On universal differential equations

V. Hoang Ngoc Minh Université Lille, 1 Place Déliot, 59024 Lille, France.

Séminaire Combinatoire, Informatique et Physique 23 Février, 2, 16, 23, 30 Mars & 06 Avril 2021, Villetaneuse

Outline

- 1. Introduction
 - $1.1\,$ Picard-Vessiot theory of ordinary differential equation
 - 1.2 Fuchsian linear differential equations
 - 1.3 Nonlinear differential equations
- 2. Dual laws and representative series
 - 2.1 conc-shuffle and conc-stuffle bialgebras
 - 2.2 Dualizable laws in conc-shuffle bialgebras
 - 2.3 Representative series and Sweedler's dual
- 3. Continuity over Chen series
 - $3.1\,$ Iterated integrals and Chen series
 - 3.2 Continuity, indiscernability and growth condition
 - 3.3 Chen series and differential equations
- 4. Noncommutative PV theory and independences via words
 - 4.1 First step of noncommutative PV theory
 - 4.2 Independences over differential ring
 - 4.3 The case of a family of eulerian function
- 5. $Dom(Li_{\bullet})$ and $Dom(H_{\bullet})$

INTRODUCTION

Picard-Vessiot theory of ordinary differential equation

 (\mathbf{k}, ∂) a commutative differential ring without zero divisors. $\operatorname{Const}(\mathbf{k}) = \{c \in \mathbf{k} | \partial c = 0\}$ is supposed to be a field. $(ODE) \quad (a_n \partial^n + a_{n-1} \partial^{n-1} + \ldots + a_0)y = 0, \quad a_0, \ldots, a_{n-1}, a_n \in \mathbf{k}.$ a_n^{-1} is supposed to exist.

Definition 1

- Let y₁,..., y_n be Const(k)-linearly independent solutions of (ODE). Then {y₁,..., y_n} is called a fundamental set of solutions of (ODE) and it generates a Const(k)-vector subspace of dimension at most n.
- If¹ M = k{y₁,..., y_n} and Const(M) = Const(k) then M is called a Picard-Vessiot extension related to (ODE)

Let k ⊂ K₁ and k ⊂ K₂ be differential rings. An isomorphism of rings σ : K₁ → K₂ is a differential k-isomorphism if ∀a ∈ K₁, ∂(σ(a)) = σ(∂a) and, if a ∈ k, σ(a) = a. If K₁ = K₂ = K, the differential galois group of K over k is by Gal_k(K) = {σ|σ is a differential k-automorphism of K}.

1. Let R_1, R_2 be differential rings s.t. $R_1 \subset R_2$. Let S be a subset of R_2 . $R_1\{S\}$ denotes the smallest differential subring of R_2 containing R_1 . $R_1\{S\}$ is the ring (over R_1) generated by S and their derivatives of all orders.

Linear differential equations and Dyson series

Let
$$a_0, \ldots, a_n \in \mathbb{C}(z)$$
, $(a_n(z)\partial^n + \ldots + a_1(z)\partial + a_0(z))y(z) = 0$.
(ED)
$$\begin{cases} \partial q(z) = A(z)q(z), & A(z) \in \mathcal{M}_{n,n}(\mathbb{C}(z)), \\ q(z_0) = \eta, & \lambda \in \mathcal{M}_{1,n}(\mathbb{C}), \\ y(z) = \lambda q(z), & \eta \in \mathcal{M}_{n,1}(\mathbb{C}). \end{cases}$$

By successive Picard iterations, with the initial point $q(z_0) = \eta$, we get² $y(z) = \lambda U(z_0; z)\eta$, where $U(z_0; z)$ is the following functional expansion $U(z_0; z) = \sum_{t>0} \int_{z_0}^{z} A(z_1) dz_1 \int_{z_0}^{z_1} A(z_2) dz_2 \dots \int_{z_0}^{z_{k-1}} A(z_k) dz_k$, (Dyson series) and $(z_0, z_1, \ldots, z_k, z)$ is a subdivision of the path of integration $z_0 \rightsquigarrow z$.

In order to find the matrix $\Omega(z_0; z)$ s.t. $U(z_0; z) = \exp[\Omega(z_0; z)] = \top \exp \int_{z_0}^z A(s) ds$, (Feynman's notation)

Magnus computed $\Omega(z_0; z)$ as limit of the following Lie-integral-functionals

$$\Omega_{1}(z_{0}; z) = \int_{z_{0}}^{z} A(z) ds,$$

$$\Omega_{k}(z_{0}; z) = \int_{z_{0}}^{z} [A(z) + [A(z), \Omega_{k-1}(z_{0}; s)]/2 + [[A(z), \Omega_{k-1}(z_{0}; s)]/12 + ...) ds.$$

Subject to convergence.

2. Subject to convergence.

Fuchsian linear differential equations

Let Ω be a simply connected domain and $\mathcal{H}(\Omega)$ be the ring of holomorphic functions over Ω (with $1_{\mathcal{H}(\Omega)}$ as neutral element). Let us consider, here,

$$\sigma = \{s_i\}_{i=0,..,m}, m \ge 1, \text{ as set of simple poles of } (ED) \text{ and } \Omega = \widetilde{\mathbb{C} \setminus \sigma}.$$

$$A(z) = \sum_{i=0}^{m} M_i u_i(z), \text{ where } \begin{cases} M_i \in \mathcal{M}_{n,n}(\mathbb{C}), \\ u_i(z) = (z - s_i)^{-1} \in \mathbb{C}(z). \end{cases}$$

$$\left\{ \begin{array}{l} \partial q(z) = \left(\sum_{i=0}^{m} M_i u_i(z)\right) q(z), \\ q(z_0) = \eta, \\ y(z) = \lambda q(z). \end{array}\right\}$$
Let X* be the set of words over X = $\{x_0, \ldots, x_m\}$ and $\alpha_{z_0}^z \otimes \mathcal{M} : \mathbb{C}\langle X \rangle \otimes \mathbb{C}\langle X \rangle \to \mathcal{M}_{n,n}(\mathcal{H}(\Omega))$

$$(z_0 \rightsquigarrow z \text{ is the path of integration previously introduced) s.t.}$$

$$\mathcal{M}(1_{X^*}) = Id_n \text{ and } \mathcal{M}(x_{i_1} \cdots x_{i_k}) = M_{i_1} \dots M_{i_k},$$

$$\alpha_{z_0}^z(1_{X^*}) = 1_{\mathcal{H}(\Omega)} \text{ and } \alpha_{z_0}^z(x_{i_1} \cdots x_{i_k}) = \int_{z_0}^z \frac{dz_1}{z_1 - s_{i_1}} \dots \int_{z_0}^{z_{k-1}} \frac{dz_k}{z_k - s_{i_k}}.$$
Then $y(z) = \sum_{w \in X^*} \mathcal{M}(w)\alpha_{z_0}^z(w) = (\mathcal{M} \otimes \alpha_{z_0}) \sum_{w \in X^*} w \otimes w.$

3. Subject to convergence.

Examples of linear dynamical systems

Example 2 (Hypergeometric equation)

Let
$$t_0, t_1, t_2$$
 be parameters and
 $z(1-z)\ddot{y}(z) + [t_2 - (t_0 + t_1 + 1)z]\dot{y}(z) - t_0t_1y(z) = 0.$
Let $q_1(z) = -y(z)$ and $q_2(z) = (1-z)\dot{y}(z)$. Hence, one has
 $y(z) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix}$

and

$$\begin{pmatrix} \dot{q}_1(z) \\ \dot{q}_2(z) \end{pmatrix} = \begin{pmatrix} M_0 \\ z + \frac{M_1}{1-z} \end{pmatrix} \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix}$$

$$= (u_0(z)M_0 + u_1(z)M_1) \begin{pmatrix} q_1(z) \\ q_2(z) \end{pmatrix},$$
where $u_0(z) = z^{-1}, u_1(z) = (1-z)^{-1}$ and
$$M_0 = -\begin{pmatrix} 0 & 0 \\ t_0t_1 & t_2 \end{pmatrix} \text{ and } M_1 = -\begin{pmatrix} 0 & 1 \\ 0 & t_2 - t_0 - t_1 \end{pmatrix}.$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 7/53

Nonlinear differential equations

(NED)
$$\begin{cases} \partial q(z) = \left(\sum_{i=0}^{m} T_{i}(q)u_{i}(z)\right)(q), \\ q(z_{0}) = q_{0}, \\ y(z) = f(q(z)), \end{cases}$$

where

•
$$u_i \in (\mathbf{k}, \partial)$$
,

- the state q = (q₁,...,q_n) belongs the complex analytic manifold Q of dimension n and q₀ is the initial state,
- the observation $f \in O$, with O the ring of analytic functions over Q,
- ▶ for i = 0..1, $T_i = (T_i^1(q)\partial/\partial q_1 + \cdots + T_i^m(q)\partial/\partial q_m)$ is an analytic vector field over Q, with $T_i^j(q) \in \mathcal{O}$, for j = 1, ..., n.

With X and $\alpha_{z_0}^z$ given as previously, let the morphism τ be defined by $\tau(\mathbf{1}_{X^*}) = \mathrm{Id}$ and $\tau(x_{i_1} \cdots x_{i_k}) = T_{i_1} \cdots T_{i_k}$. Then ${}^4 y(z) = \mathcal{T} \circ f_{|_{q_0}}$ with $\mathcal{T} = \sum_{w \in X^*} \tau(w) \alpha_{z_0}^z(w) = (\tau \otimes \alpha_{z_0}) \sum_{w \in X^*} w \otimes w.$

4. Subject to convergence.

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > の へ () 8 / 53

Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let k_1, k_2 be parameters and $\partial^2 y(z) + k_1 y(z) + k_2 y^2(z) = u_1(z)$ which can be represented by the following state equations (with n = 1)

$$y(z) = q(z),$$

$$\partial q(z) = A_0(q)u_0(z) + A_1(q)u_1(z),$$

where $A_0 = -(k_1q + k_2q^2)\frac{\partial}{\partial q}$ and $A_1 = \frac{\partial}{\partial q}$

Example 4 (Duffing equation)

Let a, b, c be parameters and $\partial^2 y(z) + a \partial y(z) + b y(z) + c y^3(z) = u_1(z)$ which can be represented by the following state equations (with n = 2)

$$\begin{array}{rcl} y(z) &=& q_1(z), \\ \begin{pmatrix} \partial q_1(z) \\ \partial q_2(z) \end{pmatrix} &=& \begin{pmatrix} q_2 \\ -(aq_2+b^2q_1+cq_1^3) \end{pmatrix} u_0(z) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_1(z) \\ &=& A_0(q)u_0(z) + A_1(q)u_1(z), \\ \text{where} \quad A_0 &=& -(aq_2+b^2q_1+cq_1^3) \frac{\partial}{\partial q_2} + q_2 \frac{\partial}{\partial q_1} \quad \text{and} \quad A_1 &=& \frac{\partial}{\partial q_2}. \end{array}$$

9/53

Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)

Let γ, g be parameters and

 $\partial^2 x(z) - \gamma [1 + x(z)^2] \partial x(z) + x(z) = g \cos(\omega z)$

which can be tranformed into (with C is some constant of integration)

$$\partial x(z) = \gamma [1 + x(z)^2/3] x(z) - \int_{z_0}^z x(s) ds + \frac{g}{\omega} \sin(\omega z) + C.$$

Supposing $x = \partial y$ and $u_1(z) = g \sin(\omega z)/\omega + C$, it leads then to
 $\partial^2 y(z) = \gamma [\partial y(z) + (\partial y(z))^3/3] + y(z) + u_1(z)$

which can be represented by the following state equations (with n = 2)

$$\begin{array}{rcl} y(z) &=& q_1(z), \\ \begin{pmatrix} \partial q_1(z) \\ \partial q_2(z) \end{pmatrix} &=& \begin{pmatrix} q_2 \\ \gamma(q_2+q_2^3/3)+q_1 \end{pmatrix} u_0(z) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_1(z) \\ &=& A_0(q)u_0(z) + A_1(q)u_1(z), \\ \\ \text{where } A_0 &=& [\gamma(q_2+q_2^3/3)+q_1] \frac{\partial}{\partial q_2} + q_2 \frac{\partial}{\partial q_1} \quad \text{and} \quad A_1 &=& \frac{\partial}{\partial q_2}. \end{array}$$

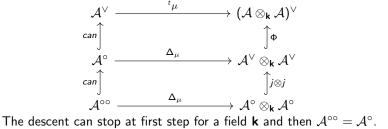
DUAL LAWS AND REPRESENTATIVE SERIES

Dual law in bialgebra

Startting with a $\mathbf{k} - \mathbf{AAU}$ (\mathbf{k} is a ring) \mathcal{A} . Dualizing $\mu : \mathcal{A} \otimes_{\mathbf{k}} \mathcal{A} \to \mathcal{A}$, we get the transpose ${}^{t}\mu : \mathcal{A}^{\vee} \to (\mathcal{A} \otimes_{\mathbf{k}} \mathcal{A})^{\vee}$ so that we do not get a co-multiplication in general.

Remark that when k is a field, the following arrow is into (due to the fact that A[∨] ⊗_k A[∨] is torsionfree) Φ : A[∨] ⊗_k A[∨] → (A ⊗_k A)[∨].

• One restricts the codomain of
$${}^t\mu$$
 to $\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}$ and then the domain to $({}^t\mu)^{-1}\Phi(\mathcal{A}^{\vee} \otimes_{\mathbf{k}} \mathcal{A}^{\vee}) =: \mathcal{A}^{\circ}$.



The descent can stop at first step for a field **k** and then $\mathcal{A}^{\circ\circ} = \mathcal{A}^{\circ}$. The coalgebra $(\mathcal{A}^{\circ}, \Delta_{\mu})$ is called the Sweedler's dual of (\mathcal{A}, μ) . Case of algebras noncommutative series • \mathcal{X} denotes the ordered alphabets $\mathbf{Y} := \{y_k\}_{k \ge 1}$ or $\mathbf{X} := \{x_0, x_1\}$. On the free monoid $(\mathcal{X}^*, \text{conc}, \mathbf{1}_{\mathcal{X}^*})$, we use the correspondences $x_0^{\mathbf{s}_1-1}x_1\ldots x_0^{\mathbf{s}_r-1}x_1 \in X^* x_1 \stackrel{\pi_Y}{\rightleftharpoons} y_{\mathbf{s}_1}\ldots y_{\mathbf{s}_r} \in Y^* \leftrightarrow (\mathbf{s}_1,\ldots,\mathbf{s}_r) \in \mathbb{N}_+^r.$ Let $\mathcal{L}yn\mathcal{X}$ denote the set of Lyndon words generated by \mathcal{X} . Let $(\mathcal{L}ie_A\langle\langle \mathcal{X} \rangle\rangle, [.])$ and $(A\langle\langle \mathcal{X} \rangle\rangle, \text{conc})$ (resp. $(\mathcal{L}ie_A\langle \mathcal{X} \rangle, [.])$ and $(A\langle \mathcal{X} \rangle, \text{conc}))$ denote the algebras of (Lie) series (resp. polynomials) with coefficients in the ring A, over \mathcal{X} . $\{P_I\}_{I \in \mathcal{L} vn \mathcal{X}}$ (resp. $\{\Pi_I\}_{I \in \mathcal{L} vn Y}$) is a basis of Lie algebra of primitive elements and $\{S_l\}_{l \in \mathcal{L}vn \mathcal{X}}$ (resp. $\{\Sigma_l\}_{l \in \mathcal{L}vn \mathcal{Y}}$) is a transcendence basis of $(A\langle \mathcal{X} \rangle, \sqcup, 1_{\mathcal{X}^*})$ (resp. $(A\langle Y \rangle, \sqcup, 1_{Y^*})$). $\blacktriangleright \mathcal{H}_{III}(\mathcal{X}) := (A\langle \mathcal{X} \rangle, \text{conc}, 1_{\mathcal{X}^*}, \Delta_{III}, e)$ and $\mathcal{H}_{\sqcup \sqcup}(Y) := (A\langle Y \rangle, \operatorname{conc}, 1_{Y^*}, \Delta_{\sqcup \sqcup}, e) \text{ with }^5 \text{ (for } x \in \mathcal{X}, v_i \in Y)$ $\Delta_{\scriptstyle ||||} x = x \otimes 1_{\mathcal{X}^*} + 1_{\mathcal{X}^*} \otimes x,$ $\Delta_{\perp} y_i = y_i \otimes 1_{Y^*} + 1_{Y^*} \otimes y_i + \sum_{k+l=i} y_k \otimes y_l.$ ▶ The dual law associated to conc is defined, for $w \in \mathcal{X}^*$, by $\Delta_{\operatorname{conc}}(w) = \sum_{u,v \in \mathcal{X}^*, uv = w} u \otimes v.$ 5. Or equivalently, for $x, y \in \mathcal{X}, y_i, y_i \in \mathcal{Y}$ and $u, v \in \mathcal{X}^*$ (resp. Y^*), $u \equiv 1_{\mathcal{X}^*} = 1_{\mathcal{X}^*} \equiv u = u$ and $xu \equiv yv = x(u \equiv yv) + y(xu \equiv v)$, $u \sqcup 1_{Y^*} = 1_{Y^*} \sqcup u = u$ and $x_i u \sqcup y_j v = y_i (u \sqcup y_j v) + y_j (y_i u \sqcup v) + y_{i+i} (u \amalg v)$ 13/53

Dualizable laws in conc-shuffle bialgebras (1/2)

We can exploit the basis of words as follows

- Any bilinear law (shuffle, stuffle or any) μ : A⟨X⟩ ⊗_A A⟨X⟩ → A⟨X⟩ can be decribed through its structure constants wrt to the basis of words, *i.e.* for u, v, w ∈ X*, Γ^w_{u,v} := ⟨μ(u ⊗ v)|w⟩ so that μ(u ⊗ v) = ∑_{w∈X*} Γ^w_{u,v}w.
- 2. In the case when $\Gamma_{u,v}^w$ is locally finite in w, we say that the given law is dualizable, the arrow ${}^t\mu$ restricts nicely to $A\langle \mathcal{X} \rangle \hookrightarrow A\langle\!\langle \mathcal{X} \rangle\!\rangle$ and one can define on the polynomials a comultiplication by $\Delta_{\mu}(w) := \sum_{u,v \in \mathcal{X}^*} \Gamma_{u,v}^w u \otimes v.$
- 3. When the law μ is dualizable, we have

$$\begin{array}{ccc} A\langle\!\langle \mathcal{X} \rangle\!\rangle & \xrightarrow{t_{\mu}} & A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle \\ & & & & & \\ can & & & & & \\ A\langle\mathcal{X} \rangle & \xrightarrow{\Delta_{\mu}} & A\langle\mathcal{X} \rangle \otimes_{\mathcal{A}} A\langle\mathcal{X} \rangle \end{array}$$

The arrow Δ_{μ} is unique to be able to close the rectangle and $\Delta_{\mu}(P)$ is defined as above.

Dualizable laws in conc-shuffle bialgebras (2/2)

4. Proof that the arrow $A\langle \mathcal{X} \rangle \otimes_A A\langle \mathcal{X} \rangle \longrightarrow A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle$ is into :

Let $T = \sum_{i=1}^{n} P_i \otimes_A Q_i$ such that $\Phi(T) = 0$. Rewriting T as a finitely supported sum $T = \sum_{u,v \in \mathcal{X}^*} c_{u,v} u \otimes v$ (this is indeed the iso between $A\langle \mathcal{X} \rangle \otimes_A A\langle \mathcal{X} \rangle$ and $A[\mathcal{X}^* \times \mathcal{X}^*]$), $\Phi(T)$ is by definition of Φ the double series (here a polynomial) s.t. $\langle \Phi(T) | u \otimes v \rangle = c_{u,v}$. If $\Phi(T) = 0$, then for all $(u, v) \in \mathcal{X}^* \times \mathcal{X}^*$, $c_{u,v} = 0$ entailing T = 0.

We extend by linearity and infinite sums, for $S \in A\langle\!\langle Y \rangle\!\rangle$ (resp. $A\langle\!\langle \mathcal{X} \rangle\!\rangle$), by

 $A\langle\!\langle \mathcal{X}\rangle\!\rangle\otimes A\langle\!\langle \mathcal{X}\rangle\!\rangle \text{ embeds injectively in }^6 A\langle\!\langle \mathcal{X}^*\otimes \mathcal{X}^*\rangle\!\rangle\cong [A\langle\!\langle \mathcal{X}\rangle\!\rangle]\langle\!\langle \mathcal{X}\rangle\!\rangle.$

6. $A\langle\!\langle \mathcal{X} \rangle\!\rangle \otimes A\langle\!\langle \mathcal{X} \rangle\!\rangle$ contains the elements of the form $\sum_{i \in I} \text{finite } G_i \otimes D_i$, for $(G_i, D_i) \in A\langle\!\langle \mathcal{X} \rangle\!\rangle \times A\langle\!\langle \mathcal{X} \rangle\!\rangle$. But since elements of $M \otimes N$ are finite combination of $m_i \otimes n_i, m_i \in M, n_i \in N$ then $\sum_{i \geq 0} u^i \otimes v^i$ belongs to $A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle$ and does not belong to $A\langle\!\langle \mathcal{X} \rangle\!\rangle \otimes A\langle\!\langle \mathcal{X} \rangle\!\rangle$, for $u, v \in \mathcal{X}^{\geq 1}$.

Extended Ree's theorem

Let $S \in A\langle\!\langle Y \rangle\!\rangle$ (resp. $A\langle\!\langle X \rangle\!\rangle$), A is a commutative ring containing \mathbb{Q} . The series S is said to be

- 1. a \bowtie (resp. conc, \bowtie)-character iff, for any $w, v \in Y^*$ (resp. \mathcal{X}^*), $\langle S|w \rangle \langle S|v \rangle = \langle S|w \bowtie v \rangle$ (resp. $\langle S|wv \rangle, \langle S|w \amalg v \rangle$) and $\langle S|1 \rangle = 1$.
- 2. an infinitesimal \bowtie (resp. conc, \bowtie)-character iff, for any $w, v \in Y^*$ (resp. \mathcal{X}^*), $\langle S|w \bowtie v \rangle = \langle S|w \rangle \langle v|1_{Y^*} \rangle + \langle w|1_{Y^*} \rangle \langle S|v \rangle$ (resp. $\langle S|wv \rangle = \langle S|w \rangle \langle v|1_{\mathcal{X}^*} \rangle + \langle w|1_{\mathcal{X}^*} \rangle \langle S|v \rangle$, $\langle S|w \sqcup v \rangle = \langle S|w \rangle \langle v|1_{\mathcal{X}^*} \rangle + \langle w|1_{\mathcal{X}^*} \rangle \langle S|v \rangle$).
- 3. a group-like series iff $\langle S|1_{\mathcal{X}^*}\rangle = 1$ and $\Delta_{\sqcup \sqcup} S = \Phi(S \otimes S)$ (resp. $\Delta_{conc}S = \Phi(S \otimes S), \Delta_{\sqcup \sqcup} S = \Phi(S \otimes S)$).
- 4. a primitive series iff $\Delta_{\perp} S = 1_{Y^*} \otimes S + S \otimes 1_{Y^*}$ (resp. $\Delta_{conc} S = 1_{\mathcal{X}^*} \otimes S + S \otimes 1_{\mathcal{X}^*}, \Delta_{\perp} S = 1_{\mathcal{X}^*} \otimes S + S \otimes 1_{\mathcal{X}^*}$).

Then the following assertions are equivalent

- 1. S is a \bowtie (resp. conc and \bowtie)-character.
- 2. $\log S$ an infinitesimal ratio = (resp. conc and resp. -character.)
- 3. S is group-like, for Δ_{\perp} (resp. Δ_{conc} and Δ_{\perp}).
- 4. log S is primitive, for Δ_{\perp} (resp. Δ_{conc} and Δ_{\perp}) \Rightarrow (\Rightarrow) \Rightarrow (\Rightarrow) \Rightarrow (\Rightarrow) (\Rightarrow)

Extension by continuity (infinite sums)

Now, suppose that the ring A (containing \mathbb{Q}) is a field **k**. Then

$$\forall c \in \mathbf{k}, \quad \Delta_{\scriptstyle \sqcup \!\!\!\sqcup} (cx)^* = \sum_{n \ge 0} c^n \Delta_{\scriptstyle \sqcup \!\!\!\sqcup} x^n = \sum_{n \ge 0} c^n \sum_{j=0}^n \binom{n}{j} x^j \otimes x^{n-j}.$$

For $c \in \mathbb{N}_{\geq 2}$ which is neither a field nor a ring (containing \mathbb{Q}), we also get

$$(cx)^* = (c-1)^{-1} \sum_{\substack{a,b \in \mathbb{N}_{\geq 1}, a+b=c \\ a,b \in \mathbb{N}_{\geq 1}, a+b=c}} (ax)^* \sqcup (bx)^* \in \mathbb{N}_{\geq 2} \langle\!\langle \mathcal{X} \rangle\!\rangle,$$
$$\Delta_{\sqcup \sqcup} (cx)^* \neq (c-1)^{-1} \sum_{\substack{a,b \in \mathbb{N}_{\geq 1}, a+b=c \\ a,b \in \mathbb{N}_{\geq 1}, a+b=c}} (ax)^* \otimes (bx)^* \in \mathbb{Q} \langle\!\langle \mathcal{X} \rangle\!\rangle \otimes \mathbb{Q} \langle\!\langle \mathcal{X} \rangle\!\rangle,$$

because

$$\langle \text{LHS}|x \otimes 1_{\mathcal{X}^*} \rangle = c$$
 and $\langle \text{RHS}|x \otimes 1_{\mathcal{X}^*} \rangle = (c-1)^{-1} \sum_{a=1}^{c-1} a = \frac{c}{2}.$

For $c \in \mathbb{Z}$ (or even $\mathbb{Q}, \mathbb{R}, \mathbb{C}$), the such decomposition is not finite.

