
Sokendai Lectures
Tokyo, Japan

物理情報システムのための形式手法

Timed model checking – Part 2

Timed automata

Étienne André

Etienne.Andre (à) univ-paris13.fr

Version: May 20, 2019 (slides with empty spaces (Web version))

Étienne André Timed model checking – 2 2019–2020 1 / 82

Partie 2: Timed model checking – Plan

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 2 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 3 / 82

Beyond finite state automata

Finite State Automata give a simple syntax and a formal semantics to model
qualitative aspects of systems

Executions, sequence of actions

Modular definitions (parallelism)

Powerful checking (reachability, safety, liveness. . .)

But what about quantitative aspects:

Time (“the airbag always eventually inflates, but maybe 10 seconds after the
crash”)

Temperature (“the alarm always eventually ring, but maybe when the
temperature is above 75 degrees”)

Étienne André Timed model checking – 2 2019–2020 4 / 82

Beyond finite state automata

Finite State Automata give a simple syntax and a formal semantics to model
qualitative aspects of systems

Executions, sequence of actions

Modular definitions (parallelism)

Powerful checking (reachability, safety, liveness. . .)

But what about quantitative aspects:

Time (“the airbag always eventually inflates, but maybe 10 seconds after the
crash”)

Temperature (“the alarm always eventually ring, but maybe when the
temperature is above 75 degrees”)

Étienne André Timed model checking – 2 2019–2020 4 / 82

Model checking timed concurrent systems

y = delay

x := 0

x < period

A timed model of the system

?

|=

is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes No

Counterexample

Étienne André Timed model checking – 2 2019–2020 5 / 82

Model checking timed concurrent systems

y = delay

x := 0

x < period

A timed model of the system

?

|= is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes No

Counterexample

Étienne André Timed model checking – 2 2019–2020 5 / 82

Model checking timed concurrent systems

y = delay

x := 0

x < period

A timed model of the system

?

|= is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes No

Counterexample

Étienne André Timed model checking – 2 2019–2020 5 / 82

Formalisms

Many formalisms were proposed to model and verify timed systems

time(d) Petri nets [Merlin, 1974]

timed automata [Alur and Dill, 1994]

timed process algebras [Sun et al., 2009b]

etc.

We use here timed automata

See [Bérard et al., 2005, Srba, 2008, Bérard et al., 2013] for a comparison between timed Petri nets and timed automata

Étienne André Timed model checking – 2 2019–2020 6 / 82

Formalisms

Many formalisms were proposed to model and verify timed systems

time(d) Petri nets [Merlin, 1974]

timed automata [Alur and Dill, 1994]

timed process algebras [Sun et al., 2009b]

etc.

We use here timed automata

See [Bérard et al., 2005, Srba, 2008, Bérard et al., 2013] for a comparison between timed Petri nets and timed automata

Étienne André Timed model checking – 2 2019–2020 6 / 82

Outline

1 Timed automata
Syntax
Concrete semantics
Specifying with timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 7 / 82

Timed automaton (TA)
Finite state automaton (sets of locations)

and actions) augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

I S P

Étienne André Timed model checking – 2 2019–2020 8 / 82

Timed automaton (TA)
Finite state automaton (sets of locations and actions)

augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

I S P
press?

x := 0
y := 0

y = 5

cup?

x ≥ 1

press?

x := 0

y = 8

coffee!

Étienne André Timed model checking – 2 2019–2020 8 / 82

Timed automaton (TA)
Finite state automaton (sets of locations and actions) augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

I S P
press?

x := 0
y := 0

y = 5

cup?

x ≥ 1

press?

x := 0

y = 8

coffee!

Étienne André Timed model checking – 2 2019–2020 8 / 82

Timed automaton (TA)
Finite state automaton (sets of locations and actions) augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate
Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location

Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

I S P

y≤5

y ≤ 8
press?

x := 0
y := 0

y = 5

cup?

x ≥ 1

press?

x := 0

y = 8

coffee!

Étienne André Timed model checking – 2 2019–2020 8 / 82

Timed automaton (TA)
Finite state automaton (sets of locations and actions) augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate
Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

I S P

y≤5

y ≤ 8
press?

x := 0
y := 0

y = 5
cup?

x ≥ 1
press?

x := 0

y = 8
coffee!

