combinatroive de citasin
ET POLYNÔMES
harmonicues diagomaux
l sets of an variables

$$
\begin{aligned}
& X=\left(x_{i j}\right)_{1 \leqslant i \leqslant l} \\
& A=\left(a_{i j}\right)_{1 \leq i \leq i \leq l} a_{i j} \in \mathbb{N} \\
& X^{A}:=\prod_{1 \leq j \leq m} \prod_{1 \leq j \leq!} x_{i j} a_{i j}
\end{aligned}
$$

DEGREE (Row som)

$$
\operatorname{DEO}\left(x^{A}\right):=\left(\sum_{\mid \leq j \leq m} a_{i j j}\right)_{1 \leq i \leq l}
$$

TId Projaction ON Homogenous ComPonent of DEGREE d.

SERIE DE HILBET
$k[x]$ annequ des Poiynômes en les vaciables X

$$
\begin{aligned}
V & \subseteq R[x] \quad \text { GRADUE } \\
V & =\bigoplus_{d \in \mathbb{N}^{e}} V_{d} \quad \gamma_{d}:=\pi_{d}(V) \\
V(q) & :=\sum_{d \in \mathbb{N}^{e}} q^{d} \operatorname{dim}\left(V_{d}\right)
\end{aligned}
$$

2 Commuting Actions $\left(G L_{l}\right.$ AND $\left.S_{x}\right)$

$$
\begin{array}{r}
(0 \cdot f)(x):=f(x \cdot \sigma) \\
\left(x \in \mathbb{S}_{n}\right.
\end{array}
$$

Permuting vaciables in gech Set

2 commuting A cions ($G L_{l}$ AND S_{n})

$$
\begin{array}{r}
(\xi \cdot \tau)(x):=f(\tau \cdot x) \\
\tau \in G L_{\ell}
\end{array}
$$

Permuring sors of racinbles

2 commuting A trons ($G L_{l}$ AND S_{n})
ir invariant for Both Actions

$$
\forall f \in V \quad \sigma \cdot f \in V \text { AND } f \cdot \tau \in V
$$

Diagonal invariant
Polynomials

$$
\begin{aligned}
& \sigma \cdot f=f \quad \forall \sigma \in \mathbb{S}_{n} \\
& x_{i 1}^{k} x_{j 1}^{d}+\ldots+x_{i m}^{k} x_{j n}^{d}
\end{aligned}
$$

FOnctions symétrieues

$$
\begin{aligned}
& e_{k}\left(x_{1}, \ldots, x_{m}\right) \quad h_{k}\left(x_{1}, \ldots, x_{m}\right) \\
& \sum_{k \geq 0} e_{k} t^{k}=\prod_{i}\left(1+x_{i} t\right) \\
& \sum_{k \geq 0} h_{k} t^{k}=\prod_{i} \frac{1}{1-x_{i} t} \\
& p_{3211}=p_{3} p_{i} p_{1}^{2} \quad p_{k}=x_{1}^{k}+\ldots+x_{k}^{k} \\
& m_{321}=\ldots+x_{i}^{3} x_{j}^{2} x_{k}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
h_{k}\left(l^{l}\right) & =h_{k}(\underbrace{1,1, \ldots, 1}_{l \text { copics }}) \\
& =\binom{l+k-1}{k}
\end{aligned}
$$

Diagonal harmonie Polynomitals

$$
I:=\langle f(x)| f(x) \text { invariavi, } f(0)=0\rangle
$$

Diagonal Harmonic Polynomials

$$
D \simeq k[x] / I
$$

CASE $l=1$

$$
\operatorname{dim}(\theta)=n!
$$

Diagonal harmonic Polynomials

$$
D \simeq k[x] / I
$$

CAB $l=2$

$$
\operatorname{dim}(D)=(n+1)^{n-1}
$$

$$
m=2
$$

$$
\begin{aligned}
D= & k\left\{1, x_{11}-x_{12}, \ldots, x_{l 1}-x_{l 2}\right\} \\
& D\left(q_{1}, q_{22}, \ldots, q_{l l}\right)=1+h_{1}(q)
\end{aligned}
$$