7. For $S \in A(\langle \mathcal{X} \rangle)$ s.t. $\langle S|1_{\mathcal{X}^*} \rangle = 0$, $S^* = \sum_{n \ge 0} S^n$ is called Kleene star of S. 8. $\Delta_{\sqcup \sqcup} x^n = (\Delta_{\sqcup \sqcup} x)^n = (1_{\mathcal{X}^*} \otimes x + x \otimes 1_{\mathcal{X}^*})^n = \sum_{j=0}^n {n \choose j} x^j \otimes x^{n-j} \ge \sum_{\substack{n \ge 0 \\ j \neq j \le n}} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq j \le n}} \sum_{\substack{n \ge 0 \\ j \neq j \le n}} \sum_{\substack{n \ge 0 \\ j \neq j \le n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n}} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum_{\substack{n \ge 0 \\ j \neq n} \sum n} \sum_{\substack{n \ge 0 \\ j \ge n} \sum_{\substack{n \ge 0 \\ j \ge n} \sum_{\substack{n \ge 0 \\ j$ Case of rational series and of Δ_{conc} $A^{\text{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ denotes the algebraic closure by ⁹ {conc, +, *} of $\widehat{A.\mathcal{X}}$ in $A\langle\!\langle \mathcal{X} \rangle\!\rangle$.

$$\begin{array}{c} A\langle\!\langle \mathcal{X} \rangle\!\rangle & \xrightarrow{t_{\operatorname{conc}}} & A\langle\!\langle \mathcal{X}^* \otimes \mathcal{X}^* \rangle\!\rangle \\ \\ can & \uparrow^{\varphi|_{A^{\operatorname{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle}} & & \uparrow^{\varphi|_{A^{\operatorname{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle} \\ A^{\operatorname{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle & \xrightarrow{} & A^{\operatorname{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle \\ \end{array}$$

The dashed arrow may not exist in general, but for any $R \in A^{\mathrm{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ admitting (λ, μ, η) as linear representation of dimension *n*, we can get $^{t}\operatorname{conc}(R) = \Phi(\sum_{i=1}^{n} G_{i} \otimes D_{i}).$ Indeed, since $\langle R|xy \rangle = \lambda \mu(xy)\eta = \lambda \mu(x)\mu(y)\eta$ $(x, y \in \mathcal{X})$ then, letting e_i is the vector such that ${}^te_i = (0 \quad \dots \quad 0 \quad 1 \quad 0 \quad \dots \quad 0)$, one has $\langle R|xy\rangle = \sum_{i=1}^{n} \lambda \mu(x) e_i{}^t e_i \mu(y) \eta = \sum_{i=1}^{n} \langle G_i|x\rangle \langle D_i|y\rangle = \sum_{i=1}^{n} \langle G_i \otimes D_i|x \otimes y\rangle.$ G_i (resp. D_i) admits then (λ, μ, e_i) (resp. $({}^te_i, \mu, \eta)$) as linear representation. If $A = \mathbf{k}$ being a field then, due to the injectivity of Φ , all expressions of the type $\sum_{i=1}^{n} G_i \otimes D_i$, of course, coincide. Hence, the dashed arrow (a restriction of Δ_{conc}) in the above diagram is well-defined.

Representative series and Sweedler's dual Theorem 6 (representative series)

Let $S \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$. The following assertions are equivalent

- 1. The series S belongs to $A^{rat}\langle\!\langle \mathcal{X} \rangle\!\rangle$.
- 2. There exists a linear representation (ν, μ, η) , of rank n, for S with $\nu \in M_{1,n}(A), \eta \in M_{n,1}(A)$ and a morphism of monoids $\mu : \mathcal{X}^* \to M_{n,n}(A)$ s.t., for any $w \in \mathcal{X}^*$, $\langle S | w \rangle = \nu \mu(w) \eta$.
- 3. The shifts ¹⁰ { $S \triangleleft w$ }_{$w \in \mathcal{X}^*$} (resp. { $w \triangleright S$ }_{$w \in \mathcal{X}^*$}) lie within a finitely generated shift-invariant A-module.

Moreover, if A is a field \mathbf{k} , the previous assertions are equivalent to

4. There exist (G_i, D_i)_{i∈Ffinite} s.t. Δ_{conc}(S) = ∑_{i∈Ffinite} G_i ⊗ D_i.
Hence, H^o_{LL} (X) = (k^{rat}⟨⟨X⟩⟩, □ , 1_{X*}, Δ_{conc}, e) and
H^o_{LL} (Y) = (k^{rat}⟨⟨Y⟩⟩, □ , 1_{X*}, Δ_{conc}, e).
Now, let A_{exc}⟨⟨X⟩⟩ (resp. A^{rat}_{exc}⟨⟨X⟩⟩) be the set of exchangeable ¹¹ series (resp. series admitting a linear representation with commuting matrices).
10. The left (resp. right) shift of S by P is P ⊳ S (resp. S ⊲ P) defined by, for w ∈ X*, ⟨P ⊳ S|w⟩ = ⟨S|wP⟩ (resp. ⟨S ⊲ P|w⟩ = ⟨S|Pw⟩).
11. i.e. if S ∈ A_{exc}⟨⟨X⟩⟩ then (∀u, v ∈ X*)((∀x ∈ X)(|u|_x ==|v|_x) ⇒ ⟨S|u⟩ ==|⟨S|ŷ⟩).

Kleene stars of the plane and conc-characters For any $S \in A(\langle X \rangle)$, let ∇S denotes $S - 1_{X^*}$.

Theorem 7 (rational exchangeable series)

- 1. $A_{\text{exc}}^{\text{rat}}\langle\!\langle X \rangle\!\rangle \subset A^{\text{rat}}\langle\!\langle X \rangle\!\rangle \cap A_{\text{exc}}\langle\!\langle X \rangle\!\rangle$. If A is a field then the equality holds and $A_{\text{exc}}^{\text{rat}}\langle\!\langle X \rangle\!\rangle = A^{\text{rat}}\langle\!\langle X_0 \rangle\!\rangle \sqcup A^{\text{rat}}\langle\!\langle x_1 \rangle\!\rangle$ and, for the algebra of series over subalphabets $A_{\text{fin}}^{\text{rat}}\langle\!\langle Y \rangle\!\rangle := \cup_{F \subset finite} \gamma A^{\text{rat}}\langle\!\langle F \rangle\!\rangle$, we get¹² $A_{\text{exc}}^{\text{rat}}\langle\!\langle Y \rangle\!\rangle = \cup_{k \ge 0} A^{\text{rat}}\langle\!\langle y_1 \rangle\!\rangle \amalg \ldots \amalg A^{\text{rat}}\langle\!\langle y_k \rangle\!\rangle \subsetneq A_{\text{exc}}^{\text{rat}}\langle\!\langle Y \rangle\!\rangle$.
- 2. $\forall x \in \mathcal{X}, A^{\mathrm{rat}}\langle\!\langle x \rangle\!\rangle = \{P(1-xQ)^{-1}\}_{P,Q \in A[x]}.$ If k is an algebraically closed field then $\mathbf{k}^{\mathrm{rat}}\langle\!\langle x \rangle\!\rangle = \mathrm{span}_{\mathbf{k}}\{(ax)^* \sqcup \mathbf{k}\langle x \rangle\!| a \in K\}.$
- If A is a Q-algebra without zero divisors, {x*}_{x∈X} (resp. {y*}_{y∈Y}) are conc-character and algebraically independent over (A⟨X⟩, □□) (resp. (A⟨Y⟩, □□)) within (A^{rat}⟨⟨X⟩⟩, □□) (resp. (A^{rat}⟨⟨Y⟩⟩, □□)).
- 4. Let $S \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$. If $A = \mathbf{k}$, a field, then t.f.a.e.

a) S is groupe-like, for
$$\Delta_{\text{conc}}$$
.
b) There exists $M := \sum_{x \in \mathcal{X}} c_x x \in \widehat{\mathbf{k}.\mathcal{X}} \text{ s.t. } S = M^*$.
c) There exists $M := \sum_{x \in \mathcal{X}} c_x x \in \widehat{\mathbf{k}.\mathcal{X}} \text{ s.t. } \nabla S = MS = SM$.
12. The following identity lives in $A_{\text{exc}}^{\text{rat}} \langle \langle Y \rangle \rangle$ but not in $A_{\text{exc}}^{\text{rat}} \langle \langle Y \rangle \rangle \cap A_{\text{fin}}^{\text{rat}} \langle \langle Y \rangle \rangle$,
 $(y_1 + \ldots)^* = \lim_{k \to +\infty} (y_1 + \ldots + y_k)^* = \lim_{k \to +\infty} y_1^* \cong \lim_{k \to +\infty} y_k^* \equiv \lim_{k \to +\infty} y_k^*$.

Triangular sub bialgebras of $(A^{rat}\langle\!\langle X \rangle\!\rangle, \ \mbox{\tiny \square}\ , \mathbf{1}_{X^*}, \Delta_{conc}, \mathbf{e})$

Let (ν, μ, η) be a linear representation of $R \in A^{\operatorname{rat}}\langle\!\langle X \rangle\!\rangle$ and \mathcal{L} be the Lie algebra generated by $\{\mu(x)\}_{x \in X}$.

Let $M(x) := \mu(x)x$, for $x \in X$. Then $R = \nu M(X^*)\eta$. If $\{\mu(x)\}_{x \in X}$ are triangular then let D(X) (resp. N(X)) be the diagonal (resp. nilpotent) letter matrix s.t. M(X) = D(X) + N(X) then $M(X^*) = ((D(X^*)T(X))^*D(X^*))$. Moreover, if $X = \{x_0, x_1\}$ then $M(X^*) = (M(x_1^*)M(x_0))^*M(x_1^*) = (M(x_0^*)M(x_1))^*M(x_0^*)$.

If A is an algabraically closed field, the modules generated by the following families are closed by conc, \square and coproducts :

 $\begin{array}{lll} (F_0) & E_1 x_1 \ldots E_j x_1 E_{j+1}, & \text{where} & E_k \in A^{\mathrm{rat}} \langle\!\langle x_0 \rangle\!\rangle, \\ (F_1) & E_1 x_0 \ldots E_j x_0 E_{j+1}, & \text{where} & E_k \in A^{\mathrm{rat}} \langle\!\langle x_1 \rangle\!\rangle, \\ (F_2) & E_1 x_{i_1} \ldots E_j x_{i_j} E_{j+1}, & \text{where} & E_k \in A^{\mathrm{rat}}_{\mathrm{exc}} \langle\!\langle X \rangle\!\rangle, x_{i_k} \in X. \\ \text{It follows then that} \end{array}$

- 1. *R* is a linear combination of expressions in the form (F_0) (resp. (F_1)) iff $M(x_1^*)M(x_0)$ (resp. $M(x_0^*)M(x_1)$) is nilpotent,
- R is a linear combination of expressions in the form (F₂) iff L is solvable. Thus, if R ∈ A^{rat}_{exc} ⟨⟨X⟩⟩ □ A⟨X⟩ then L is nilpotent.

CONTINUITY OVER CHEN SERIES

Iterated integrals over $\omega_i(z) = u_{x_i}(z)dz$ and along $z_0 \rightsquigarrow z$

Let Ω be a simply connected domain admitting $1_{\mathcal{H}(\Omega)}$ as neutral element. Let $\mathcal{A} := (\mathcal{H}(\Omega), \partial)$ and let \mathcal{C}_0 be a differential subring of \mathcal{A} ($\partial \mathcal{C}_0 \subset \mathcal{C}_0$) which is an integral domain containing \mathbb{C} .

