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Abstract. We initiate a study of pattern avoidance in quarter-plane lattice walks. First
we demonstrate surprising links between Kreweras excursions (avoiding a pattern of
length 2) and some famous lattice walk models, such as Gessel, Gouyou-Beauchamps,
and Poélya excursions. Next we explore the nature (algebraic, hypergeometric, D-finite)
of the corresponding generating functions. In particular, we show that pattern avoidance
does not necessarily preserve algebraicity or D-finiteness.
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1 Introduction

In this paper we study pattern avoidance in quarter-plane lattice walks. A lattice walk
is a word w over a stepset — an alphabet S, whose elements (steps) are interpreted as
vectors in the plane, and then w is visualized as these vectors concatenated to each other
to form a polygonal line. A pattern in this context is a fixed word p, and we deal with
enumeration of walks that avoid p (that is, p is not a consecutive subsequence of w).

The case of directed walks (the models where all the steps have a positive x-coordinate)
which avoid a given pattern was studied in [1]. Therein, the vectorial kernel method
was developed in order to obtain an explicit expression of the corresponding generating
functions, which are systematically algebraic.

In this work, we initiate the study of pattern avoidance for walks in the quarter
plane IN2. We use the term excursion to indicate a walk in IN? that starts and ends at (0,0),
and the term meander to indicate a walk in IN? that starts at (0,0) and ends anywhere in
the quarter plane. As a first step, in this article we focus on some combinatorial surprises
which then occur. Firstly, we show that some models of pattern-avoiding Kreweras
excursions are in bijection with some famous walk models which do not involve any
pattern avoidance. Secondly, we comment on the nature of the corresponding generating
functions and prove some cases of (non)-algebraicity or D-finiteness.
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2 Historical background: Kreweras, Gessel, Pdlya, and
Gouyou-Beauchamps models

We briefly survey the history of five noteworthy models which will play a role in the
next section for our study of patterns in lattice walks. Each model is characterized by its
allowed steps; for example, the stepset of Kreweras’ model is S = {|, -, '} (see Fig. 1).

< | A |+ r=

Kreweras Gessel Pélya Gouyou-Beauchamps Diagonal

Figure 1: The stepsets of five important models of lattice walks.

2.1 Kreweras walks

In his PhD thesis [27], Kreweras tackled the question of the enumeration of variants of
solid partitions (initially studied by MacMahon in [29]), and of other combinatorial struc-
tures (like Young tableaux) related to natural posets. He applied this to the m-candidate
ballot problem: the number of ways that n people can vote for candidates Cy,...,Cy,
such that C; remains in the lead (or tied) with respect to the other candidates during the
ballot process. For 3 candidates, any such process corresponds to a Kreweras meander.
If C; remained in the lead but ties with all other candidates at the end, this corresponds
to a Kreweras excursion of length 3n. They are counted (applying [27, Section 3.2]) by

4" 3n
Can = 2n+1)(n+1) (n) 1)

This is the sequence 4006335 in the On-Line Encyclopedia of Integer Sequences (OEIS).
Kreweras proved (2.1) by a guess-and-prove approach, which was then simplified in
collaboration with Niederhausen using hypergeometric identities [28, 31]. Gessel later
proved (2.1) in [18] with a probabilistic approach, rephrasing the problem in terms of
walks in IN?. For other stepsets deeper mathematical tools are required. In fact, these
more general walk models correspond to the evolution of two queues in parallel, and
probabilists were interested in the stationary distribution of the corresponding infinite
Markov chain. To this aim, they solved these models with the machinery of boundary-
value problems and Riemann surfaces (see e.g. [14]). For Kreweras walks, Flatto and
Hahn [17] proved that the generating function of this stationary distribution is algebraic.
This method was revisited combinatorially by Bousquet-Mélou in [8], and later with
Mishna in [11], where they performed a classification of almost all models of walks with
small steps as algebraic, D-finite, etc. (the classification was completed since).