SERRIE DE HiLBET

Série de hilbert générigue

$$
\begin{aligned}
D)_{m b}(q) & =\sum_{\sigma \in \$_{m}} h_{\mu(\sigma)^{(q)}} \\
& \text { ou }
\end{aligned}
$$

$\mu(\sigma)$ partage de inu(σ)

Série de hilbert générigue

$$
\begin{aligned}
D_{m} & =\sum_{\sigma \in \mathbb{S}_{m}} h_{\mu(\sigma)} \\
& \text { ou }
\end{aligned}
$$

$\mu(\sigma)$ partage de inu(σ)

$$
\begin{aligned}
D_{1}= & 1 \\
D_{2}= & 1+h_{1} \\
D_{3}= & 1+2 h_{1}+h_{1}^{2}+h_{2}+h_{3} \\
D_{4}= & 1+3 h_{1}+3 h_{1}^{2}+2 h_{2} \\
& +h_{1}^{3}+3 h_{1} h_{2}+2 h_{3} \\
& +4 h_{1} h_{3}+h_{4} \\
& +h_{1} h_{4}+2 h_{5}+h_{6}
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}\left(q_{1}, q_{2}, q_{3}\right)= 1 \\
& D_{2}\left(q_{1}, q_{2}, q_{3}\right)= 1+\left(q_{1}+q_{2}+q_{3}\right) \\
& D_{3}\left(q_{1}, q_{2}, q_{3}\right)= 1+2\left(q_{1}+q_{3}+q_{3}\right)+ \\
&\left(q_{1}+q_{2}+q_{3}\right)^{2}+ \\
&\left(q_{3}^{2}+q_{3}^{2}+q_{1}^{2}+q_{1} q_{2}+\right. \\
& q_{1}+ \\
&\left.q_{1} q_{3}+q_{2} q_{3}\right)+ \\
&\left(q_{1}^{3}+\cdots+q_{1} q_{2} q_{3}\right)
\end{aligned}
$$

Dimeusions

$$
\begin{aligned}
& D_{1}\left(1^{2}\right)=1 \\
& D_{2}\left(1^{2}\right)=1+\binom{0}{1}
\end{aligned}
$$

$$
D_{3}\left(1^{\ell}\right)=1+2\binom{\ell}{1}+\binom{\ell}{1}^{2}+\binom{\ell+1}{2}+\binom{\ell+2}{3}
$$

$$
D_{4}\left(1^{\ell}\right)=1+3\binom{\ell}{1}+3\binom{\ell}{1}^{2}+2\binom{\ell+1}{2}+\binom{\ell}{1}^{3}
$$

$$
+3\binom{\ell}{1}\binom{\ell+1}{2}+2\binom{\ell+2}{3}+4\binom{\ell}{1}\binom{\ell+2}{3}
$$

$$
+\binom{\ell+3}{4}+\binom{\ell}{1}\binom{\ell+3}{4}+2\binom{\ell+4}{5}+\binom{\ell+5}{6}
$$

Francois bergeron, lacim

$$
\begin{aligned}
& D_{m}(1)=n! \\
& D_{n}(1,1)=(n+1)^{n-1} \\
& D_{n}(1,1,1) \stackrel{?}{=} 2^{n}(n+1)^{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& D_{m}(q)=\prod_{i=1}^{m}\left(1+\ldots+q^{i-1}\right) \\
& q^{(}\left(\frac{m}{2}\right) D_{m}(q, 1 / q)=[m+1]_{q}^{m-1}
\end{aligned}
$$

Graded Hilbear

SERIES of

$$
\begin{aligned}
\boldsymbol{P}_{1}= & 1 \\
\boldsymbol{P}_{2}= & s_{1} \\
\boldsymbol{P}_{3}= & s_{11}+s_{3} \\
\boldsymbol{P}_{4}= & s_{111}+s_{31}+s_{41}+s_{6} \\
\boldsymbol{P}_{5}= & s_{1111}+s_{311}+s_{411}+s_{42}+s_{43} \\
& +s_{511}+s_{61}+s_{62}+s_{71}+s_{81}+s_{10}
\end{aligned}
$$