 $\mathbb{C}\{\{(g_i)_{i \in I}\}\}\$ denotes the differential subalgebra of \mathcal{A} generated by $(g_i)_{i \in I}$, *i.e.* the \mathbb{C} -algebra generated by g_i 's and their derivatives

 $\{u_x\}_{x \in \mathcal{X}}$: elements in $\mathcal{C}_0 \cap \mathcal{A}^{-1}$ in correspondence with $\{\theta_x\}_{x \in \mathcal{X}}$ $(\theta_x = u_x^{-1}\partial)$. The iterated integral associated to $x_{i_1} \dots x_{i_k} \in \mathcal{X}^*$, over the differential forms $\omega_i(z) = u_{x_i}(z)dz$, and along a path $z_0 \rightsquigarrow z$ on Ω , is defined by $\alpha_{z_0}^z(1_{\mathcal{X}^*}) = 1_{\Omega},$

$$\begin{array}{lcl} \alpha_{z_0}^{z}(x_{i_1}\dots x_{i_k}) &=& \int_{z_0} \omega_{i_1}(z_1)\dots \int_{z_0} \omega_{i_k}(z_k).\\ \partial \alpha_{z_0}^{z}(x_{i_1}\dots x_{i_k}) &=& u_{x_{i_1}}(z) \int_{z_0}^{z} \omega_{i_2}(z_2)\dots \int_{z_0}^{z_{k-1}} \omega_{i_k}(z_k). \end{array}$$

$$\begin{aligned} \operatorname{span}_{\mathbb{C}} \{ \partial^{I} \alpha_{z_{0}}^{z}(w) \}_{w \in \mathcal{X}^{*}, I \geq 0} & \subset \quad \operatorname{span}_{\mathbb{C}\{\{(u_{x})_{x \in \mathcal{X}}\}\}} \{ \alpha_{z_{0}}^{z}(w) \}_{w \in \mathcal{X}^{*}} \\ & \subset \quad \operatorname{span}_{\mathbb{C}\{\{(u_{x}^{\pm 1})_{x \in \mathcal{X}}\}\}} \{ \alpha_{z_{0}}^{z}(w) \}_{w \in \mathcal{X}^{*}} \\ & \cong \quad \mathbb{C}\{\{(u_{x}^{\pm 1})_{x \in \mathcal{X}}\}\} \otimes_{\mathbb{C}} \operatorname{span}_{\mathbb{C}} \{ \alpha_{z_{0}}^{z}(w) \}_{w \in \mathcal{X}^{*}} ? \end{aligned}$$

Iterated integrals and integro differential operators

Let
$$C = \mathbb{C}\{\{(u_x^{\pm 1})_{x \in \mathcal{X}}\}\}$$
. One has $\theta_x \in C\langle\partial\rangle$, for $x \in \mathcal{X}$, and
 $\forall x, y \in \mathcal{X}, \quad \forall w \in \mathcal{X}^*, \quad \theta_x \alpha_{z_0}^z(yw) = u_x^{-1}(z)u_y(z)\alpha_{z_0}^z(w)$.
Now, let Θ be the morphism $\mathbb{C}\langle\mathcal{X}\rangle \longrightarrow C\langle\partial\rangle$ defined as follows
 $\Theta(w) = \begin{cases} \mathrm{Id} & \mathrm{if} \quad w = 1_{\mathcal{X}^*}, \\ \Theta(u)\theta_x & \mathrm{if} \quad w = ux \in \mathcal{X}^*\mathcal{X}. \end{cases}$
One has, for any $w \in \mathcal{X}^*$,

1.
$$\Theta(\tilde{w})\alpha_{z_0}^z(w) = 1_{\Omega}$$
, and then $\partial(\Theta(\tilde{w})\alpha_{z_0}^z(w)) = 0$
2. $L_w \alpha_{z_0}^z(\tilde{w}) = 0$, where $L_w := \partial \Theta(w) \in \mathcal{C}\langle \partial \rangle$.

For any $x_i \in \mathcal{X}$, let us consider a section of $\theta_{x_i} : \theta_{x_i} \iota_{x_i}^{z_0} = \mathrm{Id}$, *i.e.* $\forall f \in \mathcal{H}(\Omega), \quad \iota_{x_i}^{z_0} f(z) = \int_{-\infty}^{z} \omega_i(s) f(s).$

The operator
$$\theta_y \iota_x^{z_0}$$
, for $x \neq y$, admits $u_y u_x^{-1}$ as eigenvalue, *i.e.*
 $\forall f \in \mathcal{H}(\Omega), \quad (\theta_y \iota_x^{z_0}) f = u_y u_x^{-1} f$, in particular, $(\theta_y \iota_x^{z_0}) 1_{\Omega} = u_y u_x^{-1}$
Now, let \Im^{z_0} be the morphism defined as follows

$$\Im^{z_0}(w) = \begin{cases} \text{Id} & \text{if } w = 1_{\mathcal{X}^*}, \\ \Im^{z_0}(u)\iota_{\mathsf{X}}^{z_0} & \text{if } w = u\mathsf{X} \in \mathcal{X}^*\mathcal{X}. \end{cases}$$

Hence, for any $w \in X^*, \Im^{z_0}(w)\mathbf{1}_{\Omega} = \alpha_{z_0}^z(w).$

24 / 53

Practical example (polylogarithms)

For
$$X = \{x_0, x_1\}$$
 and $\Omega = \mathbb{C} \setminus \{0, 1\}$, let us consider
 $u_{x_0}(z) = z^{-1}$ and $u_{x_1}(z) = (1-z)^{-1}$.
Then, on the other hand,
 $\omega_0(z) = u_{x_0}(z)dz = z^{-1}dz$ and $\omega_1(z) = u_{x_1}(z)dz = (1-z)^{-1}dz$,
 $\theta_{x_0} = u_{x_0}^{-1}(z)\partial = z\partial$ and $\theta_{x_1} = u_{x_1}^{-1}(z)\partial = (1-z)\partial$.
On the other hand ¹³, $\mathcal{C} = \mathbb{C}\{\{(u_x^{\pm 1})_{x \in X}\}\} = \mathbb{C}[z, z^{-1}, (1-z)^{-1}]$ being
closed by $\theta_{x_0}, \theta_{x_1}$ and then by $\partial = \theta_{x_0} + \theta_{x_1} = \Theta(x_0 + x_1)$. One also has
1. $\Theta([x_1, x_0]) = [\theta_{x_1}, \theta_{x_0}] = \partial$.
2. $\forall w \in X^* x_1, \Im^0(w) \mathbf{1}_\Omega = \alpha_0^z(w) = \mathrm{Li}_w(z)$.
3. $(\theta_{x_0} \iota_{x_1}^{z_0}) \mathbf{1}_\Omega = z(1-z)^{-1}$ and $(\theta_{x_1} \iota_{x_0}^{z_0}) \mathbf{1}_\Omega = z^{-1} - 1$.
4. $[\theta_{x_0} \iota_{x_1}^{z_0}, \theta_{x_1} \iota_{x_0}^{z_0}] = 0$.
5. $(\theta_{x_0} \iota_{x_1}^{z_0}) (\theta_{x_1} \iota_{x_0}^{z_0}) = (\theta_{x_1} \iota_{x_0}^{z_0})(\theta_{x_0} \iota_{x_1}^{z_0}) = \mathrm{Id}$.

For any $L \in \mathcal{C}\langle \partial \rangle$, there is $P \in \mathcal{C}\langle X \rangle$ s.t $L = \Theta(P)$, meaning that Θ is surjective and non injective. Moreover, ker Θ is the ideal generated by $[x_1, x_0] - x_0 - x_1$.

13. Any $p \in \mathcal{C}$ is polynomial on z, z^{-1} and $(1 - z)^{-1}$ and admits 0 and 1 as poles. $\frac{25}{53}$

Structure of iterated integrals

Proposition 1

The following assertions are equivalent

- 1. The morphism $(\mathcal{C}\langle \mathcal{X} \rangle, \ \ u \ , 1_{\mathcal{X}^*}) \to (\operatorname{span}_{\mathcal{C}}\{\alpha_{z_0}^z(w)\}_{w \in \mathcal{X}^*}, \times, 1_{\Omega})$ is injective.
- 2. $\{\alpha_{z_0}^z(w)\}_{w \in \mathcal{X}^*}$ is *C*-linearly independent.
- 3. $\{\alpha_{z_0}^z(I)\}_{I \in \mathcal{L}yn\mathcal{X}}$ is *C*-algebraically independent.
- 4. $\{\alpha_{z_0}^z(x)\}_{x \in \mathcal{X}}$ is *C*-algebraically independent.
- 5. $\{\alpha_{z_0}^z(x)\}_{x \in \mathcal{X} \cup \{1_{\mathcal{X}^*}\}}$ is *C*-linearly independent.

If one of the above assertions holds then

- 1. $C[\{\alpha_{z_0}^z(w)\}_{w \in \mathcal{X}^*}]$ forms the universal C-module of solutions of all differential equations Ly = 0,
- 2. $C{\alpha_{z_0}^z(w)}_{w \in \mathcal{X}^*}$ forms the universal Picard-Vessiot extension related to all differential equations Ly = 0,

where ¹⁴ *L*'s are linear differential operators belonging to $\mathcal{C}\langle\partial\rangle$.

14. For any $w \in X^*$, let $\mathcal{I}_w := \{L \in \mathcal{C} \langle \partial \rangle \text{ s.t. } L\alpha_{z_0}^z(w) = 0\}$. Then \mathcal{I}_w is a left ideal.

Examples of linear differential equation Example 8 (with $\mathcal{C} = \mathbb{C}(z)$) $(\partial - z)y = 0.$ (1)1. $e^{z^2/2}$ is solution of (1). 2. $ce^{z^2/2} = e^{z^2/2}e^{\log c}$ is an other solution ($c \in \mathbb{R} \setminus \{0\}$). 3. $\{e^{z^2/2}\}$ is a fundamental set of solutions of (1). 4. $C\{e^{z^2/2}\}$ is a Picard-Vessiot extension related to (1). For $\theta_{x_0} = z\partial$ and $\theta_{x_1} = (1-z)\partial$, since $L_{x_1x_0} = \partial \theta_{x_1}\theta_{x_0} \in \mathcal{C}\langle \partial \rangle$ then let $L_{x_1x_0}y = (z(1-z)\partial^3 + (2-3z)\partial^2 - 1)y = 0.$ (2)1. $L_{x_1x_0}$ Li₂ = 0 meaning that Li₂ is solution of (2). 2. $c \operatorname{Li}_2 = \operatorname{Li}_2 e^{\log c}$ is an other solution $(c \in \mathbb{R} \setminus \{0\})$ but it is not independent to Li₂. 3. $\{Li_2, log, 1_\Omega\}$ is a fundamental set of solutions of (2).

4. C{Li₂, log, 1_{Ω}} is a Picard-Vessiot extension ¹⁵ related to (2).

15. $C{\text{Li}_2(z)} = C \otimes \mathbb{C}[\text{Li}_2(z), \log(1-z), \log(z)].$

Chen series of $\{\omega_i\}_{i\geq 1}$ and along $z_0 \rightsquigarrow z$

We get on the bialgebras $\mathcal{H}_{\sqcup \sqcup}(\mathcal{X})$ and $\mathcal{H}_{\sqcup \sqcup}(Y)$ (over a commutative ring A containing \mathbb{Q})

 $\mathcal{D}_{\mathcal{X}} := \sum_{w \in \mathcal{X}^*} w \otimes w = \prod_{l \in \mathcal{L}yn\mathcal{X}}^{\searrow} e^{S_l \otimes P_l} \text{ and } \mathcal{D}_{\mathbf{Y}} := \sum_{w \in \mathbf{Y}^*} w \otimes w = \prod_{l \in \mathcal{L}yn\mathbf{Y}}^{\searrow} e^{\Sigma_l \otimes \Pi_l}.$ Hence, since $\alpha_{z_0}^z(u \sqcup v) = \alpha_{z_0}^z(u)\alpha_{z_0}^z(v)$, for $u, v \in \mathcal{X}^*$, then the Chen series, $C_{z_0 \rightsquigarrow z} \in \mathcal{H}(\Omega) \langle\!\langle \mathcal{X} \rangle\!\rangle$, is given by

$$C_{z_0 \rightsquigarrow z} := \sum_{w \in \mathcal{X}^*} \alpha_{z_0}^z(w) w = (\alpha_{z_0}^z \otimes \mathrm{Id}) \mathcal{D}_{\mathcal{X}} = \prod_{l \in \mathcal{L}yn\mathcal{X}} e^{\alpha_{z_0}^z(S_l)P_l}$$

and then ¹⁶ $\Delta_{\sqcup\!\!\sqcup} C_{z_0 \rightsquigarrow z} = C_{z_0 \rightsquigarrow z} \otimes C_{z_0 \rightsquigarrow z}$ and $\langle C_{z_0 \rightsquigarrow z} | 1_{\mathcal{X}^*} \rangle = 1$.

