On Certain Statistics of Random Weighted Partitions of Large Integers

Ljuben Mutafchiev
American University in Bulgaria, 2700 Blagoevgrad, Bulgaria and Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
ljuben@aubg.bg

April 6, 2011

Abstract

A weighted partition of the positive integer n is a multiset of size n whose decomposition into a union of disjoint components (parts) satisfies the following condition: for a given sequence of non-negative numbers $\left\{b_{k}\right\}_{k \geq 1}$, a part of size k appears in exactly one of b_{k} possible types. Assuming that a weighted partition of n is selected uniformly at random from the set of all such partitions, we study the limiting distributions of the largest part size X_{n} and of the number of parts ξ_{n} as $n \rightarrow \infty$. Under certain fairly general assumptions on the Dirichlet generating series $D(s)=\sum_{k=1}^{\infty} b_{k} k^{-s}, s=\sigma+i y$, G. Meinardus, Math. Z. 59(1954), 388-398, has obtained the asymptotic of the total number of weighted partitions of n. We assume that Meinardus conditions hold and prove that X_{n} and ξ_{n}, appropriately normalized, converge weakly to non-degenerate probability distributions.