The algebraicity of Kreweras walks can also be established via a bijection with planar
maps (see Bernardi [4]), but many combinatorialists still hope for an even simpler proof,
e.g. based on a link with the inherent algebraicity of tree-like structures (see [2, 9, 23]).
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2.2 Gessel walks

In 2001, Ira Gessel conjectured that, for the stepset {—=,+, ",/ }, the number ¢, of
excursions of length n is hypergeometric (and given by the OEIS sequence A135404):

0y — 42"(1/2)u(5/6)n
" (2)u(5/3)n

This startling conjecture motivated the name “Gessel walks” since attached to this model.
The hypergeometricity of Gessel excursions was first proven by Kauers, Koutschan,
and Zeilberger in [25] using computer algebra techniques. Later, Bostan and Kauers [6]
proved that the trivariate generating function (length, final location) is algebraic. These
two proofs are nice examples of the “guess and prove” art via computer algebra.
However, puzzled by a discrepancy between the simplicity of the excursion formula (2.2)
and the enormous size of algebraic equations required for its proof, several authors looked
for a more “human” approach. Bostan, Kurkova, and Raschel [7] found such a proof using
complex analysis, and Bousquet-Mélou [10] found another proof using generating func-
tion manipulations. It still remains a challenge to find an elementary combinatorial proof.

, where (a)y, :==a(a+1)---(a+m—1). (2.2)

2.3 Pélya walks and diagonal walks

Pélya’s drunkard problem asks for the return probability of a random walk on the Z?2 lattice
(with equiprobable steps |, 1, =, and <-). This probability tends to 1 (as proven by
Pélya [32]). A natural question is which conditions on walks in IN? imply this property.
This is answered in [15], where conditions for (null-)recurrence are given.

Pélya walks in IN? were also studied by Guy, Krattenthaler, and Sagan [21], who
gave bijective proofs for the number of walks between any two points. In particular, the
number of Pélya excursions in IN? of length 27 is given by the OEIS sequence A005568:

eon = CuCpyia, (2.3)

where C, is the n-th Catalan number. These walks have further connections to planar
maps and shuffles of parenthesis systems, as studied by Cori, Dulucq, and Viennot in [12].
The diagonal walks (see Figure 1) are even simpler to enumerate: ey, = C2 (OEIS A001246).

24 Gouyou-Beauchamps walks

In [19] Gouyou-Beauchamps studied Pélya walks in the quarter plane which stay weakly
below the line y = x, leading to what is now known as Gouyou-Beauchamps walks.
Gouyou-Beauchamps excursions in IN? are counted by the OEIS sequence A005700:

€ = Cncn+2 - C;%—i—l' (2-4)

Furthermore, Gouyou-Beauchamps walks of length 21 ending on the x-axis are in bijection
with Pélya excursions of length 21, and with Young tableaux of size 2n and height < 4 [20].
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3 Pattern avoidance in Kreweras excursions: bijections

In this section, we consider avoidance of patterns of length 2 in Kreweras walks. Recall
that we deal with consecutive patterns, and note that several occurrences of a pattern can
overlap (e.g., the word ABBBABABB has precisely three occurrences of the pattern BB).
Due to the symmetry of the Kreweras stepset with respect to the diagonal y = x, there
are just five patterns of length 2 that yield non-equivalent pattern-avoiding walk models.
We show that the corresponding pattern-avoiding excursion models exhibit surprising
links to the well-known models mentioned in Section 2: Gessel, Gouyou-Beauchamps,
Pélya, and diagonal excursions. These pattern-avoiding Kreweras excursion models are
listed in Table 1, along with their respective enumerating sequences, their OEIS entries,
and equinumerous quarter-plane excursion models without any forbidden patterns.

