ON THE SUM OF THE SIZES OF
BINARY SUBTREES OF A PERFECT BINARY TREE

CYRIL BANDERIER

Personal note. 5, June 2000
Algorithms Project, INRIA
http://algo.inria.fr/banderier

This note answers to Florent Madeleine’s question (private communication) “Can the sum of the sizes of binary subtrees of a perfect binary tree of size \(n \) be polynomially bounded?”

I will show that the answer is no.

A binary tree is a tree whose each internal node have
– either two child which are internal nodes,
– or two child which are leaves.

Let \(b_k \) be the number of binary trees with \(k \) internal nodes. The set \(B \) of binary trees satisfies the following recursive definition

\[
B = \mathcal{L} \cup B \times N \times B
\]

(a binary tree is either a leaf \(\mathcal{L} \), or a node \(N \) with two binary subtrees, which are themselves elements of \(B \)). Hence, giving weight 0 to leaves and 1 to internal nodes, one gets a functional equation for the generating function \(B(z) \):

\[
B(z) = 1 + zB(z)^2.
\]

Solving it gives the closed form formula

\[
B(z) = \frac{1 - \sqrt{1 - 4z}}{2z}.
\]

The smallest binary tree, which consist of a “root which is also a leaf”, has height 0. Let \(B_h(x) = \sum_{k \geq 0} b_{k,h} x^k \) be the generating function (in fact it is a polynomial!) for binary trees of height \(\leq h \) (and where \(n \) codes the size of the tree, i.e. its number of internal nodes).

Then, one has the following recurrence:

\[
B_h(x) = 1 + xB_{h-1}(x)^2 \quad B_0(x) = 1.
\]

A perfect binary tree (some authors also call it “complete” binary tree) is a binary tree for which all leaves are at the same height, say \(h \). Consequently, a perfect binary tree has \(2^h - 1 \) internal nodes.

The number of binary subtrees of this tree is the number of binary trees of height \(\leq h \), that is \(B_h(1) \). The sum of the size of these trees is given by

\[
\sum_{b \in B, \text{height}(b) \leq h} |b| = \sum_{k \geq 0} kb_{k,h} = B'_h(1).
\]
The asymptotics of the $b_{k,h}$’s is a non-trivial problem, nevertheless it has been solved by Flajolet & Odlyzko in 1984. It is related to the behavior of the Mandelbrot fractal $z_{j+1} = z_j^2 + 1$ at $z_0 = 1$. The authors give

$$\max_{k \geq 0} b_{h,k} \sim 2^{-h/2} \exp(2^{h}0.407354\ldots) 0.685517\ldots$$

Taking $n := 2^h - 1$ (input size, i.e., size of the perfect binary tree) leads to the upper bound

$$B'_h(1) \leq n \max_{k \geq 0} b_{h,k} = C \exp(0.407354\ldots n) \sqrt{n}$$

In conclusion, $B'_h(1) \approx B_h(1) \approx C_1^{2^h}$ where $C_1 = 1.50283680104975649975293642373\ldots$

(in fact one can be more precise and give the asymptotic equivalent $B'_h(1) \sim C_2 2^h B_h(1)$ where $C_2 = 1.58990495515926\ldots$)

Finally, one gets the following bounds for the number of subtrees of complete binary tree of size n (and thus of height $h = \lfloor \log_2 n \rfloor$) when $n > 2$

$$1.5^n < B'_h(1) < 1.51^n.$$ This excludes any polynomial bound.

The following Maple lines easily compute the first few terms

```maple
B:=1;L:=[ ];L2:=[ ];
to 9 do
    B := 1+x*B^2; L:=[op(L),subs(x=1,B)]:L2:=[op(L2),subs(x=1,diff(B,x))]
od:
```

Thus, the value for $h \geq 0$ of $B_h(1)$ are:

1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802, 1947270476915296449597034445493848930452791205, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026,

and for $B'_h(1)$: 1, 1, 8, 105, 6136, 8766473, 8245941529080, 3508518207951157937469961, 31159265746788494170062926869662848646207622648, 121730849123990668293928808143949647369824617866018613054550291305521734402541037327173705.

Reference: