
Soft lambda-calculus: a language for
polynomial time computation

Patrick Baillot and Virgile Mogbil

Laboratoire d’Informatique de Paris-Nord UMR 7030 CNRS
Université Paris XIII - Institut Galilée, 99 Avenue Jean-Baptiste Clément,

93430 Villetaneuse, France.
{patrick.baillot,virgile.mogbil}@lipn.univ-paris13.fr ?

Abstract. Soft linear logic ([Lafont02]) is a subsystem of linear logic
characterizing the class PTIME. We introduce Soft lambda-calculus as a
calculus typable in the intuitionistic and affine variant of this logic. We
prove that the (untyped) terms of this calculus are reducible in polyno-
mial time. We then extend the type system of Soft logic with recursive
types. This allows us to consider non-standard types for representing
lists. Using these datatypes we examine the concrete expressiveness of
Soft lambda-calculus with the example of the insertion sort algorithm.

1 Introduction

The advent of global computing has increased the need for formal bounds on the
use of resources by programs. This issue arises is a variety of situations like when
running code originating from untrusted source or in settings where memory or
time is constrained, for instance in embedded or synchronous systems.

Some cornerstones have been laid by the work in Implicit Computational
Complexity (ICC) carried out by several authors since the 1990s ([16, 17, 6]
among others). This field aims at studying languages and calculi in which all
programs fall into a given complexity class. The most studied case has been that
of deterministic polynomial time complexity (PTIME class).

We can in particular distinguish two important lines of work. The first one
deals with primitive recursion and proposes restrictions on primitive recursion
such that the functions definable are those of PTIME: this is the approach of safe
or ramified recursion ([6, 16]) and subsequent extensions ([13, 7]). Another line
is that of Linear logic (LL)([9]). The Curry-Howard correspondence allows us to
see proofs in this logic as programs. Linear logic provides a way of controlling
duplication of arguments thanks to specific modalities (called exponentials). It is
possible to consider variants of LL with alternative, stricter rules for modalities,
for which all proofs-programs can be run in polynomial time.

Light linear logic, introduced by Girard ([10]) is one of these systems. It
has been later simplified by Asperti into Light affine logic ([3]) which allows
? Work partially supported by Action Spécifique CNRS Méthodes formelles pour la

Mobilité and ACI Sécurité Informatique CRISS.

for arbitrary erasing. However formulas in this system are quite complicated as
there are two modalities, instead of just one in Intuitionistic linear logic, which
makes programming delicate (see [2, 4]). More recently Lafont has introduced
Soft linear logic (SLL) ([15]), a simpler system which uses the same language of
formulas as Linear logic and is polytime. It can in fact be seen as a subsystem
of Linear logic or of Bounded linear logic ([11]). A semantics for SLL formulas
has been proposed in [8] and some expressiveness properties have been studied
in [19].

For each of these systems one shows that the terms of the specific calculus
can be evaluated in polynomial time. A completeness result is then proved by
simulating in the calculus a standard model for PTIME computation such as
PTIME Turing machines. It follows that all PTIME functions are representable
in the calculus, which establishes its expressiveness. This does not mean that all
algorithms are directly representable. For instance it has been observed that some
common algorithms such as insertion sort or quicksort cannot be programmed in
a natural way in the Bellantoni-Cook system (see for instance [12]). Important
contributions to the study of programming aspects of Implicit computational
complexity have been done in particular by Jones ([14]), Hofmann ([12]) and
Marion ([18]).

In the present work we investigate the ideas underlying SLL and their ap-
plication to programming. In [15] SLL is defined with sequent-calculus and the
results are proved using proof-nets, a graph representation of proofs. In order to
facilitate the study of programming we define a specific calculus, Soft lambda-
calculus (SLC) which can be typed in Soft linear (or affine) logic, thus providing a
term syntax for this logic. We show that the untyped version of this calculus sat-
isfies the property of polynomial strong normalization: given a term, the length
of any reduction sequence is bounded by a polynomial of its size. This general-
izes the property of polynomial strong normalization of SLL from [15] (actually
it was already pointed out by Lafont that the result would apply to untyped
proof-nets). Our calculus is inspired from Terui’s Light affine lambda-calculus
([20]) which is a calculus typable in Light affine logic and with polynomial strong
normalization.

As untyped SLC already enjoys polynomial reduction we can then consider
more liberal type systems allowing for more programming facilities. We propose
a type system extending Soft affine logic with recursive types. We finally examine
how this system enables to define new datatypes which might allow representing
more algorithms. We illustrate our approach on the example of lists and the
insertion sort algorithm.