#{K i P
Pattern p {Kreweras exc1.1r:°,10ns OEIS In bijection with r(.)ven
of length 37 avoiding p} in
1 —— 1,2,11, 85,782, 8004, ... A135404 | Gessel excursions Thm. 4
2 el 1,2,11, 85,782, 8004, ... A135404 | Gessel excursions Prop. 5
G | i
3| 7 |1,1,5 37,332, 3343, ... None | —oooct SXCHISIONS 1o g
ending with |
4 / 1,2,10, 70, 588, 5544, ... 2005568 1 Pélya excursions Prop. 9
5 | 1,1, 4, 25,196, 1764, ... 4001246 1 Diagonal excursions | Thm. 10

Table 1: Summary of results concerning quarter-plane models in bijection with pattern-
avoiding Kreweras excursions. Models 1, 2, and 3 are algebraic, while models 4 and 5
are D-finite, but not algebraic (see Section 4).

Most notably, the first two entries of Table 1 relate pattern-avoiding Kreweras excur-
sions to Gessel excursions. In particular, one deduces that the patterns «~— and /
are equidistributed among Kreweras excursions. In the following theorem, we prove a
stronger result about the joint statistics of these two patterns.

Theorem 1. The number of Kreweras excursions of length 3n with k occurrences of ~——and
¢ occurrences of /. is equal to the number of Kreweras excursions of length 3n with ¢ occurrences
of ~——and k occurrences of /. .

Proof. We provide an autobijection on the set of Kreweras excursions of length 3n that
switches the occurrences of the patterns ~—-—and /. In this bijection, the patterns can be
independently considered despite the possible overlap of a < step in both patterns.

Ut is footnoteworthy that AO0O5568 (resp. A001246) also enumerates Gouyou-Beauchamps walks of even
(resp. odd) length ending on the y-axis, and Young tableaux of height < 4 of even (resp. odd) size; see [20].
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Let w be a Kreweras excursion with k occurrences of the pattern «-— and ¢ occurrences
of the pattern /. We mark each < which is followed by a <+, and separately each *
which is preceded by a <—. Note that any < step followed by a ,” step and preceded by a
< step (that is, any < step being at the overlap of the two patterns) is never marked.

We define the index of a step to be its ordinal number, from 1 to n, among the steps of
the same kind, in the order as they occur in the excursion.

1. Let ay, ay, ..., a be the indices of the marked <— steps, in the order as they occur in w.
For eachi =1,2,...,k, in this order, we remove the < step with the index 4;, and
insert it immediately before the * step with the index a; + 1. This transformation
yields a valid excursion, since the section of the walk up until the (a; + 1)-th * step
can have up to a; + steps. The newly obtained excursion is denoted by w'.

2. Next, let by, b, ..., by be the indices of the marked , steps, in the order as they
occur in w’. (Note that we only consider * steps marked before Step 1.) For each
j=1¢¢—-1,...,1, in this order, we remove the < step that occurs immediately
before a marked / step with index b;, and insert it immediately before the < step
with index bj. As above, one can routinely show that the resulting walk is an
excursion; we denote it by w’.

Refer to Figure 2 for an example, where the marked < steps are coloured red, and the
marked 7 steps are coloured blue. It is easily seen directly that w — w” is an involution.
Therefore, it is a bijection.

Finally, we show that w” has ¢ occurrences of <-—and k occurrences of /. At Step 1,
k occurrences of <—yield k distinct “new” occurrences of / in w’. The only way in
which the patterns can overlap in @/, is a string /__, where the first +— was adjacent
to the (marked) " in w, and the second < is an inserted one. Then, at Step 2, £ “old”
occurrences of / yield distinct occurrences «-—in w”. In particular, in each string /__
the step , is marked, therefore it yields both «=—and /£ in w”. All in all, it follows that
w — w' swaps the numbers of occurrences of ~—-—and /. O

w wl w//

~—

Figure 2: An example of the mapping w — w” in the proof of Theorem 1.

For k = 0 we immediately obtain the following result.