Note that $C_{z_0 \rightarrow z}$ only depends on the homotopy class of $z_0 \rightarrow z$ and the endpoints z_0, z . One has $C_{z_0 \rightarrow z} C_{z_1 \rightarrow z_0} = C_{z_1 \rightarrow z}$. Or equivalently, $\forall w \in \mathcal{X}^*, \quad \langle C_{z_1 \rightarrow z} | w \rangle = \sum_{u, v \in \mathcal{X}^*, uv = w} \langle C_{z_0 \rightarrow z} | u \rangle \langle C_{z_1 \rightarrow z_0} | v \rangle.$ Although $\Delta_{\text{conc}} w = \sum_{u, v \in \mathcal{X}^*, uv = w} u \otimes v$ but $\Delta_{\text{conc}} C_{z_1 \rightarrow z} \otimes C_{z_1 \rightarrow z_0}.$

16. $\langle C_{z_0 \to z} | u \sqcup u \rangle = \langle C_{z_0 \to z} | u \rangle \langle C_{z_0 \to z} | v \rangle$ and on the other hand, $\langle C_{z_0 \to z} | u \sqcup u \rangle = \langle \Delta_{\sqcup \sqcup} C_{z_0 \to z} | u \otimes v \rangle, \langle C_{z_0 \to z} | u \rangle \langle C_{z_0 \to z} | v \rangle = \langle C_{\overline{z_0} \to \overline{z}} \otimes C_{\overline{z_0} \to z} | u \otimes v \rangle,$ (26)

More about Chen series

Note also that, for $g \in \mathcal{H}(\Omega)$, one has $C_{g(z_0) \rightsquigarrow g(z)} = g_* C_{z_0 \rightsquigarrow z}$, *i.e.* the Chen series of $\{g^*\omega_i\}_{i\geq 1}$ along the path $g^*(z_0 \rightsquigarrow z)$.

Example 9 (with $\omega_0(z) = z^{-1}dz$ and $\omega_1(z) = (1-z)^{-1}dz$)						
<i>g</i> (<i>z</i>)	Z	z^{-1}	$(z-1)z^{-1}$	$z(z-1)^{-1}$	$(1-z)^{-1}$	1-z
$g^*\omega_0$	ω_0	$-\omega_0$	$-\omega_1 - \omega_0$	$\omega_1 + \omega_0$	ω_1	$-\omega_1$
$g^*\omega_1$	ω_1	$\omega_1 + \omega_0$	$-\omega_0$	$-\omega_1$	$-\omega_1 - \omega_0$	$-\omega_0$

For any $n \ge 0$, one has

$$\begin{split} \mathbf{d}^n C_{z_0 \rightsquigarrow z} &= p_n C_{z_0 \rightsquigarrow z}, \\ \text{where, for any } S \in \mathcal{H}(\Omega) \langle\!\langle \mathcal{X} \rangle\!\rangle, \mathbf{d}S \in \mathcal{H}(\Omega) \langle\!\langle \mathcal{X} \rangle\!\rangle \text{ is defined as follows} \\ \mathbf{d}S &= \sum_{w \in \mathcal{X}^*} (\partial \langle S | w \rangle) w, \end{split}$$

 $p_n \in \mathcal{C}\langle \mathcal{X} \rangle$ is defined as follows

$$p_n = \sum_{\text{wgtr}=n} \sum_{w \in \mathcal{X}^n} \prod_{i=1}^{\deg r} \binom{\sum_{j=1}^i r_j + j - 1}{r_i} \tau_r(w)$$

and, for $w = x_{i_1} \dots x_{i_k} \in \mathcal{X}^*$ associated to the derivation multiindex $\mathbf{r} = (r_1, \dots, r_k) \in \mathbb{N}^k$ of weight $\operatorname{wgt} \mathbf{r} = |w| + \sum_{i=1}^k r_i$ and of degree deg $\mathbf{r} = |w|, \tau_{\mathbf{r}}(w) := \tau_{r_1}(x_{i_1}) \dots \tau_{r_k}(x_{i_k}) = (\partial^{r_1} u_{x_{i_1}}) x_{i_1} \dots (\partial^{r_k} u_{x_{i_k}}) x_{i_k}$.

29 / 53

Continuity, indiscernability and growth condition

For i = 0, 2, let $(\mathbf{k}_i, \|.\|_i)$ be a semi-normed space and $\mathbf{g}_i \in \mathbb{Z}$.

Definition 10

1. Let \mathcal{C} be a class of $\mathbf{k}_1 \langle\!\langle \mathcal{X} \rangle\!\rangle$. Let $S \in \mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle$ and it is said to be

a) continuous over $\mathcal{C}l$ if, for $\Phi \in \mathcal{C}l$, the following sum is convergent

 $\sum_{w \in \mathcal{X}^*} \|\langle S | w \rangle \|_2 \| \langle \Phi | w \rangle \|_1.$

We will denote $\langle S \| \Phi \rangle$ the sum $\sum_{w \in \mathcal{X}^*} \langle S | w \rangle \langle \Phi | w \rangle$ and $\mathbf{k}_2 \langle \langle \mathcal{X} \rangle \rangle^{\text{cont}}$ the set of continuous power series over $\mathcal{C}l$.

b) indiscernable over $\mathcal{C}l$ iff, for any $\Phi \in \mathcal{C}l$, $\langle S \| \Phi \rangle = 0$.

2. Let χ_1 and χ_2 be real positive functions over \mathcal{X}^* . Let $S \in \mathbf{k}_1 \langle\!\langle \mathcal{X} \rangle\!\rangle$.

- a) S satisfies the χ₁-growth condition of order g₁ if it satisfies ∃K ∈ ℝ₊, ∃n ∈ ℕ, ∀w ∈ X^{≥n}, ||⟨S|w⟩||₁ ≤ Kχ₁(w) |w|!^{g₁}. We denote by k₁^(χ₁,g₁)⟨⟨X⟩⟩ the set of formal power series in k₁⟨⟨X⟩⟩ satisfying the χ₁-growth condition of order g₁.
- b) If S is continuous over k₂^(χ₂,g₂) ((X)) then it will be said to be (χ₂, g₂)-continuous. The set of formal power series which are (χ₂, g₂)-continuous is denoted by k₂^(χ₂,g₂) ((X)) cont.

Convergence condition

Proposition 2

Let χ_1 and χ_2 be real positive functions over \mathcal{X}^* . Let g_1 and $g_2 \in \mathbb{Z}$ such that $g_1 + g_2 \leq 0$.

1. Let
$$\mathbf{k}_{1}^{(\chi_{1},g_{1})}\langle\!\langle \mathcal{X} \rangle\!\rangle$$
 and let $P \in \mathbf{k}_{1}\langle \mathcal{X} \rangle$.
The right residual of S by P belongs to $\mathbf{k}_{1}^{(\chi_{1},g_{1})}\langle\!\langle \mathcal{X} \rangle\!\rangle$.

- 2. Let $R \in \mathbf{k}_{2}^{(\chi_{2},g_{2})}\langle\!\langle \mathcal{X} \rangle\!\rangle$ and let $Q \in \mathbf{k}_{2}\langle \mathcal{X} \rangle$. The concatenation QR belongs to $\mathbf{k}_{2}^{(\chi_{2},g_{2})}\langle\!\langle \mathcal{X} \rangle\!\rangle$.
- 3. χ_1, χ_2 are morphisms over \mathcal{X}^* satisfying $\sum_{x \in \mathcal{X}} \chi_1(x)\chi_2(x) < 1$. If $F_1 \in \mathbf{k}_1^{(\chi_1, g_1)} \langle\!\langle \mathcal{X} \rangle\!\rangle$ (resp. $F_2 \in \mathbf{k}_2^{(\chi_2, g_2)} \langle\!\langle \mathcal{X} \rangle\!\rangle$) then F_1 (resp. F_2) is continuous over $\mathbf{k}_2^{(\chi_2, g_2)} \langle\!\langle \mathcal{X} \rangle\!\rangle$ (resp. $\mathbf{k}_1^{(\chi_1, g_1)} \langle\!\langle \mathcal{X} \rangle\!\rangle$).

Proposition 3

Let $\mathcal{C}l \subset \mathbf{k}_1 \langle\!\langle \mathcal{X} \rangle\!\rangle$ be a monoid containing $\{e^{tx}\}_{x \in \mathcal{X}}^{t \in \mathbf{k}_1}$. Let $S \in \mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle^{cont}$.

- 1. If S is indiscernable over Cl then for any $x \in \mathcal{X}$, $x \triangleleft S$ and $S \triangleright x$ belong to $\mathbf{k}_2 \langle\!\langle \mathcal{X} \rangle\!\rangle^{cont}$ and they are indiscernable over Cl.
- 2. S is indiscernable over Cl iff S = 0.

Chen series and differential equations

Let *K* be a compact on Ω . There is $c_K \in \mathbb{R}_{\geq 0}$ and a morphism M_K s.t. $\forall w \in \mathcal{X}^*$, $\|\langle C_{z_0 \to z} | w \rangle\|_K \leq c_K M_K(w) | w |!^{-1}$. Let $R \in \mathbb{C}^{\mathrm{rat}}\langle\!\langle X \rangle\!\rangle$ of minimal representation (λ, μ, η) of dimension *n*. Then $\forall w \in \mathcal{X}^*$, $|\langle R | w \rangle| \leq \|\lambda\|_{\infty}^{1,n} \|\mu(w)\|_{\infty}^{n,n} \|\eta\|_{\infty}^{n,1}$. With these data, we have

Theorem 11 If $c_{\mathcal{K}} \|\lambda\|_{\infty}^{1,n} \|\eta\|_{\infty}^{n,1} \sum_{x \in \mathcal{X}} M_{\mathcal{K}}(x) \|\mu(x)\|_{\infty}^{n,n} < 1$ then $\alpha_{z_0}^z(R) = \langle R \| C_{z_0 \rightsquigarrow z} \rangle$ and $\forall x \in \mathcal{X}, \quad \theta_x \alpha_{z_0}^z(R) = \sum_{x' \in \mathcal{X}} u_x^{-1}(z) u_{x'}(z) \alpha_{z_0}^z(R \triangleleft x').$ Letting $y(z_0, z) := \langle R \| C_{z_0 \rightsquigarrow z} \rangle$, the following assertions are equivalent :

- 1. There is $p \in \mathcal{C}_0\langle \mathcal{X} \rangle$ s.t. $\langle R \| p \mathcal{C}_{z_0 \rightsquigarrow z} \rangle = \langle R \triangleleft p \| \mathcal{C}_{z_0 \rightsquigarrow z} \rangle = 0$.
- 2. There is l = 0, ..., n 1 s.t. $\{\partial^k y\}_{0 \le k \le l}$ is \mathcal{C}_0 -linearly independent and $a_l, ..., a_1, a_0 \in \mathcal{C}_0$ s.t. $(a_l \partial^l + ... + a_1 \partial + a_0)y = 0$.

Proposition 4

Let
$$G \in \mathbb{C}\langle\!\langle X \rangle\!\rangle$$
 and $H \in \mathbb{C}_{exc}\langle\!\langle X \rangle\!\rangle$ s.t. $\alpha_{z_0}^z(G) = \langle G \| C_{z_0 \leftrightarrow z} \rangle$ and
 $h(\alpha_{z_0}^z(x_0), \alpha_{z_0}^z(x_1)) := \alpha_{z_0}^z(H) = \langle H \| C_{z_0 \leftrightarrow z} \rangle$ exist $(X = \{x_0, x_1\})$. Then
 $\alpha_{z_0}^z(HG) = \langle G | 1_{X^*} \rangle \alpha_{z_0}^z(H) + \int_{z_0}^z h(\alpha_s^z(x_0), \alpha_s^z(x_1)) d\alpha_{z_0}^s(G).$

32 / 53

Practical examples (eulerian functions)

For any
$$y \in \mathcal{X}^*$$
, $n \in \mathbb{N}$ and $t \in \mathbb{C}$, $|t| < 1$, since $y^n = y^{\perp n}/n!$ then
 $\alpha_{z_0}^z(y^n) = \frac{[\alpha_{z_0}^z(y)]^n}{n!}$ and $\alpha_{z_0}^z((ty)^*) = e^{t\alpha_{z_0}^z(y)}$.

Example 12 (extension of eulerian functions)

For any
$$z \in \Omega = \mathbb{C}$$
, $|z| < 1$, let us consider
 $\ell_1(z) := \gamma z - \sum_{k \ge 2} \zeta(k) \frac{(-z)^k}{k}$ and $\forall r \ge 2$, $\ell_r(z) := -\sum_{k \ge 1} \zeta(kr) \frac{(-z^r)^k}{k}$.
Hence, for any $k \ge 1$, letting $\omega_k = \partial \ell_k$, one has

$$\alpha_0^z(y_1^*) = e^{\ell_1(z)} =: \frac{1}{\Gamma_{y_1}(1+z)} \quad \text{and } \forall r \ge 2, \quad \alpha_0^z(y_k^*) = e^{\ell_k(z)} =: \frac{1}{\Gamma_{y_k}(1+z)}.$$

Example 13 (more about extented eulerian functions)

Let us consider $\omega_k = e^{\ell_k} \partial \ell_k (k \ge 1)$, where ℓ_k is defined as in Ex. 12. Then $\alpha_0^z(y_k) = e^{\ell_k(z)} = \Gamma_{y_k}^{-1}(1+z)$ and $\alpha_0^z(y_k^*) = e^{e^{\ell_k(z)}-1}$, $k \ge 1$.

