Semigroup Bialgebras

Matthieu Deneufchâtel

Laboratoire d'Informatique de Paris Nord, Université Paris 13

13 novembre 2012

Perturbations of the shuffle product :

$$
\begin{aligned}
1 \amalg w=w 山 1 & =w ; \\
(a u) \amalg(b v) & =a(u \amalg(b v))+b((a u) \amalg v)
\end{aligned}
$$

Quasi-shuffle product :

$$
\left\{\begin{array}{c}
u \pm 1=1 \pm u=u ; \\
y_{i} u \pm y_{j} v=y_{i}\left(u \pm y_{j} v\right)+y_{j}\left(y_{i} u \pm v\right)+y_{i+j}(u \pm v)
\end{array}\right.
$$

Goal : To give a general framework and a general theory to these operations.

Idea : Consider the dual law, for example

$$
\Delta_{+ \pm}\left(y_{r}\right)=y_{r} \otimes 1+1 \otimes y_{r}+\sum_{\substack{p+q=r \\ p, q \geq 1}} y_{p} \otimes y_{q} .
$$

Roughly speaking : sum over the decomposition of the elements of a semigroup S.

$$
\Delta\left(y_{q}\right)=\sum_{\substack{s, t \in S \\ s \cdot t=q}} y_{s} \otimes y_{t}
$$

Let (S, \cdot) be a commutative semigroup.

- Alphabet

$$
Y=\left\{\begin{array}{cr}
\left\{y_{s}\right\}_{s \in S \backslash\{\omega\}} & \text { in case } \omega \text { is a zero of } S ; \\
\left\{y_{s}\right\}_{s \in S} & \text { otherwise }
\end{array}\right.
$$

- Application

$$
\Delta_{S}: k\langle Y\rangle \rightarrow k\langle\langle Y \otimes Y\rangle\rangle
$$

defined as a morphism of algebras given on the letters by

$$
\Delta_{S}\left(y_{s}\right)=y_{s} \otimes 1_{Y^{*}}+1_{Y^{*}} \otimes y_{s}+\sum_{s_{1} \cdot s_{2}=s} y_{s_{1}} \otimes y_{s_{2}}
$$

We say that S has the finite decomposition property if, $\forall s \in S \backslash\{\omega\}$,

$$
\begin{equation*}
\left|\left\{\left(s_{1}, s_{1}\right), s_{1} \cdot s_{2}=s\right\}\right|<\infty \tag{D}
\end{equation*}
$$

Examples:

- the null semigroup (shuffle algebra);
- \mathbb{N}^{+}(stuffle algebra) ;
- more generally, $\mathbb{N}^{(X)}$ for arbitrary X (finite or infinite).

A locally finite semigroup S is such that $\forall s \in S \backslash\{\omega\}$,

$$
\left|\bigcup_{k \geq 1} D_{k}(s)\right|<\infty
$$

where

$$
D_{k}(s)=\left\{s_{1}, \ldots, s_{k} \in S \text { such that } s_{1} \cdot \ldots \cdot s_{k}=s\right\}
$$

Assume that S be a finite decomposition semigroup.

- The image of Δ_{S} is an element of $k\langle Y \otimes Y\rangle \simeq k\langle Y\rangle \otimes k\langle Y\rangle$.
- In fact, Δ_{S} defines a coassociative coproduct on $k\langle Y\rangle$.
- Define

$$
\epsilon_{Y}(w)=\left\{\begin{array}{l}
1 \text { if } w=1_{Y^{*}} ; \\
0 \text { otherwise } .
\end{array}\right.
$$

It is a counit for the bialgebra we are constructing.

Assume that S be \mathbb{N}-graded : there exists a function $\ell_{S}: S \rightarrow \mathbb{N}$ such that

$$
S_{m} \cdot S_{n} \subset S_{m+n}, \forall m, n \in \mathbb{N}^{*}
$$

(with $S_{n}=\left\{s \in S, \ell_{S}(s)=n\right\}$); assume also that $\ell_{S}^{-1}(0)=\emptyset$.
Then \mathcal{B} is graded: define $|\cdot|: \mathcal{B} \rightarrow \mathbb{N}$ by

$$
\left|y_{s}\right|=\ell_{S}(s) ; \quad\left|y_{s_{1}} \ldots y_{s_{k}}\right|=\sum_{i=1}^{k}\left|y_{s_{i}}\right|
$$

The product and the coproduct are compatible with the homogeneous components (defined by

$$
\left.\mathcal{B}_{p}=\operatorname{span}\left(y_{s_{1}} \ldots y_{s_{k}},\left|y_{s_{1}} \ldots y_{s_{k}}\right|=p\right), \quad p \in \mathbb{N}\right)
$$

The letters y_{m} need not be primitive (for example for the law dual of the stuffle product).