Corollary 2. There is a bijection between ~—— -avoiding Kreweras excursions of length 3n and
L -avoiding Kreweras excursions of length 3n.
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The following table shows the number of Kreweras excursions of length 3n with
precisely k occurrences of the pattern <—— (or, due to Theorem 1, of the pattern /).

k=0| 1 2 |3

n=1 2
2 11 5
3 85 93 14

4\ 782 | 1432 | 560 | 42

Of course, the row sums in this table are Kreweras numbers. As noted in Table 1 (the
tirst two entries), the first column, corresponding to avoidance, contains Gessel numbers:
this will be proven in Theorem 4. On the other hand, the maximum possible number of
occurrences of <-—is n — 1, and the Kreweras excursions that have that many occurrences
of this pattern make a nice cameo of Catalan numbers, as we show now.

Proposition 3. The number of Kreweras excursions of length 3n with n — 1 occurrences of the
pattern <—— (or, equivalently, /) is the (n + 1)-th Catalan number.

Proof. The only way in which such an excursion can have n — 1 occurrences of the
pattern <—— is when all <— steps occur consecutively, and this must happen after all of
the  steps. Therefore the walk ends with a consecutive sequence of n < steps followed
by a (possibly empty) consecutive sequence of | steps to return to (0,0). Since it is
possible to reconstruct the end of the excursion by knowing where the first < step is, we
remove this end-section of the excursion and replace it with a  step followed by | steps
to reach the x-axis. The obtained walk then consists of n + 1 steps of type , and n + 1
steps of type |, which is a slanted Dyck path of length 2(n + 1). This correspondence is
easily seen to be a bijection, and it is demonstrated in the following figure.

| 4 : I )

We now prove the links between constrained Kreweras excursions and Gessel excursions.

Theorem 4 (Table 1, Entry 1). There is a bijection between < -avoiding Kreweras excursions
of length 3n and Gessel excursions of length 2n.

Proof. Consider the following correspondence between steps of «-—-avoiding Kreweras
excursions (left) and Gessel excursions (right):

7 — 1 b — /S S d — 7/

Note that in «-—-avoiding Kreweras excursions, a step immediately before a <— step
can be either / or |. Therefore, “short-cutting” " and | steps followed by <, and
leaving all other steps unchanged, directly yields the desired bijection. O
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Proposition 5 (Table 1, Entry 2). There is a bijection between /., -avoiding Kreweras excursions
of length 3n and Gessel excursions of length 2n.

Proof. This follows directly from Theorems 1 and 4. O

Next we note that in the bijection from Theorem 4, | steps (not followed by a < step)
are preserved. Hence we have the following generalization.

Proposition 6. There is a bijection between Gessel excursions of length 2n with at least m final |
steps and < -avoiding Kreweras excursions of length 3n which end with at least m | steps.

The following theorem will be one key ingredient for proving some of the bijective
links of Table 1.

Theorem 7. There is a bijection between /" -avoiding Kreweras excursions of length 3n and
~——-avoiding Kreweras excursions of length 3n whose last step is |.

Proof. Let w be a / -avoiding Kreweras excursion of length 3n. Consider the n-tuple
(a1,...,a,), where a; is the number of < steps that immediately follow the i-th | step.
Note that we have a1 + ...+ a, = n. Transform (ay,...,a,) into a {0,1}-sequence
of length 2n — 1, where the gap between entries contributes 0, and the entry «; > 0
contributes «; 1s. (This is a classical bijection, popularized by Feller [16, Chapter I1.5],
often called the “balls and bars” bijection.) Now erase from w all the < steps, thus
obtaining a sequence @ of n  steps and n | steps in the same order as they were
in w, and insert <— steps into @ after precisely those positions where we have 1 in the
{0,1}-sequence constructed above. Refer to Figure 3 for an illustration, where the «
steps are coloured blue. The new Kreweras walk w’ avoids «=— and has last step |, and
it is routine to prove that it is an excursion, and that this mapping is a bijection. O

I

w 4 z’() Y w

(0,4,2,0,0,0) «~ 011110110000

Figure 3: An example of the bijection w <+ w’ in the proof of Theorem 7.