Remark 1

In Examples 12, 13, Γ_{y_1} is nothing else the eulerian Gamma function, Γ . What are $\{\alpha_0^z(w)\}_{w \in Y^*Y}$? Similarly, in the case of $\{\alpha_0^z(w)\}_{w \in (Y \cup \{y_0\})^*}$ and with the new differential form $\omega_0(z) = z^{-1}dz$?

First properties of extented eulerian functions

Let G_r (resp. \mathcal{G}_r) denote the set (resp. group) of solutions, $\{\xi_0, \ldots, \xi_{r-1}\}$, of $z^r = (-1)^{r-1}$ (resp. $z^r = 1$), for $r \ge 1$. If r is odd, it is a group as $G_r = \mathcal{G}_r$ otherwise it is an orbit as $G_r = \xi \mathcal{G}_r$, where ξ is any solution of $\xi^r = -1$ (or equivalently, $\xi \in \mathcal{G}_{2r}$ and $\xi \notin \mathcal{G}_r$).

Proposition 5 (Weierstrass factorization)

1. For $r \ge 1, \chi \in \mathcal{G}_r$ and $z \in \mathbb{C}, |z| < 1$, the functions ℓ_r and e^{ℓ_r} have the symmetry, $\ell_r(z) = \ell_r(\chi z)$ and $e^{\ell_r(z)} = e^{\ell_r(\chi z)}$. In particular, for r even, as $-1 \in \mathcal{G}_r$, these functions are even.

2. For
$$|z| < 1$$
, we have
 $\ell_r(z) = \sum_{\chi \in G_r} \log \frac{1}{\Gamma(1 + \chi z)}$ and $e^{\ell_r(z)} = \prod_{\chi \in G_r} e^{\gamma \chi z} \prod_{n \ge 1} (1 + \frac{\chi z}{n}) e^{-\frac{\chi z}{n}}$.

3. For any odd
$$r \ge 2$$
, $\Gamma_{y_r}^{-1}(1+z) = e^{\ell_r(z)} = \Gamma^{-1}(1+z) \prod_{\chi \in \mathbf{G}_r \setminus \{1\}} e^{\ell_1(\chi z)}$.

4. In general, for any odd or even
$$r \ge 2$$
,
 $\ell_r(z) = \prod_{\chi \in G_r} e^{\ell_1(\chi z)} = \prod_{n \ge 1} (1 + \frac{z^r}{n^r}).$

34 / 53

Other practical examples (1/2)

Example 14
$$(\omega_1(z) = (1-z)^{-1} dz \text{ and } \omega_0(z) = z^{-1} dz)$$

1. For any $a, z \in \mathbb{C}$ s.t. $|a| < 1, |z| < 1$, one has
 $\operatorname{Li}_{(ax_0)^* x_1}(z) = \alpha_0^z((ax_0)^* x_1)$
 $= \int_0^z e^{a \log(\frac{z}{s})} \omega_1(s) = z^a \int_0^z \sum_{n \ge 0} s^{n-a} ds = \sum_{n \ge 1} \frac{z^n}{n-a}$

2. For any
$$n \in \mathbb{N}$$
 and $a, b \in \mathbb{C}$ s.t. $|a| < 1$, $|b| < 1$, one has
 $\operatorname{Li}_{x_0^n}(z) = \alpha_1^z(x_0^n) = \log^n(z)/n!$, $\operatorname{Li}_{x_1^n}(z) = \alpha_0^z(x_1^n) = \log^n((1-z)^{-1})/n!$,
 $\operatorname{Li}_{(ax_0)^*}(z) = \alpha_1^z((ax_0)^*) = z^a$, $\operatorname{Li}_{(bx_1)^*}(z) = \alpha_0^z((bx_1)^*) = (1-z)^{-b}$.
Let $\mathcal{C} = \mathbb{C}[z^a, (1-z)^b]_{a,b\in\mathbb{C}}$ and $S \in \mathbb{C}_{\operatorname{exc}}^{\operatorname{rat}}\langle\!\langle X \rangle\!\rangle \sqcup \mathbb{C}\langle X \rangle$ (resp.
 $\mathbb{C}_{\operatorname{exc}}^{\operatorname{rat}}\langle\!\langle X \rangle\!\rangle = \mathbb{C}_{\operatorname{exc}}^{\operatorname{rat}}\langle\!\langle x_0 \rangle\!\rangle \amalg \mathbb{C}_{\operatorname{exc}}^{\operatorname{rat}}\langle\!\langle x_1 \rangle\!\rangle$), we get
 $\operatorname{Li}_S(z) \in \mathcal{C}[\{\operatorname{Li}_l\}_{l \in \mathcal{L}ynX}]$ (resp. $\mathcal{C}[\log(z), \log(1-z)]$).

3. For any $z, a, b \in \mathbb{C}$ s.t. |z| < 1 and $\Re a > 0, \Re b > 0$, we get the partial Beta function and the eulerian Beta function, $B(a, b) = B(1; a, b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$, as follows¹⁷ $B(z; a, b) := \int_{0}^{z} dt \ t^{a-1}(1-t)^{b-1} = \begin{cases} \operatorname{Li}_{x_{0}[(ax_{0})^{*} \sqcup ((1-b)x_{1})^{*}](z)} \\ \operatorname{Li}_{x_{1}[((a-1)x_{0})^{*} \sqcup (-bx_{1})^{*}](z)} \end{cases}$. 17. $x_{0}[(ax_{0})^{*} \amalg ((1-b)x_{1})^{*} \text{ and } x_{1}[((a-1)x_{0})^{*} \amalg (-bx_{1})^{*}] \text{ are of the form} (F_{2})$. What is $\alpha_{0}^{z}(S)$, for S of the form (F_{2}) ?

35 / 53

Other on practical examples (2/2)

Example 15 (Polylogarithms indexed by non positive integers) Now, let us use the noncommutative multivariate exponential transforms, *i.e.*, for any rational exchangeable series, we get the following transform

$$\sum_{i_0,i_1 \ge 0} s_{i_0,i_1} x_0^{i_0} \ \mbox{in} \ x_1^{i_1} \ \ \longmapsto \ \ \sum_{i_0,i_1 \ge 0} \frac{s_{i_0,i_1}}{i_0! i_1!} \log^{i_0}(z) \log^{i_1}((1-z)^{-1}).$$

In particular, for any $n \in \mathbb{N}$, we have $x_0^n \mapsto \log^n(z)/n!$ and $x_1^n \mapsto \log^n((1-z)^{-1})/n!$. Then $(tx_0)^* \mapsto z^t$ and $(tx_1)^* \mapsto (1-z)^{-t}$. We then obtain the following polylogarithms indexed by rational series

$$\begin{split} \mathrm{Li}_{x_0^*}(z) &= z, \quad \mathrm{Li}_{x_1^*}(z) = (1-z)^{-1}, \quad \mathrm{Li}_{(ax_0+bx_1)^*}(z) = z^a(1-z)^{-b}\\ \text{Thus, for any } (s_1,\ldots,s_r) \in \mathbb{N}_+^r, \text{ there exists an unique series } R_{y_{s_1}\ldots y_{s_r}}\\ \text{belonging to } (\mathbb{Z}[x_1^*], \ \square \ , 1_{X^*}) \text{ s.t. } \mathrm{Li}_{-s_1,\ldots,-s_r} = \mathrm{Li}_{R_{y_{s_1}\ldots y_{s_r}}}. \text{ More precisely,} \end{split}$$

$$R_{\mathbf{y}_{\mathbf{s}_{1}}...\mathbf{y}_{\mathbf{s}_{r}}} = \sum_{k_{1}=0}^{s_{1}} \dots \sum_{k_{r}=0}^{\binom{(s_{1}+\ldots+s_{r})-r}{(k_{1}+\ldots+k_{r}-1)}} \binom{s_{1}}{k_{1}} \dots \binom{\sum_{i=1}^{r} s_{i} - \sum_{i=1}^{r-1} k_{i}}{k_{r}} \rho_{k_{1}} \sqcup \dots \sqcup \rho_{k_{r}},$$

where, for any $i = 1, \ldots, r$, if $k_i = 0$ then $\rho_{k_i} = x_1^* - 1_{X^*}$ else

36 / 53

NONCOMMUTATIVE PV THEORY AND INDEPENDENCE VIA WORDS

First step of noncommutative PV theory

The Chen series $C_{z_0 \rightsquigarrow z}$ of $\{\omega_k\}_{k \ge 1}$ and along the path $z_0 \rightsquigarrow z$ over Ω satisfies the following differential equation

(*NCDE*)
$$\mathbf{d}S = \overline{MS}$$
, with $M = \sum_{x \in \mathcal{X}} u_x x$ and $u_x \in \mathcal{C}_0 \cap \mathcal{A}^{-1}$.

$$\Delta_{\amalg} M = \sum_{x \in \mathcal{X}} u_x (1_{\mathcal{X}^*} \otimes x + x \otimes 1_{\mathcal{X}^*}) = 1_{\mathcal{X}^*} \otimes M + M \otimes 1_{\mathcal{X}^*}.$$

The space of solutions of (NCDE) is a right free $\mathbb{C}\langle\langle X \rangle\rangle$ -module of rank 1. By a theorem of Ree, $C_{z_0 \rightsquigarrow z}$ is a \square -group-like solution ¹⁸ of (NCDE). Moreover, if G, H are \square -group-like solutions there is a constant Lie series C s.t. $G = He^C$ (and conversely). From this, it follows that

Ithe Hausdorff group {e^C}_{C∈LieC}⟨⟨𝑋⟩⟩, group of characters of *H*_{⊥⊥}(𝑋), plays the role of the differential Galois group of (*NCDE*)+ <u>u</u> -group-like.

Which leads us to the following definition

• the PV extension related to (*NCDE*) is $\widehat{C_0.\mathcal{X}}\{C_{z_0 \rightsquigarrow z}\}$.

It, of course, is such that $\operatorname{Const}(\mathcal{C}_0\langle\!\langle \mathcal{X}\rangle\!\rangle) = \ker d = \mathbb{C}.1_\Omega\langle\!\langle \mathcal{X}\rangle\!\rangle.$

18. It can be obtained as the limit of a convergent Picard iteration, initialized at $\langle C_{z_0 \rightarrow z} | 1_{\mathcal{X}^*} \rangle = 1_{\mathcal{H}(\Omega)}$, for ultrametric distance.

Basic triangular theorem over a differential ring (BTT) Let $S \in \mathcal{A}(\langle X \rangle)$ be a group-like solution of (*NCDE*) in the following form

$$S = \sum_{w \in \mathcal{X}^*} \langle S | w \rangle w = \sum_{w \in \mathcal{X}^*} \langle S | S_w \rangle P_w = \prod_{l \in \mathcal{L} yn \mathcal{X}}^{\rtimes} e^{\langle S | S_l \rangle P_l}.$$

Then

- 1. If $H \in \mathcal{A}\langle\!\langle \mathcal{X} \rangle\!\rangle$ is another grouplike solution then there exists $C \in \mathcal{L}ie_{\mathcal{A}}\langle\!\langle \mathcal{X} \rangle\!\rangle$ such that $S = He^{C}$ (and conversely).
- 2. The following assertions are equivalent ¹⁹
 - a) $\{\langle S|w\rangle\}_{w\in\mathcal{X}^*}$ is \mathcal{C}_0 -linearly independent,
 - b) $\{\langle S|S_I \rangle\}_{I \in \mathcal{L}yn\mathcal{X}}$ is \mathcal{C}_0 -algebraically independent,
 - c) $\{\langle S|x \rangle\}_{x \in \mathcal{X}}$ is \mathcal{C}_0 -algebraically independent,
 - d) $\{\langle S|x \rangle\}_{x \in \mathcal{X} \cup \{1_{\mathcal{X}^*}\}}$ is \mathcal{C}_0 -linearly independent,

e)
$$\{u_x\}_{x\in\mathcal{X}}$$
 is such that, for $f\in \operatorname{Frac}(\mathcal{C}_0)$ and $(c_x)_{x\in\mathcal{X}}\in\mathbb{C}^{(\mathcal{X})}$,
 $\sum_{x\in\mathcal{X}}c_xu_x=\partial f \implies (\forall x\in\mathcal{X})(c_x=0).$

f) $(u_x)_{x \in \mathcal{X}}$ is free over \mathbb{C} and $\partial \operatorname{Frac}(\mathcal{C}_0) \cap \operatorname{span}_{\mathbb{C}} \{u_x\}_{x \in \mathcal{X}} = \{0\}.$ 19. In particular, for $S = C_{z_0 \rightsquigarrow z} = \sum_{w \in \mathcal{X}^*} \alpha_{z_0}^z(w)w$. Examples of positive cases over $\mathcal{X} = \{x\}, \mathcal{A} = (\mathcal{H}(\Omega), \partial)$

1. $\Omega = \mathbb{C}, u_x(z) = 1_\Omega, C_0 = \mathbb{C}\{\{u_x^{\pm 1}\}\} = \mathbb{C}.$ $\alpha_0^z(x^n) = z^n/n!, \text{ for } n \ge 1. \text{ Thus, } dS = xS \text{ and}$

$$S = \sum_{n \ge 0} \alpha_0^z(x^n) x^n = \sum_{n \ge 0} \frac{z^n}{n!} x^n = e^{zx}.$$

Moreover, $\alpha_0^z(x) = z$ which is transcendent over C_0 and the family $\{\alpha_0^z(x^n)\}_{n\geq 0}$ is C_0 -free. Let $f \in C_0$ then $\partial f = 0$. Thus, if $\partial f = cu_x$ then c = 0.