Alternants Dimeusions

$q_{1}\left(1^{\ell}\right)=1$
$\hat{q}_{2}\left(l^{\ell}\right)=1+\binom{\ell-1}{1}$
$i_{3}\left(l^{\ell}\right)=1+2\binom{\ell-1}{1}+\binom{\ell-1}{1}^{2}+\binom{\ell+1}{3}$
$\boldsymbol{q}_{4}\left(l^{\ell}\right)=1+3\binom{\ell-1}{1}+3\binom{\ell-1}{1}^{2}+\binom{\ell-1}{1}^{3}+2\binom{\ell+1}{3}$

$$
+2\binom{\ell-1}{1}\binom{\ell+1}{3}+\binom{\ell-1}{1}\binom{\ell+2}{4}+\binom{\ell+4}{6}
$$

François bergeron, lacim

$$
\begin{gathered}
q_{n}(1,1)=\frac{1}{n+1}\binom{2 m}{m} \\
q^{\left(\frac{n}{2}\right)} P_{n}\left(q, \frac{1}{q}\right)=\frac{1}{[n+1]}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}
\end{gathered}
$$

$$
A_{m}(1,1,1) \stackrel{?}{=} \frac{2}{m(n+1)}\binom{4 n+1}{m-1}
$$

$N(\beta):$ Foance Ds β

Fonations de Stirionnemisnt

T T T
T
T
T
5rarr

FRANCOOIS BERGERON, LACIM

Parking function

Francois BERGERON, LACIM

Fongtions de Staionnemsurs

$$
(m+1)^{m-1}=\sum_{\beta}(\lambda(\beta))
$$

aaababbb

François BERGERON, LACIM

TREILLIS DE TIAMAJ

Francois Bergeron, Lacim

Y (β) : Nowbere i' inter valles DE LA Forme $[\alpha, \beta]$
$99=\eta(\beta)$

François Bergeron, lacim

SUR LE NOMBRE D'INTERVALLES DANS LES TREILLIS DE TAMARI

F. CHAPOTON

Résumé. On compte le nombre d'intervalles dans les treillis de Tamari. On utilise pour cela une description récursive de l'ensemble des intervalles. On introduit ensuite une notion d'intervalle nouveau dans les treillis de Tamari et on compte les intervalles nouveaux. On obtient aussi l'inverse de deux séries particulières dans un groupe de séries formelles en arbres.

Abstract. We enumerate the intervals in the Tamari lattices. For this, we introduce an inductive description of the intervals. Then a notion of "new interval" is defined and these are also enumerated. As a side result, the inverse of two special series is computed in a group of tree-indexed series.

$$
\frac{2}{m(m+1)}\binom{4 m+1}{m-1}=\sum_{\text {Dyck }} \eta(\beta)
$$

Preuve combinatoire?

$$
2^{m}(n+1)^{n-2} \stackrel{?}{=} \sum_{\text {oyck }} \eta(\beta)\binom{m}{\lambda(s)}
$$

Frobenius Transform of THE GRADED CHARACTER OF D

$$
D_{M}(\omega ; q):=\sum_{d \in \mathbb{N}^{2}} q^{d} \frac{1}{\omega^{!}} \sum_{\sigma \in S_{M}} x^{\alpha}(\sigma) p_{\lambda(\sigma)}
$$