Now, Proposition 6 and Theorem 7 yield directly the following correspondence.

Corollary 8 (Table 1, Entry 3). There is a bijection between _/ -avoiding Kreweras excursions of
length 3n and Gessel walks which end with at least one | step.
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We now prove the link with Pélya excursions.

Proposition 9 (Table 1, Entry 4). There is a bijection between / -avoiding Kreweras excursions
of length 3n and Pélya excursions of length 2n.

Proof. Similarly to the proof of Theorem 4, the correspondence of steps of / -avoiding
Kreweras (left) and Pélya (right) excursions is given by the following rules.

Finally, we prove the link between __[-avoiding Kreweras excursions and diagonal
excursions.

Theorem 10 (Table 1, Entry 5). There is a bijection between ,_]-avoiding Kreweras excursions
of length 3n and diagonal excursions of length 2n.

Proof. Any Kreweras excursion which avoids the pattern __| is uniquely determined by
the positions of the  steps in the excursion: All steps in between ,” steps are a sequence
of < steps followed by a sequence of | steps. Therefore we can uniquely decompose
the excursions into pairs of Dyck paths (D3, D;), where D; consists of all ,* and | steps
(in order) in the excursion, and D, all  and < steps in the excursion. The original
Kreweras excursion can be obtained from pairs by placing all <— and | steps between a
given pair of  steps with < steps first, followed by | steps.

From the pair (D, D;) of two Dyck paths of length 21, we consider the i-th step in
Dy =dy1d1p...d1py and Dy = dy1dap . . . dp o, simultaneously, 1 < i < 2n, and form the
i-th step g; of the diagonal excursion as follows:

i Ifdl,i :/( and dZ,i :/‘,thengi :/

e Ifdy; =,/ and dy; =+, then g; =\.

o If dl,i :i and dZ,i :/‘, then i :\

e Ifdy; =] and dy; =<, then g; =/".
Now, diagonal excursions are decomposed into pairs of Dyck paths by considering the
projection of the excursion on the x- and y-axis. These Dyck paths correspond to (D1, D)
as described above. See Figure 4 for an example. O

1!
1!

A / v

Figure 4: An example for the bijection from Theorem 10.
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4 Pattern avoidance and nature of generating functions

In this section, we tackle the question of the (non)-algebraicity of pattern-avoiding walks.
To this aim, it is useful to first recall the notion of directed walks. A walk is called
directed if all its steps (x,y) have x > 0. Since such walks can be encoded by context-free
grammars, their generating functions are systematically algebraic; see e.g. [3, 13].
What happens for more general stepsets, when one additionally forbids a pattern, and
constrains the domain? This is summarized in the following theorem.

Theorem 11 ((Non)-algebraicity of generating functions). For any fixed stepset, let F(t, x,y,v)
be the generating function of walks constrained in a domain, where t, x,y, and v encode respectively
the length of the walk, its final x and y coordinates, and the number of occurrences of a given
pattern p. The nature of this generating function satisfies:

a) For walks in Z? avoiding a pattern, F is rational.

b) For walks in IN X Z avoiding a pattern, F is algebraic.

c) For directed walks in N? avoiding a pattern, F is algebraic.

d) For non-directed walks in IN? avoiding a pattern, F is not necessarily algebraic.

