆Theoretical Computer Science Proceedings， 2005.

C．Costermans，Hoang Ngoc Minh．－Some Results à l＇Abel Obtained by Use of Techniques à la Hopf， Workshop on Global Integrability of Field Theories and Applications，Daresbury（UK），1－3，November 2006.

C．Costermans，Hoang Ngoc Minh．－Noncommutative algebra，multiple harmonic sums and applications in discrete probability，J．of Sym．Comp．（2009），801－817．

M．Deneufchâtel，G．H．E．Duchamp，V．Hoang Ngoc Minh，A．I．Solomon．－Independence of hyperlogarithms over function fields via algebraic combinatorics，in LNCS（2011）， 6742.

G．H．E．Duchamp，V．Hoang Ngoc Minh，K．A．Penson．－About Some Drinfel＇d Associators，International Workshop on Computer Algebra in Scientific Computing CASC 2018 －Lille，17－21 September 2018.

G．H．E．Duchamp，V．Hoang Ngoc Minh，V．Nguyen Dinh．－Towards a noncommutative Picard－Vessiot theory，arXiv ：arXiv ：2008．10872．

V．Drinfel＇d－On quasitriangular quasi－hopf algebra and a group closely connected with gal (\bar{q} / q) ，Leningrad Math．J．，4，829－860， 1991.

J．Ecalle．－ARI／GARI，la dimorphie et l＇arithmétique des multizêtas：un premier bilan，J．Th．des nombres de Bordeaux，15，（2003），pp．411－478．

A．M．Legendre．－Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures， Volume 1，Courcier，1811＂（from p．298）

M．Lothaire．－Combinatorics on Words，Enc．of Math．and its App．，Addison－Wesley， 1983.

Bibliography III

Hoang Ngoc Minh，G．Jacob．－Symbolic Integration of meromorphic differential equation via Dirichlet functions，Disc．Math．210，pp．87－116， 2000.

Hoang Ngoc Minh，M．Petitot．－Lyndon words，polylogarithmic functions and the Riemann ζ function， Discrete Math．，217，2000，pp．273－292．

Hoang Ngoc Minh，M．Petitot，J．Van der Hoeven．－Polylogarithms and Shuffle Algebra，Proceedings of FPSAC＇98， 1998.

V．Hoang Ngoc Minh．－Differential Galois groups and noncommutative generating series of polylogarithms， Automata，Combinatorics \＆Geometry，W．Mul．Conf．Systemics，Cybernetics \＆Informatics，Florida， 2003.

V．Hoang Ngoc Minh．－On the solutions of the universal differential equation with three regular singularities（On solutions of $K Z_{3}$ ），Confluentes Mathematici（2019）．

M．Hoffman．－Multiple harmonic series，Pacific J．Math． 152 （1992），pp．275－290．
M．Hoffman．－Quasi－shuffle products，J．Alg．Combin． 11 （1）（2000）49－68．
D．E．Radford．－A natural ring basis for shuffle algebra and an application to group schemes Journal of Algebra，58，pp．432－454， 1979.

Ree R．，－Lie elements and an algebra associated with shuffles Ann．Math 68 210－220， 1958.

C．Reutenauer．－Free Lie Algebras，London Math．Soc．Monographs（1993）．

G．Viennot．－Algèbres de Lie libres et monö̈des libres，Lect．N．in Math．，Springer－Verlag，691， 1978.

Bibliography IV

D. Zagier.- Values of zeta functions and their applications, in "First European Congress of Mathematics", vol. 2, Birkhäuser (1994), pp. 497-512.
THANK YOU FOR YOUR ATTENTION