New letters (primitive) obtained by projections $\operatorname{Prim}(\mathcal{B})$ (set of primitive elements of \mathcal{B}).

Assume that S is graded with finite fibers which means that $S=\bigcup_{n \in \mathbb{N}} S_{n}$ with

$$
\left\{\begin{array}{l}
S_{0}=\emptyset ; \\
\left|S_{k}\right|<\infty, \quad \forall k \in \mathbb{N}
\end{array}\right.
$$

Denote by \mathcal{B}_{+}the kernel of ϵ_{Y}. One has $\mathcal{B}=\mathcal{B}_{+} \oplus k 1_{Y^{*}}$.
Let I_{+}denote the projector on \mathcal{B}_{+}along k. If S is locally finite, I_{+}is (locally) nilpotent.

Therefore, it is possible to define π_{1} by :

$$
\pi_{1}=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} I_{+}^{* k}=\log _{*}\left(\operatorname{Id}_{\mathcal{B}}\right)
$$

where $*$ denotes the convolution product of $\mathcal{E n d}(\mathcal{B})$.

Application / Example : Consider the bialgebra obtained with the previous setting for $S=(\mathbb{N},+)$.

Then $\mathcal{B}=\left(k\langle Y\rangle\right.$, conc, $\left.1_{X^{*}}, \Delta_{\nleftarrow}, \epsilon\right)$ with $Y=\left\{y_{j}\right\}_{j \geq 1}$.
We define, for $b \in \mathcal{B}_{+}, \Delta_{+}(b)=\Delta(b)-b \otimes 1-1 \otimes b$. One has

$$
\left(\left(I_{+} \otimes I_{+}\right) \circ \Delta\right)(b)=\left(\Delta_{+} \circ I_{+}\right)(b)
$$

This implies that Δ_{+}is a coassociative coproduct on \mathcal{B}_{+}(since Δ is coassociative). Hence, on \mathcal{B}_{+}and for all $k \geq 2$,

$$
\Delta_{+}^{(k-1)}=I_{+}^{\otimes k} \circ \Delta^{(k-1)} .
$$

This relation allows us to compute the convolution powers of $I_{+}\left(y_{j}\right)$:

$$
I_{+}^{* k}\left(y_{j}\right)=\mu^{(k-1)} \circ\left(I_{+}^{\otimes k}\right) \circ \Delta^{(k-1)}\left(y_{j}\right)=\mu^{(k-1)} \circ \Delta_{+}^{(k-1)}\left(y_{j}\right)
$$

and to prove that

$$
\pi_{1}\left(y_{j}\right)=\sum_{n>0} \frac{(-1)^{n-1}}{n} \sum_{\substack{i_{1}+\cdots+i_{n}=j \\ i_{1}, \ldots, i_{n}>0}} y_{i_{1}} \ldots y i_{n}
$$

We assume that it is possible to define a total order $<$ on the letters y_{s} :

$$
y_{s_{1}}<\cdots<y_{s_{k}}<\cdots
$$

If this is the case, it is possible to define

- Lyndon words $\mathfrak{L y n}(Y)$;
- the standard factorization $\sigma(w)$ (a pair of Lyndon words ℓ_{1} and ℓ_{2} such that $w=\ell_{1} \ell_{2}$ and ℓ_{2} is of maximal length among all the factorizations of w).

We construct a basis of $k\langle Y\rangle$ as follows:
$P_{S}(w)=\left\{\begin{array}{cc}\pi_{1}\left(y_{s}\right) & \text { if } w=y_{s} ; \\ {\left[P_{S}\left(\ell_{1}\right), P_{S}\left(\ell_{2}\right)\right]} & \text { if } w \in \mathfrak{L y n}(Y) \text { and } \sigma(w)=\left(\ell_{1}, \ell_{2}\right) ; \\ P_{S}\left(\ell_{1}\right)^{\alpha_{1}} \ldots P_{S}\left(\ell_{k}\right)^{\alpha_{k}} & \text { if }\left\{\begin{array}{c}w=\ell_{1}^{\alpha_{1}} \ldots \ell_{k}^{\alpha_{k}} \\ \ell_{1}>\cdots>\ell_{k}\end{array}\right.\end{array}\right.$.
(we recall that $\left[P_{1}, P_{2}\right]=P_{1} P_{2}-P_{2} P_{1}, \forall P_{1}, P_{2} \in k\langle Y\rangle$).

- $\left(P_{\ell}\right)_{\ell \in \mathfrak{L y n}(Y)}$ is a basis of $\operatorname{Prim}(k\langle Y\rangle)$;
- the PBW theorem ensures that $\left(P_{w}\right)_{w \in Y^{*}}$ is a basis of $k\langle Y\rangle$.