Proof.  a) The walks in Z? avoiding a pattern p with stepset S can be encoded by the
complement of a regular expression, namely {S*pS*}¢, and thus have a rational
generating function.

b) These pattern-avoiding walks in IN x Z are encodable by a pushdown automaton
with a single stack (encoding the distance to the y-axis), and thus by a context-free
grammar [3]; therefore, they have an algebraic generating function.

c) If the walk is directed, then, by the vectorial kernel method (as developed in [1]),
F(t,x,y,v) is algebraic. In particular, setting v = 0, the generating function of
directed walks avoiding a given pattern is algebraic.

d) For non-directed walks, one can have F(t,x,y,1) algebraic, but F(t,x,y,0) not
algebraic. It is e.g. the case for Entry 4 of Table 1. Indeed, these walks are counted by
CnChyq ~ 4%. Such asymptotics involving an =3 factor are not compatible with
the rather constrained asymptotics of algebraic function coefficients (see [2, 24]). [

It is natural to ask to what extent forbidding a pattern impacts the nature of the
generating function. Figure 5 illustrates the drastic impact it can have.
1 2 1
Kauers—Yatchak’s model [26] 1 E% 2 Mishna—Rechnitzer’s ‘
(NB: steps are with multiplicity) Y model [30] L |

1
Figure 5: Forbidding some steps in the left (algebraic) model leads to the right (hyper-
transcendental) model (as follows by the work of Singer and Hardouin [22]).

The models of Kreweras excursions of Section 3 are thus much more structured than
what could be expected, as proven in the following proposition.
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Proposition 12. For each pattern p of length 2, the generating function for p-avoiding Kreweras
excursions is D-finite (and not algebraic for the patterns / , A, and ),

Proof. Due to the properties of the models discussed in Section 2, the only case which is
left open is Entry 3 in Table 1. However, its generating function is just the extraction of
the coefficient [x%y!] in a trivariate algebraic generating function (the one of Gessel walks).
By classical closure properties [33] this gives a D-finite function, and it can be checked
that it satisfies the same differential equation as an algebraic function of degree 4. O

The classification for meanders is still open; let us explain what the obstacles are if one
tries to extend the kernel method approaches. Kreweras walks with each occurrence of
p = a1az is marked by v can be generated by an automaton with two states: The walk is
in state Q if its last step is a;, and in state Oy otherwise. For example, for p = +=—:

%
oy (@-@’ o
"

. . . . xy+y b oxl
In this example, the corresponding transition matrix is A = 1 _1 ] - Now, let
xy+y VX

Qi(t, x,y,v) be the generating function of walks starting in state Q; (for short, we denote
it hereafter by Q;(x,y)). One thus has the following matrix equation

(Qo(x,),Qi(xy)) = (1,0)+Hx="y="}(Qo(x,y), Q1 (x,y))A,

which, in turn, is equivalent to the following system of two equations:

(1 =ty +7))Qo(xy) =ty +9Qu(xy) = 1-17(Qo(x,0) + Qu(x,0)),
—txQo(x,y) + (1 - tw2)Qi(x,y) = —tx(Qo(0,y) +0Q1(0,y)).

More generally, a pattern of length m leads similarly to a system of m equations, with
3m unknowns and m? “kernels” (the coefficients in front of the Q;(x,y)’s). In most cases,
trying to obtain new equations via variants of the algebraic and vectorial kernel methods
(see [1, 8]) does not solve this system, except in a few noteworthy cases which possess
more symmetries. This allows us to show, for example, that Pélya walks avoiding the
pattern <——— are counted by a pullback of a hypergeometric function (similarly to [5]).
We plan to detail these aspects in our forthcoming article.

This concludes our investigation of patterns for lattice walks in IN?: we focused here
on patterns of length 2 leading to nice combinatorial features, so many natural extensions
are possible. For example, it is possible to tackle longer or more complex patterns
(e.g. some regular expressions), to attach weights or multiplicities to the steps, to include
border interactions, to add parameters which mark how often a walk visits a given set
of sites, to consider other domains than IN?, to follow statistics such as the height or the
(signed) area, to establish the corresponding asymptotics and limit laws. .. The study of
lattice path generating functions still has good days ahead!
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