2. $\Omega = \mathbb{C} \setminus] - \infty, 0], u_x(z) = z^{-1}, \mathcal{C}_0 = \mathbb{C} \{ \{ z^{\pm 1} \} \} = \mathbb{C}[z^{\pm 1}] \subset \mathbb{C}(z).$ $\alpha_1^z(x^n) = \log^n(z)/n!, \text{ for } n \ge 1. \text{ Thus } \mathbf{d}S = z^{-1}xS \text{ and}$

$$S = \sum_{n \ge 0} \alpha_1^{z}(x^n) x^n = \sum_{n \ge 0} \frac{\log^n(z)}{n!} x^n = z^{\times}.$$

Moreover, $\alpha_1^z(x) = \log(z)$ which is transcendent over $\mathbb{C}(z)$ then over $\mathbb{C}[z^{\pm 1}]$. The family the family $\{\alpha_1^z(x^n)\}_{n\geq 0}$ is $\mathbb{C}(z)$ -free and then \mathcal{C}_0 -free. Let $f \in \mathcal{C}_0$ then $\partial f \in \operatorname{span}_{\mathbb{C}}\{z^{\pm n}\}_{n\neq 1}$. Thus, if $\partial f = cu_x$ then c = 0. Examples of negative cases over $\mathcal{X} = \{x\}, \mathcal{A} = (\mathcal{H}(\Omega), \partial)$

1. $\Omega = \mathbb{C}, u_{\mathsf{x}}(z) = e^{z}, \mathcal{C}_{0} = \mathbb{C}\{\{e^{\pm z}\}\} = \mathbb{C}[e^{\pm z}].$

 $\alpha_0^z(x^n) = (e^z - 1)^n/n!$, for $n \ge 1$. Thus, $dS = e^z xS$ and

$$S = \sum_{n \ge 0} \alpha_0^z(x^n) x^n = \sum_{n \ge 0} \frac{(e^z - 1)^n}{n!} x^n = e^{(e^z - 1)x}$$

Moreover, $\alpha_0^z(x) = e^z - 1$ which is not transcendent over C_0 and and $\{\alpha_0^z(x^n)\}_{n\geq 0}$ is not C_0 -free. If $f(z) = ce^z \in C_0$ $(c \neq 0)$ then $\partial f(z) = ce^z = cu_x(z)$.

2.
$$\Omega = \mathbb{C} \setminus] -\infty, 0], u_x(z) = z^a (a \notin \mathbb{Q}),$$

$$\mathcal{C}_0 = \mathbb{C} \{ \{z, z^{\pm a}\} \} = \operatorname{span}_{\mathbb{C}} \{z^{ka+l}\}_{k,l \in \mathbb{Z}}.$$

$$\alpha_0^z(x^n) = (a+1)^{-n} z^{n(a+1)}/n!, \text{ for } n \ge 1. \text{ Thus, } \mathbf{d}S = z^a \times S \text{ and}$$

$$S = \sum_{n \ge 0} \alpha_0^z(x^n) x^n = \sum_{n \ge 0} \frac{z^{n(a+1)}}{(a+1)^n n!} x^n = e^{(a+1)^{-1} z^{(a+1)} x}.$$

Moreover, $\alpha_0^z(x) = z^{a+1}/(a+1)$ which is not transcendent over C_0 and $\{\alpha_0^z(x^n)\}_{n\geq 0}$ is not C_0 -free. If $f(z) = cz^{a+1}/(a+1) \in C_0$ $(c \neq 0)$ then $\partial f(z) = cz^a = cu_x(z)$.

Independence over ${\ensuremath{\mathbb C}}$ of extended eulerian functions

Proposition 6

Let $L:=\mathrm{span}_{\mathbb C}\{\ell_r\}_{r\geq 1}$ and $E:=\mathrm{span}_{\mathbb C}\{e^{\ell_r}\}_{r\geq 1}.$ One has

- 1. The families $(\ell_r)_{r\geq 1}$ and $(e^{\ell_r})_{r\geq 1}$ are \mathbb{C} -linearly free and free from $1_{\mathcal{H}(\Omega)}$. Hence, with the differential forms $\{u_{y_r}dz\}_{r\geq 1}$ and 20
 - a) $u_{y_r} = e^{\ell_r} \partial \ell_r$, the restriction $\alpha_0^z : \mathbb{C}Y \to \mathbf{E}$ is injective.
 - b) $u_{y_r} = \partial \ell_r$, the restrictions of α_0^z , $\operatorname{span}_{\mathbb{C}} \{y_r\}_{r \ge 1} \to L$ and $\operatorname{span}_{\mathbb{C}} \{y_r^*\}_{r \ge 1} \to E$ are injective.
- 2. The families $(\ell_r)_{r\geq 1}$ and $(e^{\ell_r})_{r\geq 1}$ are \mathbb{C} -algebraically independent.
- 3. For any $r \ge 1$, one has
 - a) The functions ℓ_r and e^{ℓ_r} $\mathbb{C}\text{-algebraically independent.}$
 - b) The function ℓ_r is holomorphic on the open unit disc, $D_{<1}$,
 - c) The function e^ℓr (resp. e^{-ℓ}r) is entire (resp. meromorphic), and admits a countable set of isolated zeroes (resp. poles) on the complex plane which is expressed as t_{x∈G} XZ_{≤-1}.

20. see Examples 13 and 12, respectively.

Proof of independence over ${\mathbb C}$ of eulerian functions

- Since (ℓ_r)_{r≥1} is triangular ²¹ then (ℓ_r)_{r≥1} is C-linearly free. So is (e^{ℓ_r} - e^{ℓ_r(0)})_{r≥1}, being triangular, we get that (e^{ℓ_r})_{r≥1} is C-lin. free and free from 1_{H(Ω)}. Since {x^{*}}_{x∈X} are alg. free over (C(X), □, 1_{X*}) then we get the next results.
- 2. To prove the \mathbb{C} -algebraic independence of $\{e^{\ell_r}\}_{r\geq 1}$ and $(\ell_r)_{r\geq 1}$, using the result of the first item, we apply BTT with u_{y_r} defined as in a) and b), respectively.

3. a) Since
$$\ell_r(0) = 0$$
, $\partial e^{\ell_r} = e^{\ell_r} \partial \ell_r$ then ℓ_r , e^{ℓ_r} are \mathbb{C} -alg. free.

b) We have e^{ℓ₁(z)} = Γ⁻¹(1 + z) which proves the claim for r = 1. For r ≥ 2, note that 1 ≤ ζ(r) ≤ ζ(2) which implies that the radius of convergence of the exponent is 1 and means that ℓ_r is holomorphic on the open unit disc. This proves the claim.
c) e^{ℓ_r(z)} = Γ⁻¹_{y_r}(1 + z) (resp. e^{-ℓ_r(z)} = Γ_{y_r}(1 + z)) is entire (resp. meromorphic) as finite product of entire (resp. meromorphic) functions and Weierstrass factorization yields zeroes (resp. poles).

^{21.} $(g_i)_{i\geq 1}$ is said to be *triangular* if the valuation of $g_i, \varpi(g_i)$, equals $i \geq 1$. It is easy to check that such a family is \mathbb{C} -lin. free and that is also the case of families s.t. $(g_i - g(0))_{i\geq 1}$ is triangular.

Independence of $\{e^{\ell_r}\}_{k\geq 1}$ over differential subalgebra

The algebra $\mathbb{C}[L]$ (resp. $\mathbb{C}[E]$) is generated freely by $(\ell_r)_{r\geq 1}$ (resp. $(e^{\ell_r})_{r\geq 1}$) which are holomorphic on $D_{<1}$ (resp. entire) functions. Moreover, any $f \in \mathbb{C}[L] \setminus \mathbb{C}.1_{\mathcal{H}(\Omega)}$ (resp. $g \in \mathbb{C}[E] \setminus \mathbb{C}.1_{\mathcal{H}(\Omega)}$) is holomorphic on $D_{<1}$ (resp. entire) and then $f \notin \mathbb{C}[E]$ (resp. $g \notin \mathbb{C}[L]$). Hence, $E \cap L = \{0\}$ and more generally, $\mathbb{C}[E] \cap \mathbb{C}[L] = \mathbb{C}.1_{\mathcal{H}(\Omega)}$.

Let $\mathcal{L} := \mathbb{C}\{\{(\ell_r^{\pm 1})_{r\geq 1}\}\} = \mathbb{C}[\{\ell_r^{\pm 1}, \partial^i \ell_r\}_{r,i\geq 1}]$ and $\mathcal{E} := \mathbb{C}\{\{(e^{\pm \ell_r})_{r\geq 1}\}\}$. Let $\mathcal{L}^+ := \mathbb{C}[\{\partial^i \ell_r\}_{r,i\geq 1}]$, being integral domain generated by holomorphic functions. Since there is $0 \neq q_{i,l,k} \in \mathcal{L}^+$ s.t. $(\partial^i e^{\pm \ell_k})^l = q_{i,l,k} e^{\pm l\ell_k}, i, l, k \geq 1$ then $\mathcal{E}^+ := \operatorname{span}_{\mathbb{C}}\{(\partial^{i_l} e^{\pm \ell_{r_l}})^{i_l} \dots (\partial^{i_k} e^{\pm \ell_{r_k}})^{i_k}\}_{(i_l,h,r_l),\dots,(i_k,l_k,r_k)\in \mathbb{N} \geq 1} \times \mathbb{Z}_{\neq 0} \times \mathbb{N}_{\geq 1}, k \geq 1$ $\subseteq \operatorname{span}_{\mathcal{L}^+}\{e^{h_{\ell_1}+\dots+h_k\ell_{r_k}}\}_{(h,r_l),\dots,(l_k,r_k)\in \mathbb{Z}^*} \times \mathbb{N}_{\geq 1}, k \geq 1$

Note that $\mathcal{E}^+ \cap \mathcal{E} = \{0\}$ and \mathcal{C} is a differential subring ²² of $\mathcal{A} = \mathcal{H}(\Omega)$.

Theorem 16

1. The algebras $\mathbb{C}[\underline{E}]$ and $\mathbb{C}[\underline{L}]$ are alg. disjoint, within A.

2. The family $(e^{\ell_r})_{r\geq 1}$ (resp. $(\ell_r)_{r\geq 1}$) is alg. free over \mathcal{E}^+ (resp. \mathcal{L}^+).

22. $\operatorname{Frac}(\mathcal{C})$ is a differential subfield of $\operatorname{Frac}(\mathcal{A})$.