Acknowledgements. We wish to thank Marcel Masseron for the stimulat-
ing discussions we had together on Soft linear logic and which led to the present
paper. We are grateful to Kazushige Terui for his many comments and sugges-
tions. Finally we thank the anonymous referees who helped improving the paper
by several useful remarks.

2 Soft lambda-calculus

The introduction of our calculus will be done in two steps (as in [20]): first we
will define a grammar of pseudo-terms and then we will distinguish terms among
pseudo-terms. The pseudo-terms of Soft lambda-calculus (SLC) are defined by
the grammar:

t, t′ ::= x |λx.t | (t t′) | !t | let tbe !x in t′

Given a pseudo-term t we denote by FV (t) its set of free variables and for a
variable x by no(x, t) the number of free occurrences of x in t. A pseudo-term
of the form letu be !x in t1 is called a let expression and the variable x in it is
bound:

FV (letu be !x in t1) = FV (u) ∪ FV (t1)\{x} .

If −→t and −→x respectively denote finite sequences of same length (t1, . . . , tn)
and (x1, . . . , xn), then let−→t be !−→x in t′ will be an abbreviation for n consecutive
let expressions on tis and xis: let t1 be !x1 in let t2 be !x2 in . . . t′ . In the case where
n = 0, let−→t be !−→x in t′ is t′.

We define the size |t| of a pseudo-term t by:

|x| = 1, |λx.t| = |t|+ 1, |(t1 t2)| = |t1|+ |t2|,
|!t| = |t|+ 1, |let t1 be !x in t2| = |t1|+ |t2|+ 1.

We will type these pseudo-terms in intuitionistic soft affine logic (ISAL). The
formulas are given by the following grammar:

T ::= α | T (T | ∀α.T | ! T

We choose the affine variant of Soft linear logic, which means permitting full
weakening, to allow for more programming facility. This does not change the
polytime nature of the system, as was already the case for light logic ([3]).

We give the typing rules in a sequent calculus presentation. It offers the
advantage of being closer to the logic. It is not so convenient for type-inference,
but it is not our purpose in this paper. The typing rules are given in Figure 1.

For (right ∀) we have the condition: (*) α does not appear free in Γ .
Observe that the let expression is used to interpret both the multiplexing

(mplex) and the promotion (prom.) logical rules. We could distinguish two dif-
ferent kinds of let but we prefer to have a small calculus.

For instance one can consider for unary integers the usual type of Linear logic:
N = ∀α.!(α (α) (α (α . The integer n is represented by the following
pseudo-term of type N , with n occurrences of s′:

λs.λx.let sbe !s′ in (s′ (s′ (s′ . . . x) . . .)
Among pseudo-terms we define a subclass of terms. These will be defined in-

ductively together with a notion of temporary variables. The temporary variables
of a term t, TV (t), will be part of the free variables of t: TV (t) ⊆ FV (t).

Definition 1. The set T of terms is the smallest subset of pseudo-terms such
that:

x : A ` x : A
(variable)

Γ ` t : A ∆, x : A ` u : B

Γ,∆ ` u[t/x] : B
(cut)

Γ, x : A ` t : B

Γ ` λx.t : A(B
(right arrow)

Γ, x : B ` t : C ∆ ` u : A

Γ,∆, y : A(B ` t[(yu)/x] : C
(left arrow)

Γ ` t : B
Γ, x : A ` t : B

(weak.)
x1 : A, . . . , xn : A,Γ ` t : B

y : !A,Γ ` let y be !x in t[x/x1, . . . , xn] : B
(mplex)

x1 : A1, . . . , xn : An ` t : B

y1 : !A1, . . . , yn : !An ` let−→y be !−→x in !t : !B
(prom.)

x : A[C/α], Γ ` t : B

x : ∀α.A, Γ ` t : B
(left ∀) Γ ` t : B

Γ ` t : ∀α.B (right ∀) (*)

Fig. 1. ISAL typing rules

1. x ∈ T ; then TV (x) = ∅;
2. λx.t ∈ T iff: x /∈ TV (t), t ∈ T and no(x, t) 6 1;

then TV (λx.t) = TV (t);
3. (t1 t2) ∈ T iff: t1, t2 ∈ T , TV (t1) ∩ FV (t2) = ∅, FV (t1) ∩ TV (t2) = ∅;

then TV ((t1 t2)) = TV (t1) ∪ TV (t2);
4. !t ∈ T iff: t ∈ T , TV (t) = ∅ and ∀x ∈ FV (t), no(x, t) = 1;

then TV (!t) = FV (t);
5. let t1 be !x in t2 ∈ T iff: t1, t2 ∈ T , TV (t1)∩FV (t2) = ∅, FV (t1)∩TV (t2) = ∅;

then TV (let t1 be !x in t2) = TV (t1) ∪ (TV (t2)\{x}).