Frobenius transform of THE GRADED CHARACTER OF D

$$
D_{2}(w ; q)=m_{2}(w)+\left(1+h_{1}(q)\right) m_{1}(w)
$$

$$
\begin{aligned}
D_{3}(w ; q)=m_{3} & +\left(1+h_{1}+h_{2}\right) m_{21} \\
& +\left(1+2 h_{1}+h_{1}^{2}+h_{2}+h_{3}\right) m_{11}
\end{aligned}
$$

$$
\begin{gathered}
\partial_{m}(\omega ; q) \stackrel{q}{=} \sum_{\lambda \mid-m} m_{\lambda} \sum_{\operatorname{Desec}(\sigma) \subseteq S(\lambda)} h_{\mu_{\lambda}(\sigma)} \\
S(\lambda)=\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots\right\}
\end{gathered}
$$

$$
\begin{aligned}
& D_{m}(\omega ; 1)=h_{1}^{m} \\
& D_{m}(w ; 1,1)=\sum_{\beta} e_{\lambda(s)} \\
& D_{m}(\omega ; 1,1,1)=\sum_{\beta} n(s) e_{\lambda(s)}
\end{aligned}
$$

TreiLIS dE m-TAMARI

François Bergeron, Lacim
Wednesday, 20 Oct, 2010

TreiLIS dE m-TAMARI

TrEILLIS DE m-TAMARi

François BERGERON, LACIM
$\eta^{(m)}(\beta)$: Nomber d'inter valles de la Focme $[\alpha, \beta]$
m-Parking Function

François Bergeron, Lacim
m-Parking function

$$
\begin{aligned}
& \text { T: }\{1, \operatorname{oog} m\} \rightarrow\{1, \ldots, m m n\} \\
& \# \pi^{-1}(\{1,000, R m\}) \geq k
\end{aligned}
$$

m-Parking function OF SHAPE β

$$
(m m+1)^{m-1}=\sum_{\substack{\beta \\ m \rightarrow D y c k}}(\lambda(s))
$$

d. m a centain Analogous space for each min.

A idgal genepared BY DAGONAL ALTERNATS

$$
\begin{aligned}
& D^{m}:=\mathbb{A}^{m-1} I A^{m-1} \\
& \sigma * f:=\operatorname{sig}(\sigma)^{m-1} \sigma \cdot \mathcal{F}
\end{aligned}
$$

0^{m} A cERTAIN ANALOGOUS SPACE FOR EACH Mn.

$$
\begin{aligned}
D_{m}^{(m)}(w ; 1,1)= & \sum_{\beta} e_{\lambda(A)} \\
& m-D y \in k \\
D_{m}^{(m)}(1,1)= & (m n+1)^{m-1} \\
A_{m}^{(m)}(1,1)= & \frac{1}{(m m+1)}\binom{(m+1) m}{m}
\end{aligned}
$$

$$
\begin{aligned}
& D_{m}^{(m)}(\omega ; 1,1,1) \stackrel{?}{=} \sum_{\substack{\beta \\
m-D y c k}} \eta^{(m)}(\beta) e_{\lambda(\beta)} \\
& B_{m}^{(m)}(1,1,1) \stackrel{?}{=}(m+1)^{n}(m m+1)^{m-2} \\
& A_{m}^{(m)}(1,1,1) \stackrel{?}{=} \frac{(m+1)}{m(m m+1)}\binom{(m+1)^{2} n+m}{m-1}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dom}_{m}^{(a m)}(\omega ; j, 1,1) \stackrel{?}{=} \\
& \qquad \sum_{\mu+M} \frac{(-1)^{n-l(n)} p_{r}(v)}{z_{r}} \prod_{k \in \mu}^{(n a x+1)^{l(n)-z} \prod_{k \in}\binom{k(m+1)}{k}}
\end{aligned}
$$

Francois Bergeron, Lacim

$$
\begin{aligned}
& \frac{(m+1)}{m(m m+1)}\left(\begin{array}{c}
(m+1)^{2} m+m \\
m-1
\end{array} \sum_{\substack{m=D y c k}} \eta^{(m)}(\beta)\right. \\
& (m+1)^{n}(m m+1)^{m-2} \stackrel{\sum_{M=D Y C K}}{ } \eta^{(m)}(\beta)(\lambda(\beta))
\end{aligned}
$$

Purely combinatorial statements