Proof of independence of eulerian functions

Considering the Chen series of the differential forms $\{u_{y_r}dz\}_{r\geq 1}$, with $u_{y_r} = e^{\ell_r}\partial\ell_r$, let $Q \in \operatorname{Frac}(\mathcal{L})$ (resp. $\operatorname{Frac}(\mathcal{C})$) and let $\{c_y\}_{y\in Y} \in \mathbb{C}^{(Y)}$ be a sequence of complex numbers, non simultaneously vanishing, s.t.

$$\partial Q = \sum_{y \in Y} c_y u_y = \sum_{r \ge 1} c_{y_r} e^{\ell_r} \partial \ell_r.$$

If $\partial Q \neq 0$ then, integrating, $Q \in E$ and then $E \supset \operatorname{Frac}(\mathcal{L}) \supset \mathcal{L} \supset \mathbb{C}[\mathcal{L}]$ (resp. $E \supset \operatorname{Frac}(\mathcal{C}) \supset \mathcal{C} \supset \mathcal{E}^+$) contradicting with $E \cap \mathbb{C}[\mathcal{L}] = \{0\}$ (resp. $E \cap \mathcal{E}^+ = \{0\}$). It remains that $\partial Q = 0$. Since $\{e^{\ell_r}\}_{r\geq 1}$ and then $\{\partial e^{\ell_r}\}_{r\geq 1}$ are \mathbb{C} -lin. free, then $c_{y_r} = 0$ ($r \geq 1$). By BTT, $\{\alpha_0^{\mathbb{C}}(S_l)\}_{l\in \mathcal{L}ynY}$ and then $\{\alpha_0^{\mathbb{C}}(S_y)\}_{y\in Y}$ are, respectively, 1. \mathcal{L} -alg. free yielding the $\mathbb{C}[\mathcal{L}]$ -alg. independence of $(e^{\ell_r})_{r\geq 1}$. It follows

- that $\mathbb{C}[\underline{E}]$ and $\mathbb{C}[\underline{L}]$ are alg. disjoint ²³, within $\mathcal{H}(\Omega)$.
- 2. C-alg. free yielding the alg. independence of $(e^{\ell_r})_{r\geq 1}$ over \mathcal{E}^+ .
- Now, suppose there is an algebraic relation among (ℓ_r)_{r≥1} over L⁺. By differentiating and substituting ∂ℓ_r by e^{-ℓ_r}∂e^{ℓ_r} in this relation, we obtain an algebraic relation among {e^{ℓ_r}}_{r≥1} over C[L] and E⁺
 <u>contradicting with two first items</u>. Hence, (ℓ_r)_{r≥1} is L⁺-alg. free.
 C[E] = C[{e^{ℓ_r}}_{r≥1}] and C[L] = C[{ℓ_r}_{r≥1}] are free and since {e^{ℓ_r}}_{r≥1} (resp. {ℓ_r}_{r≥1}) is alg. free over C[L] (resp. C[E]) then C[E + L] is freely generated by {e^{ℓ_r}, ℓ_r}_{r≥1} and C[E] ∩ C[L] = C.1_{H(Ω)}.

$Dom(Li_{\bullet}) AND Dom(H_{\bullet})$

Chen series of $\omega_0(z) = z^{-1}dz$ and $\omega_1(z) = (1-z)^{-1}dz$

Let $\gamma_0(\varepsilon)$ and $\gamma_1(\varepsilon)$ be the circular paths of radius ε encircling 0 and 1 clockwise, respectively. In particular, letting $\beta = \beta_1 - \beta_0$, one considers $\gamma_0(\varepsilon, \beta) = \varepsilon e^{i\beta_0} \rightsquigarrow \varepsilon e^{i\beta_1} \subset \gamma_0(\varepsilon),$ $\gamma_1(\varepsilon, \beta) = 1 - \varepsilon e^{i\beta_0} \rightsquigarrow 1 - \varepsilon e^{i\beta_1} \subset \gamma_1(\varepsilon).$

On the one hand, one has, for any i = 0 or 1 and $w \in X^+$, $|\langle C_{\gamma_i(\varepsilon,\beta)} | w \rangle| \le \varepsilon^{|w|_{x_i}} \beta^{|w|} | w |!^{-1}.$

It follows then

$$C_{\gamma_i(\varepsilon,\beta)} = e^{\mathrm{i}\beta x_i} + o(\varepsilon)$$
 and $C_{\gamma_i(\varepsilon)} = e^{2\mathrm{i}\pi x_i} + o(\varepsilon).$

Hence ²⁴, for $R \in \mathbb{C}^{rat}\langle\!\langle X \rangle\!\rangle$ of minimal representation (λ, μ, η) , one has

$$\langle R \| \mathbf{C}_{\gamma_i(\varepsilon,\beta)} \rangle = \lambda \left(\prod_{l \in \mathcal{L}ynX}^{\searrow} e^{\alpha_{\gamma_i(\varepsilon,\beta)}(S_l)\mu(P_l)} \right) \eta, \\ \langle R \| \mathbf{C}_{\gamma_i(\varepsilon)} \rangle = \lambda \left(\prod_{l \in \mathcal{L}ynX}^{\searrow} e^{\alpha_{\gamma_0(\varepsilon)}(S_l)\mu(P_l)} \right) \eta.$$

24. Recall that the map $\alpha_{z_0}^z : \mathbb{C}^{\mathrm{rat}}\langle\!\langle X \rangle\!\rangle \to \mathcal{H}(\Omega)$ is not injective. For example, $\alpha_{z_0}^z(z_0 x_0^* + (1 - z_0)(-x_1)^* - 1_{X^*}) = 0.$ $Dom(Li_{\bullet}), Dom_{\mathcal{R}}(Li_{\bullet}) \text{ and } Dom^{loc}(Li_{\bullet})$ Let $\mathcal{C} := \mathbb{C}[z^a, (1-z)^b]_{a,b\in\mathbb{C}}$ and $\Omega := \mathbb{C} \setminus (] - \infty, 0] \cup [1, +\infty[).$ Let $[S]_n = \sum \langle S | w \rangle w$ denotes the homogeneous components of S $w \in X^*$, |w| = n(of degree n). Then $\text{Dom}(\text{Li}_{\bullet})$ is the set of $S = \sum [S]_n$ s.t. $\sum \text{Li}_{[S]_n}$ is n>0 n>0 unconditionally convergent for the standard topology on $\mathcal{H}(\Omega)$. Denoting the open disk by $D_{< R}$ ($0 < R \leq 1$), let $\operatorname{Dom}_{R}(\operatorname{Li}_{\bullet}) := \{ S \in \mathbb{C}\langle\!\langle X \rangle\!\rangle x_{1} \oplus \mathbb{C}1_{X^{*}} | \sum \operatorname{Li}_{[S]_{n}} \text{ is unconditionally} \}$ convergent for the standard topology on $\mathcal{H}(D_{\leq R})$. $\mathrm{Dom}^{\mathrm{loc}}(\mathrm{Li}_{\bullet}) := \bigcup \mathrm{Dom}_{\mathcal{R}}(\mathrm{Li}_{\bullet}).$ Proposition 7 (L(z) = $C_{z_0 \rightarrow z}$ L(z₀)) Let $\rho := \langle R \| L \rangle$ $(R \in \text{Dom}(\text{Li}_{\bullet}))$. Then $\partial^n \rho = \langle R \| \mathbf{d}^n L \rangle$ and $\mathbf{d}^n L = \mathbf{p}_n L$. where $\{p_n\}_{n>0}$ are given previously, using $\tau_r(x_0) = -r!(-z)^{-(r+1)}x_0$ and $\tau_r(x_1) = r!(1-z)^{-(r+1)}x_1$. The following assertions are equivalent : 1. ρ satisfies a differential equation with coefficients in (\mathcal{C}, ∂) .

2. There exists $P \in \mathcal{C}\langle X \rangle$ such that $\langle R \| PL \rangle = \langle R \triangleleft P \| L \rangle = 0$.

48 / 53

Dom(H_•) Proposition 8

- 1. Dom(Li_•), containing $\mathbb{C}_{exc}^{rat}\langle\!\langle X \rangle\!\rangle \sqcup \mathbb{C}\langle X \rangle$, is closed by shuffle and then Li_{S $\sqcup I = Li_S Li_T$, for $S, T \in Dom(Li_•)$.}
- 2. Let $S \in \mathbb{C}\langle\!\langle X \rangle\!\rangle x_1 \oplus \mathbb{C}1_{X^*}$ and $0 < R \le 1$ s.t. $\sum_{n \ge 0} \mathrm{Li}_{[S]_n}$ is

unconditionally convergent, for the standard topology, on $\mathcal{H}(D_{\leq R})$. Then $\sum_{N\geq 0} a_N z^N = \frac{1}{1-z} \sum_{n\geq 0} \operatorname{Li}_{[S]_n}(z)$ is unconditionally convergent in the same domain and $a_N = \sum_{n\geq 0} \operatorname{H}_{\pi_Y([S]_n)}(N)$.

- 3. If $S \in \text{Dom}^{\text{loc}}(\text{Li}_{\bullet})$ then $H_{\pi_Y(S)} \in \text{Dom}(H_{\bullet}) := \pi_Y \text{Dom}^{\text{loc}}(\text{Li}_{\bullet})$.
- 4. $S \sqcup T \in \text{Dom}^{\text{loc}}(\text{Li}_{\bullet}) \text{ and } \pi_{X}(\pi_{Y}(S) \sqcup \pi_{Y}(T)) \in \text{Dom}^{\text{loc}}(\text{Li}_{\bullet}),$ for $S, T \in \text{Dom}^{\text{loc}}(\text{Li}_{\bullet}).$ Moreover, $\text{Li}_{S \sqcup T} = \text{Li}_{S} \text{Li}_{T}.$ $\text{H}_{\pi_{Y}(S) \sqcup \pi_{Y}(T)}(N) = \text{H}_{\pi_{Y}(S)}(N) \text{H}_{\pi_{Y}(T)}(N), \quad N \ge 0.$ $\frac{\text{Li}_{S}(z)}{1-z} \odot \frac{\text{Li}_{T}(z)}{1-z} = \frac{\text{Li}_{\pi_{X}(\pi_{Y}(S) \sqcup \pi_{Y}(T))}(z)}{1-z}.$

Bibliography I

- J. Berstel & C. Reutenauer.- Rational series and their languages, Spr.-Ver., 1988.
- V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, H. Nguyen, C. Tollu.– *Combinatorics of* φ -deformed stuffle Hopf algebras, https://hal.archives-ouvertes.fr/hal-00793118 (2014).

V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo, C. Tollu.– (*Pure*) transcendence bases in φ -deformed shuffle bialgebras, Journal électronique du Séminaire Lotharingien de Combinatoire B74f (2018).

V.C. Bui, V. Hoang Ngoc Minh, Q.H. Ngo.- Families of eulerian functions involved in regularization of divergent polyzetas, arXiv :2009.03931.

- P. Cartier.- Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Séminaire Bourbaki, 687 (1987), 31-52.
- P. Cartier.- Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents- Séminaire Bourbaki, 53^{ème}, n^o 885, 2000-2001.

K.-T. Chen.- Iterated integrals and exponential homomorphisms, Proc. Lond. Mathem. Soc. (3) 4 (1954) 502-512. bibitemAofAC. Costermans, J.Y. Enjalbert and V. Hoang Ngoc Minh.- Algorithmic and combinatoric aspects of multiple harmonic sums, Discrete Mathematics & Theoretical Computer Science Proceedings, 2005.

M. Deneufchâtel, G.H.E. Duchamp, V. Hoang Ngoc Minh, A.I. Solomon.- Independence of hyperlogarithms over function fields via algebraic combinatorics, in LNCS (2011), 6742.

G.H.E. Duchamp, V. Hoang Ngoc Minh, K.A. Penson.– About Some Drinfel'd Associators, International Workshop on Computer Algebra in Scientific Computing CASC 2018 - Lille, 17-21 September 2018.

G.H.E. Duchamp, V. Hoang Ngoc Minh, V. Nguyen Dinh.- Towards a noncommutative Picard-Vessiot theory, arXiv :arXiv :2008.10872.

Bibliography II

V. Drinfel'd– On quasitriangular quasi-hopf algebra and a group closely connected with $gal(\bar{q}/q)$, Leningrad Math. J., 4, 829-860, 1991.

J. Ecalle.- ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan, J. Th. des nombres de Bordeaux, 15, (2003), pp. 411-478.

M. Lothaire.- Combinatorics on Words, Enc. of Math. and its App., Addison-Wesley, 1983.

Hoang Ngoc Minh, G. Jacob.- Symbolic Integration of meromorphic differential equation via Dirichlet functions, Disc. Math. 210, pp. 87-116, 2000.

Ē.

Hoang Ngoc Minh, M. Petitot.– Lyndon words, polylogarithmic functions and the Riemann ζ function, Discrete Math., 217, 2000, pp. 273-292.

M. Hoffman.- Multiple harmonic series, Pacific J. Math. 152 (1992), pp. 275-290.

D.E. Radford.– A natural ring basis for shuffle algebra and an application to group schemes Journal of Algebra, 58, pp. 432-454, 1979.

C. Reutenauer.- Free Lie Algebras, London Math. Soc. Monographs (1993).

G. Viennot.- Algèbres de Lie libres et monoïdes libres, Lect. N. in Math., Springer-Verlag, 691, 1978.

Bibliography III

D. Zagier.- Values of zeta functions and their applications, in "First European Congress of Mathematics", vol. 2, Birkhäuser (1994), pp. 497-512.

THANK YOU FOR YOUR ATTENTION