Basically the ideas behind the definition of terms are that:

– one can abstract only on a variable that is not temporary and which has at
most one occurrence,

– one can apply ! to a term which has no temporary variable and whose free
variables have at most one occurrence; the variables then become temporary;

– the only way to get rid of a temporary variable is to bind it using a let
expression.

It follows from the definition that temporary variables in a term are linear:

Lemma 1. If t is a term and x ∈ TV (t), then no(x, t) = 1.

The definition of depth will be useful later when discussing reduction:

Definition 2. Let t be a term and u be an occurrence of subterm of t. We call
depth of u in t, d(u, t) the number d of subterms v of t such that u is a subterm
of v and v is of the form !v′. The depth d(t) of a term t is the maximum of
d(u, t) for u subterms of t.

For instance: if t = !(λf.λx.let f be !f ′ in !u) and u = (f ′x), we have d(u, t) =
2.

We can then observe that:

Proposition 1. Let t be a term. If x belongs to FV (t) and x0 denotes an oc-
currence of x in t, then d(x0, t) 6 1. Moreover all occurrences of x in t have the
same depth, that we can therefore denote by d(x, t), and we have: d(x, t) = 1 iff
x ∈ TV (t).

We will consider a subclass of terms:

Definition 3. A term t is well-formed if:
TV (t) = ∅ and ∀x ∈ FV (t), no(x, t) = 1.

Note that to transform an arbitrary term into a well-formed one, one only needs
to add enough let expressions. Actually the properties we will prove in section
3 are valid for terms and the notion of well-formed terms is introduced only
because these are the terms that can be duplicated during reduction. We have
the following properties on terms and substitution:

Lemma 2. If t is a term and t = !t1, then t1 is a well-formed term.

Lemma 3. If we have: (i) t, u terms, (ii) TV (u) = ∅, (iii) x /∈ TV (t), and
(iv) FV (u) ∩ TV (t) = ∅, then: t[u/x] is a term and TV (t[u/x]) = TV (t).

We can then check the following:

Proposition 2. If t is a pseudo-term such that in ISAL we have Γ ` t : A,
then t is a well-formed term.

Proof. We prove by induction on the ISAL derivation D the following statement:
i.h.(D): if the conclusion of D is Γ ` t : A then: t is a term, TV (t) = ∅ and

∀x ∈ Γ, no(x, t) 6 1.
All the cases of the induction follow directly from the application of definition

1 except (cut), (left arrow), (mplex) for which we also use lemma 3.

However not all well-formed terms are typable in ISAL: t = λx.letxbe !y in (y y)
for instance is a well-formed term, but is not ISAL typable.

We will also need in the sequel two variants of lemma 3:

Lemma 4. If we have: (i) t, u terms, (ii) x /∈ TV (t), (iii) no(x, t) = 1,
(iv) FV (u) ∩ TV (t) = ∅, (v) TV (u) ∩ FV (t) = ∅, then: t[u/x] is a term and

TV (t[u/x]) = TV (t) ∪ TV (u).

Note that the main difference with lemma 3 is that we have here the assumption
no(x, t) = 1.

Lemma 5. If we have: (i) t is a term and u is a well-formed term, (ii) x ∈
TV (t), (iii) FV (u) ∩ FV (t) = ∅, then: t[u/x] is a term and TV (t[u/x]) =
TV (t)\{x} ∪ FV (u).

We now consider the contextual one-step reduction relation →1 defined on
pseudo-terms by the rules of Figure 2. These rules assume renaming of bound
variables so that capture of free variables is avoided in the usual way. The rules
(com1) and (com2) are the commutation rules. The relation → is the transitive
closure of →1 .

We have:

(β): ((λx.t) u) →1 t[u/x]
(!) : let !u be !x in t →1 t[u/x]
(com1): let (let t1 be !y in t2) be !x in t3 →1 let t1 be !y in (let t2 be !x in t3)
(com2): (let t1 be !x in t2)t3 →1 let t1 be !x in (t2 t3)

Fig. 2. reduction rules

Proposition 3. The reduction is well defined on terms: if t is a term and
t →1 t′ then t′ is a term. Moreover:

– FV (t′) ⊆ FV (t) and TV (t′) ⊆ TV (t),
– if t is well-formed then t′ is well-formed.

Proposition 4 (local confluence). The reduction relation →1 on terms is
locally confluent: if t →1 t′1 and t →1 t′2 then there exists t′ such that t′1 → t′

and t′2 → t′.

3 Bounds on the reduction

We want to find a polynomial bound on the length of reduction sequences of
terms, similar to that holding for SLL proof-nets ([15]). For that we must define
a parameter on terms corresponding to the maximal arity of the multiplexing
links in SLL proof-nets.

