
ICC’06 Workshop

1 Karl-Heinz Niggl: Certifying polynomial time and
linear/polynomial space for imperative programs

(Joint work with Henning Wunderlich and Jan Mehler)

In [6], [7], [8], stack/loop programs of µ-measure 0 are shown to characterise
the polynomial-time/linear-space computable functions, respectively.

From a programming perspective, these findings might not be practically
appealing, for unlike modern programming languages, those programs neither
support user-friendly basic instructions, unless they are non-size-increasing,
nor mixed data structures or vital instructions like assignment statements.

In this talk, we report on and improve recent research in [9]. There, it is
shown how to strengthen the above characterisations to imperative programs
built from arbitrary basic instructions by sequencing, if-then-else and for-do
statements. Each of those programs operates on variables X1, . . . , Xn, each
of which may represent any data structure such as stacks, registers, trees or
graphs, as long as it is equipped with a (reasonably) notion of size of an object
stored in Xi, denoted by |Xi|. For example, if Xi serves as a register, then |Xi|
might be the unary or the binary length of the number stored in Xi, and if Xi

serves as a stack, |Xi| is as usual the length of the word stored in Xi.

The results stated below rest on a new efficient method of certifying “poly-
nomial size boundedness” under the natural assumption that all basic instruc-
tions involved are polynomial size bounded, too. For programs P in variables
X1, . . . , Xn, that means there exist polynomials p1, . . . , pn such that

{s1 = |X1|, . . . , sn = |Xn|} P {|Xi| ≤ pi(s1, . . . , sn)} for i = 1, . . . , n.

Thus, unlike the measure µ, that method abstracts from the concrete form
of basic instructions, and instead focuses on their impact on the polynomial
size bounds on the variables involved. As we shall see, polynomial size bounds
provide all information on the “control” of one variable over another in a much
more subtle way than the measure µ does. Central to the method is that we
only store and process a finite amount of information on the class of possible
polynomial size bounds for programs. For each polynomial size bound p on Xi

w.r.t. a program P, p(~X) = c0 + . . . + cj · X
j1
1 · . . . · Xjn

n + . . . say, we only store
an (n+1)-tuple 〈p〉 over the forgetting set {0, 1,∞}, where (for j = 1, . . . , n)

〈p〉[j] =

0 if p is a polynomial in ~X \ Xj

1 if p = Xj + q for some polynomial q in ~X \ Xj

∞ else

〈p〉[n + 1] =

{

c0 if c0 ≤ 1

∞ else.

In that way, the certificate for a program P in variables X1, . . . , Xn will be an
(n+1) × (n+1) matrix M(P) over {0, 1,∞}, where for technical reasons the

1

ICC’06 Workshop

last row is always the (n+1)-tuple (0, . . . , 0, 1).

For example, a certificate for the assignment statement Xi = Xj is obtained
from the identity matrix 1n+1 by replacing row i with row j. Observe that
assignment statements are neither non-size-increasing nor size-increasing.

Altogether, that results into a matrix calculus for program certificates. In
particular, that calculus provides criteria on the certificate for the body of a
loop which guarantee the existence of a certificate for the loop statement itself.
We investigate two forms of loop statements, loop Xh [Q] and powerloop Xh [Q],
where the body Q is executed |Xh| times for loop statements, and 2|Xh|−1 times
for powerloop statements.

Strengthening the results for µ-measure 0 programs, the following theorems
are obtained [9].

Theorem A fptime = Certified string programs (stack programs built from
any polynomial-time computable basic instructions).

Theorem B flinspace = Certified general loop programs (loop programs
built from any linear-space computable basic instructions)

Theorem C fpspace = Certified power string programs (string programs ex-
tended by powerloop statements, and any polynomial-space computable ba-
sic instructions)

The improvements over [9] concern the certification of loop statements by
generalising the cases “variable/constant assignment” and “push/inc”, to a
fairly general linear case, leading to much more certified programs and much
better extracted polynomial size bounds. In fact, the present efficient method
for static verification of program complexity is available as a Java-applet.

We believe that the present method is a major step towards applicability
of research in the evolving field of implicit computational complexity to daily
programming practice. To exemplify this, natural implementations of binary
addition and multiplication, and insertion sort are given and certified.

There exist several groups working on static verification of program com-
plexity, e.g. the groups MRG [4]and CRISS [2], in particular [1] and [3], and
furthermore [5]. There might be some or even strong connections between
the present work and those interesting approaches; but due to the different
frameworks an exact comparison is not at all obvious.

Karl-Heinz Niggl

TU Ilmenau, Fakultät für Informatik

niggl@tu-ilmenau.de

eiche.theoinf.tu-ilmenau.de/˜niggl

References

[1] Bofante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Algorithms with
polynomial interpretation termination proof. JFP 11, 2000

2

http://eiche.theoinf.tu-ilmenau.de/~{}niggl

ICC’06 Workshop

[2] CRISS (Contrôle de Ressources et d’Interférence dans les Systèmes
Synchrones). See http://www.cmi.univ-mrs.fr/ amadio/Criss/criss.html

[3] Moyen, J.-Y.: Analyse de la complexité et transformation de programmes.
PhD thesis, Nancy, December 2003. http://www.loria.fr/ moyen/

[4] MRG (Mobile Resource Guarantees). http://groups.inf.ed.ac.uk/mrg/

[5] Jones, N.D., Kristiansen, L.: The flow of data and the complexity of algo-

rithms. Cooper, Löwe, Torenvliet (eds.): CiE’05, LNCS 3526:263-274, Springer
2005.

[6] Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative

programming languages. TCS, Special issue on Implicit Computational
Complexity, Editor J.-Y. Marion, 318(1-2):139–161, Elsevier 2004.

[7] Niggl, K.-H.: Control Structures in Programs and Computational Complexity.
Habilitation Thesis, Ilmenau (2001). Available at the above home page.

[8] Kristiansen, L., Niggl, K.-H.: The Garland Measure and Computational
Complexity of Stack Programs. ENTCS 90 No. 2 (2003),
URL: http://elsevier.nl/locate/entcs/volume90.html, 19 pages

[9] Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polyno-
mial space for imperative programs. To appear in: SIAM J. Computing.

3

	Karl-Heinz Niggl: Certifying polynomial time and linear/polynomial space for imperative programs
	References