Definition 4. The rank rank(t) of a term t is defined inductively by:
rank(x) = 0, rank(!t) = rank(t),
rank(λx.t) = rank(t), rank((t1 t2)) = max(rank(t1), rank(t2)),

rank(letu be !x in t1) =
{

max(rank(u), rank(t1)) if x ∈ TV (t1),
max(rank(u), rank(t1), no(x, t1)) if x /∈ TV (t1).

The first case in the definition of rank(letu be !x in t1) corresponds to a pro-
motion, while the second one corresponds to a multiplexing and is the key case
in this definition.

To establish the bound we will adapt the argument given by Lafont for proof-
nets. First we define for a term t and an integer n the weight W (t, n) by:

W (x, n) = 1,
W (λx.t, n) = W (t, n) + 1, W ((t1 t2), n) = W (t1, n) +W (t2, n),
W (!u, n) = nW (u, n) + 1, W (letu be !x in t1, n) = W (u, n) +W (t1, n).

We have the following key lemma:

Lemma 6. Let t be a term and n > rank(t).

1. if x /∈ TV (t) and no(x, t) = k, then: W (t[u/x], n) 6W (t, n) + kW (u, n).
2. if x ∈ TV (t) then: W (t[u/x], n) 6W (t, n) + nW (u, n).

Proposition 5. Let t be a term and n > rank(t). If t →1 t′ by a (β) or (!)
reduction rule then W (t′, n) < W (t, n).

Proof. If t σ→ t′ with σ = (β) or (!) then there is a context C and a redex r

such that t = C[r], t′ = C[r′] and r
σ→ r′.

We prove the statement by induction on the context C, for a given n >
rank(t). Let us consider the basic case of the empty context, i.e. t = r using the
definitions of terms and rank, and lemma 6:

for instance for a (!) reduction rule,
r = let !u be !x in r1, r′ = r1[u/x]
W (r, n) = W (let !u be !x in r1, n) = n.W (u, n) + 1 +W (r1, n) .

If x ∈ TV (r1) then by lemma 6 W (r′, n) < W (r, n), otherwise we have
x ∈ FV (r1)\TV (r1) and:

W (r′, n) 6W (r1, n) + no(x, r1).W (u, n)
6W (r1, n) + rank(r).W (u, n)
6W (r1, n) + n.W (u, n) < W (r, n) .

The case of a (β) reduction is easy.
The induction on C is straightforward, using in the case C = !C1 the fact

that n > 1 as we have the strict inequality n > rank(t).

For the commutation rules we have W (t′, n) = W (t, n). So we need to use a
measure of the commutations in a reduction sequence to be able to bound the
global length. We make an adaptation of the weight used in [20].

Given an integer n and a term t, for each subterm occurrence in t of the form
t1 = letu be !x in t2, we define the measure of t1 in t by:

m(t1, t) = W (t, n)−W (t2, n)

and M(t, n) the measure of t by the sum of m(t1, t) for all subterms t1 of t which
are let expressions.

Proposition 6. Let t be a term and n > rank(t). If t →1 t′ by a commutation
reduction rule then M(t′, n) < M(t, n).

Given a term t we denote by nlet(t) the number of subterm occurrences of
let expressions in t.

Lemma 7. Let t be a term and n > 1. We have nlet(t) 6W (t, n)− 1.

Proposition 7. If t is a term and p = d(t), k = W (t, 1), and n > 1 then:

W (t, n) 6 k.np

Theorem 1. [Polynomial strong normalization]
For any integer d there is a polynomial Pd (with degree linear in d) such that:
for any term t of depth d, any sequence of reductions of t has length bounded

by Pd(|t|).

Proof. Let t be a term of depth d and n > rank(t). We will call round a sequence
of reductions and proper round a non empty sequence of (β) and (!) reductions.

If t σ→ t′ then there is an integer l such that σ can be described by an
alternate sequence of commutation rules rounds and proper rounds as follows:

t = t1
(com)

→? t2
(β),(!)

→? t3 . . . t2i+1

(com)

→? t2i+2

(β),(!)

→? t2i+3 . . . t2l+1

(com)

→? t2l+2 = t′

Remark that the alternate sequence starts and finishes with a commutation
rules round. The sequence σ contains l proper rounds. Because each such round
strictly decreases the weight of t (Prop.5) and the commutation rules leave the
weight unchanged we have l 6W (t, n). Moreover the length of all proper rounds
in σ is bounded by W (t, n).

On the other hand we have by definition and lemma 7:

M(t′, n) < nlet(t′).W (t′, n) 6 (W (t′, n))2 −W (t′, n) 6 (W (t, n))2 −W (t, n) .

There are at most (l+1) commutation rules rounds, so by Prop. 6 the length
of all such rounds is bounded by (l+ 1).((W (t, n))2−W (t, n)). Then we deduce:

|σ| 6 (l + 1).((W (t, n))2 −W (t, n)) +W (t, n) 6 (W (t, n))3

Finally this result can be applied to any n > rank(t). One can check that for
any pseudo-term t we have |t| > rank(t). Consider n = |t|, by Prop.7 we obtain
that

|σ| 6 (W (t, 1))3.(|t|)3d 6 |t|3(d+1)

where d = d(t).

Remark 1. If a term t of depth d corresponds to a program and u to an argument
such that d(u) 6 d, then (t u) normalizes in at most Qd(|u|) steps for some
polynomial Qd:

by the previous theorem if (t u) σ→ t′ then |σ| 6 (|t| + |u|)3(d+1) because
d((t u)) = d(t) = d. Let Qd(X) be the following polynomial :

Qd(X) = (X + |t|)3(d+1).

Note that theorem 1 shows that the calculus is strongly polytime in the sense
of [20]: there exists a polynomial bounding the length of any reduction sequence
(no matter the reduction strategy). An obvious consequence is then:

Corollary 1 (Strong normalization). The terms of soft lambda calculus are
strongly normalizing.

Corollary 2 (Confluence property). If a term t is such that t → u and
t → v then there exists a term w such that u → w and v → w.

Proof. By local confluence (Proposition 4) and strong normalization.

Γ, x1 : A1, x2 : A2 ` t : B

Γ, x : A1 ⊗A2 ` letxbex1 ⊗ x2 in t : B
(left ⊗)

Γ1 ` t1 : A1 Γ2 ` t2 : A2

Γ1, Γ2 ` t1 ⊗ t2 : A1 ⊗A2
(right ⊗)

Γ ` t : A
Γ ` inl(t) : A⊕B

(right ⊕1)
Γ ` t : B

Γ ` inr(t) : A⊕B
(right ⊕2)

Γ, x1 : A1 ` t1 : B Γ, x2 : A2 ` t2 : B

Γ, x : A1 ⊕A2 ` case x of inl(x1) ⇒ t1 | inr(x2) ⇒ t2 : B
(left ⊕)

Fig. 3. Derived rules

4 Extension of the calculus

Thanks to full weakening, the connectives ⊗ and ⊕, (as well as & and ∃) and
the constant 1 are definable from {(,∀} ([3], [21]):

A⊗B = ∀α.((A(B(α)(α) 1 = ∀α.(α(α)
A⊕B = ∀α.((A(α)((B(α)(α)

We use as syntactic sugar the following new constructions on terms with the
typing rules of Figure 3 (we follow the presentation of [1]):

(t1 ⊗ t2), let u be x1 ⊗ x2 in t,
inl(t), inr(t), case u of inl(x) ⇒ t1 | inr(y) ⇒ t2 ;

We denote by 1 the closed term of type 1. The derived reduction rules for
these constructions are:

let (t1 ⊗ t2) bex1 ⊗ x2 inu → u[t1/x1, t2/x2]
case inl(u) of inl(x1) ⇒ t1 | inr(x2) ⇒ t2 → t1[u/x1]
case inr(u) of inl(x1) ⇒ t1 | inr(x2) ⇒ t2 → t2[u/x2]

We also use as syntactic sugar, for x a variable: letu bex in t
def
= ((λx.t) u).

We now enlarge the language of types with a fixpoint construction:

T ::= α | T (T | ∀α.T | ! T | µα.T

We add the corresponding typing rule and denote by ISALF, intuitionistic light
affine logic with fixpoints, the new system: Figure 4.

Proposition 8. If t is a pseudo-term typable in ISALF then t is a well-formed
term.

Proof. One simply extends the inductive proof of Prop. 2 to ISALF derivations.
We have four new rules to consider but as the i.h. does not make any use of the
types in the judgement these cases are all trivial.

Proposition 9 (Subject reduction). If we have in the system ISALF Γ ` t :
A and t → t′ then Γ ` t′ : A.

Basically this result follows from the fact that as a logical system ISALF admits
cut-elimination.

the typing rules of ISAL and

x : µX.A, Γ ` t : B

x : A[µX.A/X], Γ ` t : B
(left unfold)

Γ ` t : µX.A

Γ ` t : A[µX.A/X]
(right unfold)

x : A[µX.A/X], Γ ` t : B

x : µX.A, Γ ` t : B
(left fold)

Γ ` t : A[µX.A/X]

Γ ` t : µX.A
(right fold)

Fig. 4. ISALF typing rules

Note that even though we have no restriction on the types on which we take
fixpoints, the typed terms are always normalizable and have a polynomial bound
on the length of their reduction. This follows from the fact that the polynomial
termination result (Theorem 1) already holds for untyped terms.

In the following we will handle terms typed in ISALF. Rather than giving the
explicit type derivations in the previous system, which is a bit tedious because
it is a sequent-calculus style presentation, we will use a Church typing notation.
The recursive typing rules and second-order rules will be left implicit. From this
notation it is possible to reconstruct an explicit type derivation if needed. Here
is an example of typed term (integer 2 in unary representation)

λs!(α(α).λxα.let sbe !s′ in (s′ (s′ x))α : N .

5 Datatypes and list processing

5.1 Datatypes for lists

Given a type A, we consider the following types defining lists of elements of A:

L(A) = ∀α.!(A(α(α)(α(α, L(A) = µX.(1⊕ (A⊗X)).

The type L(A) is the adaptation of the usual system F type for lists. It
supports an iteration scheme, but does not enable to define in SLC a cons
function with type L(A)(A(L(A). This is analog to the fact that N does
not allow for a successor function with type N (N ([15]).

The type L(A) on the contrary allows to define the usual basic functions on
lists cons, tail, head, but does not support iteration. The empty list for type
L(A) is given by ε = inl(1) and the basic functions by:

cons = λlL(A).λaA. inr(a⊗ l) : L(A)(A(L(A)
tail = λlL(A).case l of inl(l′) ⇒ inl(l′)

| inr(l′) ⇒ let l′ be a⊗ l′′ in l′′ : L(A)(L(A)
head = λlL(A).case l of inl(l′) ⇒ a0

| inr(l′) ⇒ let l′ be a⊗ l′′ in a : L(A)(A

where a0 is a dummy value returned by head if the list is empty. We would like to
somehow bring together the advantages of L(A) and L(A) in a single datatype.
This is what we will try to do in the next sections.

5.2 Types with integer

Our idea is given a datatype A to add to it a type N so as to be able to iterate
on A. The type N ⊗ A would be a natural candidate, but it does not allow for
a suitable iteration. We therefore consider the following type:

N [A] = ∀α.!(α(α)(α((A⊗ α)

Given an integer n and a closed term a of type A, we define an element of
N [A]:

n[a] = λs!(α(α).λxα.(aA ⊗ let sbe !s′ in (s′ s′ . . . s′x)α) : N [A]

where s′ is repeated n times.
We can give terms allowing to extract from an element n[a] of type N [A]

either the data a or the integer n.

extractd : N [A](A extractint : N [A](N

For instance:
extractd = λpN [A].let (p !idβ(β idα(α) be aA ⊗ rα in a ,
where id is the identity term and β = α(α.
However it does not seem possible to extract both the data and the integer

with a term of type N [A](N⊗A. On the contrary from n and a one can build
n[a] of type N [A]:

build = λt.let tben⊗ a inλs.λx.(a⊗ (n s x)) : N ⊗A(N [A] .
We can turn the construction N [.] into a functor: let us define the action of

N [.] on a closed term f : A(B by

N [f] = λpN [A].λs!(α(α).λxα.let (p s x)A⊗α be a⊗ r in ((f a)B ⊗ rα) .

Then N [f] : N [A](N [B], and N [.] is a functor.
We have the following principles:

absorb : N [A]⊗B(N [A⊗B] , out : N [A(B]((A(N [B]) .

The term absorb for instance is defined by:
absorb = λtN [A]⊗B .λs!(α(α).λxα.let tbe p⊗ b in

let (p s x) be a⊗ r in (a⊗ b⊗ r)A⊗B⊗α .

5.3 Application to lists

In the following we will focus our interest on lists. We will use as a shorthand
notation L′(A) for N [L(A)]. The terms described in the previous section can be
specialized to this particular case.

In practice here we will use the type L′(A) with the following meaning: the
elements n[l] of L′(A) handled are expected to be such that the list l has a length
inferior or equal to n. We will then be able to do iterations on a list up to its
length.

The function erase maps n[l] to n[ε] where ε is the empty list; it is obtained
by a small modification on extractint:

erase : L′(A)(L′(A)

erase = λpL
′(A).λs!(α(α).λxα.let (p s x) be lL(A) ⊗ rα in (εL(A) ⊗ rα)

We have for the type L′(A) an iterator given by:

Iter : ∀α.!(α(α)(α(L′(A)((L(A)⊗ α)

Iter = λF !(α(α).λeα.λlL
′(A).(l F e)

If F has type B (B, e type B and F has free variables −→x then if f =
(Iter (let−→y be !−→x in !F) e) we have:

(f n[l]) → l ⊗ (let−→y be !−→x in (F . . . (F e) . . .),

where in the r.h.s. term F is repeated n times. Such an iterator can be in fact
described more generally for any type N [A] instead of N [L(A)].

Using iteration we can build a function which reconstructs an element of
L′(A); it acts as an identity function on L′(A) but is interesting though because
in the sequel we will need to consume and restore integers in this way:

F = let sbe !s′α(α in !(λrα.(s′r)α) : !(α(α), with FV (F) = {s!(α(α)}
reconstr = λpL

′(A).λs!(α(α).λxα.(Iter F x p) : L′(A)(L′(A)

Given terms t : A(B and u : B (C we will denote by t;u : A(C the
composition of t and u defined as (λaA.(u (t a))).

Finally we have the usual functions on lists with type L′(A), using the ones
defined before for the type L(A):

tail′ = N [tail] : L′(A)(L′(A)
head′ = N [head]; extractd : L′(A)(A
cons′ = N [cons]; out : L′(A)(A(L′(A)

Note that to preserve the invariant on elements of L′(A) mentioned at the be-
ginning of the section we will need to apply cons′ to elements n[l] such that
n > m+ 1 where m is the length of l.

5.4 Example: insertion sort

We illustrate the use of the type N [L(A)] by giving the example of the insertion
sort algorithm. Contrarily to the setting of Light affine logic with system F
like types, we can here define functions obtained by successive nested structural
recursions. Insertion sort provides such an example with two recursions. We use
the presentation of this algorithm described in [13].

The type A represents a totally ordered set (we denote the order by 6) that
we suppose to be finite for simplification. Let us assume that we have for A a
comparison function which returns its inputs:

comp : A⊗A(A⊗A, with (comp a0 a1) →
{

(a0 ⊗ a1) if a0 6 a1 ,
(a1 ⊗ a0) otherwise.

The function comp can in fact be defined in SLC.
Insertion in a sorted list.
Let a0 be an arbitrary element of type A. We will do an iteration on type:

B = L(A)(A(L(A)⊗ α. The iterated function will reconstruct the integer
used for its iteration. Let us take F : !(B(B) with FV (F) = {s!(α(α)}, given
by:

F = let sbe !s′α(α in
!(λφB .λlL(A).λaA.

case l of inl(l1) ⇒ let (φ ε a0) be l′ ⊗ rα in
(cons a ε)L(A) ⊗ (s′ r)α

| inr(l1) ⇒ let l1 be b⊗ l′ in
let (comp a b) be a1 ⊗ a2 in

let (φ l′ a2) be l′′ ⊗ r in
(cons a1 l

′′)⊗ (s′ r)α)
Let e : B be the term e = λlL(A).λaA.(εL(A)⊗xα). Note that FV (e) = {xα}.

Then we have: s : !α(α, x : α ` (Iter F e) : L′(A)(L(A)⊗B.
Finally we define:
insert = λpL

′(A).λaA. λs!(α(α).λxα.
let (Iter F e p)L(A)⊗B be lL(A) ⊗ fB in (f l a)L(A)⊗α

and get: insert : L′(A)(A(L′(A).
Insertion sort.
We define our sorting program by iteration on B = L(A)⊗ L′(A). The left-

hand-side list is the list to process while the r.h.s. one is the resulting sorted list.
Then F : !(B(B) is the closed term given by:

F = !(λtB .let tbe lL(A)
1 ⊗ pL′(A) in case l1 of

inl(l2) ⇒ inl (l2)⊗ p
| inr(l2) ⇒ let l2 be a⊗ l3 in (lL(A)

3 ⊗ (insert p a)L
′(A))

e = lL(A) ⊗ (erase p0)L
′(A) : B

We then have:
l : L(A), p0 : L′(A) ` (Iter F e) : L′(A)(L(A)⊗B
So we define:
presort = λp

L′(A)
0 .λp

L′(A)
1 .λp

L′(A)
2 .

let (extractd p1) be lL(A) in
let (Iter F e p2) be l′ ⊗ l′′ ⊗ p′ in p′

Using multiplexing we then get:
sort = λp!L′(A).let pbe !p′L

′(A) in (presort p′ p′ p′)L
′(A) : !L′(A)(L′(A)

Remark 2. More generally the construction N [.] can be applied successively to
define the following family of types: N (0)[A] = A, N (i+1)[A] = N [N (i)[A]].

This allows to type programs obtained by several nested structural recur-
sions. For instance insertion sort could be programmed with a type of the form
N (2)[A](N (2)[A]. This will be detailed in a future work.

5.5 Iteration

We saw that with the previous iterator Iter one could define from F : B (B
and e : B an f such that: (f l[n]) → l ⊗ (let−→y be !−→x in (F . . . (F e) . . .).
However the drawback here is that l is not used in e. We can define a new
iterator which does not have this default, using the technique already illustrated
by the insertion term. Given a type variable α, we set C = L(A)(α.

If g is a variable of type !(α(α), we define:

G′ = let g!(α(α) be !g′ in !(λb′C .λlL(A).(g′ (b′ l)))α : !(C (C)

Then: It = λg!(α(α).λeC .λpL
′(A).let (Iter G′ eC p) be lL(A)

1 ⊗ fC in (f l1)α

It : ∀α.!(α(α)((L(A)(α)(L′(A)(α

So if f = (It (let−→y be !−→x in !F) λl0.e′) we have:

(f l[n]) → let−→y be !−→x in (F . . . (F e′[l/l0]) . . .),

where in the r.h.s. term F is repeated n times.

6 Conclusion and future work

We studied a variant of lambda-calculus (SLC) which can be typed in Soft affine
logic and is intrinsically polynomial. The contribution of the paper is twofold:

(i) We showed that the ideas at work in Soft linear logic to control duplication
can be used in a lambda-calculus setting with a concise untyped language. Note
that the language of our calculus is simpler than those of calculi corresponding
to ordinary linear logic such as in [5, 1]. Even if the underlying intuitions come
from proof-nets and Lafont’s results, we think that this new presentation will
facilitate further study of Soft logic.

(ii) We investigated the use of recursive types in conjunction with Soft logic.
They allowed us to define non-standard types for lists and we illustrated the
expressiveness of SLC by programming the insertion sort algorithm.

We think SLC provides a good framework to study the algorithmic possibil-
ities offered by the ideas of Soft logic. One drawback of the examples we gave
here is that their programming is somehow too low-level. One would like to
have some generic way of programming functions defined by structural recursion
(with some conditions) that could be compiled into SLC. Current work in this
direction is under way with Kazushige Terui. It would be interesting to be able
to state sufficient conditions on algorithms, maybe related to space usage, for
being programmable in SLC.

References

1. S. Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

2. A. Asperti and L. Roversi. Intuitionistic light affine logic (proof-nets, normalization
complexity, expressive power). ACM Transactions on Computational Logic, 3(1):1–
39, 2002.

3. Andrea Asperti. Light affine logic. In Proceedings LICS’98. IEEE Computer Soci-
ety, 1998.

4. P. Baillot. Checking polynomial time complexity with types. In Proceedings of
International IFIP Conference on Theoretical Computer Science 2002, Montreal,
2002. Kluwer Academic Press.

5. P.N. Benton, G.M. Bierman, V.C.V. de Paiva, and J.M.E. Hyland. A term calcu-
lus for intuitionistic linear logic. In Proceedings TLCA’93, volume 664 of LNCS.
Springer Verlag, 1993.

6. S. Bellantoni and S. Cook. New recursion-theoretic characterization of the polytime
functions. Computational Complexity, 2:97–110, 1992.

7. S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Higher type recursion, ramifi-
cation and polynomial time. Annals of Pure and Applied Logic, 104(1-3), 2000.

8. U. Dal Lago and S. Martini. Phase semantics and decidability results for elementary
and soft linear logics. submitted, 2003.

9. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
10. J.-Y. Girard. Light linear logic. Information and Computation, 143:175–204, 1998.
11. J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: A modular approach

to polynomial time computability. Theoretical Computer Science, 97:1–66, 1992.
12. Martin Hofmann. Linear types and non-size-increasing polynomial time computa-

tion. In Proceedings LICS’99. IEEE Computer Society, 1999.
13. M. Hofmann. Safe recursion with higher types and BCK-algebra. Annals of Pure

and Applied Logic, 104(1-3), 2000.
14. N. Jones. Computability and complexity, from a programming perspective. MIT

Press, 1997.
15. Y. Lafont. Soft linear logic and polynomial time. to appear in Theoretical Com-

puter Science, 2004.
16. D. Leivant. Predicative recurrence and computational complexity I: word recur-

rence and poly-time. In Feasible Mathematics II, pages 320–343. Birkhauser, 1994.
17. D. Leivant and J.-Y. Marion. Lambda-calculus characterisations of polytime. Fun-

damenta Informaticae, 19:167–184, 1993.
18. J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. PhD

thesis, Université de Nancy, 2000. Habilitation à diriger les recherches.
19. H. Mairson and K. Terui. On the computational complexity of cut-elimination in

Linear logic. In Proceedings of ICTCS 2003, volume 2841 of LNCS, pages 23–36.
Springer, 2003.

20. K. Terui. Light Affine Lambda-calculus and polytime strong normalization. In
Proceedings LICS’01. IEEE Computer Society, 2001.

21. K. Terui. Light Logic and Polynomial Time Computation. PhD thesis, Keio Uni-
versity, 2002.