Étienne André Timed model checking – 2 2019–2020 8 / 82

Timed automaton (TA)
Finite state automaton (sets of locations and actions) augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate
Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

I S P

y≤5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Étienne André Timed model checking – 2 2019–2020 8 / 82

Formal definition of timed automata

Definition (Timed automaton)

A timed automaton (TA)A is a 7-tuple of the formA = (L,Σ, `0, LF , X, I, E),
where

L is a finite set of locations,

`0 ∈ L is the initial location,

LF ⊆ L is the set of accepting (or final) locations,

Σ is a finite set of actions,

X is a set of clocks,

I is the invariant, assigning to every ` ∈ L a clock constraint I(`), and

E is a step (or “transition”) relation consisting of elements of the form

e = (`, g, a,R, `′), also denoted by `
g,a,R−→ `′, where `, `′ ∈ L, a ∈ Σ,

R ⊆ X is a set of clock variables to be reset by the step, and g (the step
guard) is a clock constraint.

Étienne André Timed model checking – 2 2019–2020 9 / 82

Clock constraints

Definition (clock constraint)

A clock constraint is a conjunction of atomic constraints

What is an atomic constraint?

Various definitions in the literature:

Originally [Alur and Dill, 1994]: x ∈ [c1, c2] with c1 ∈ N and c2 ∈ N ∪ {∞}
Comparing clock values (diagonal constraints) x1 − x2 ./ c

./ ∈ {<,≤,=,≥, >}

For now, we assume the following syntax:

x ./ c, with x ∈ X and c ∈ N

Étienne André Timed model checking – 2 2019–2020 10 / 82

Clock constraints

Definition (clock constraint)

A clock constraint is a conjunction of atomic constraints

What is an atomic constraint?

Various definitions in the literature:

Originally [Alur and Dill, 1994]: x ∈ [c1, c2] with c1 ∈ N and c2 ∈ N ∪ {∞}
Comparing clock values (diagonal constraints) x1 − x2 ./ c

./ ∈ {<,≤,=,≥, >}

For now, we assume the following syntax:

x ./ c, with x ∈ X and c ∈ N

Étienne André Timed model checking – 2 2019–2020 10 / 82

Clock constraints

Definition (clock constraint)

A clock constraint is a conjunction of atomic constraints

What is an atomic constraint?

Various definitions in the literature:

Originally [Alur and Dill, 1994]: x ∈ [c1, c2] with c1 ∈ N and c2 ∈ N ∪ {∞}
Comparing clock values (diagonal constraints) x1 − x2 ./ c

./ ∈ {<,≤,=,≥, >}

For now, we assume the following syntax:

x ./ c, with x ∈ X and c ∈ N

Étienne André Timed model checking – 2 2019–2020 10 / 82

Exercise 1

Draw the TAA = (L,Σ, l1, {l2}, X, I, E)
such that

L = {l1, l2, l3, l4},
Σ = {a1, a2, a3},
X = {x1, x2},
I(l1) = x1 ≤ 3, and I(l3) = x2 ≥ 2,

E = {(l1, x1 ≥ 2, a1, {x1}, l2),
(l1, x2 ≤ 1, a2, ∅, l3),
(l2, x2 = 1, a3, {x2}, l2),
(l2, true, a1, ∅, l3),
(l3, true, a2, {x1, x2}, l4),
(l4, x2 > 2, a3, ∅, l3)}

`1

`2

`3 `4

x1 ≤ 3

x2 ≥ 2

x2 ≥ 2
a1

x1 := 0

x2 ≤ 1
a2

x2 = 1
a3

x2 := 0

a1

a2

x1, x2 := 0

x2 > 2
a3

Étienne André Timed model checking – 2 2019–2020 11 / 82

Exercise 1

Draw the TAA = (L,Σ, l1, {l2}, X, I, E)
such that

L = {l1, l2, l3, l4},
Σ = {a1, a2, a3},
X = {x1, x2},
I(l1) = x1 ≤ 3, and I(l3) = x2 ≥ 2,

E = {(l1, x1 ≥ 2, a1, {x1}, l2),
(l1, x2 ≤ 1, a2, ∅, l3),
(l2, x2 = 1, a3, {x2}, l2),
(l2, true, a1, ∅, l3),
(l3, true, a2, {x1, x2}, l4),
(l4, x2 > 2, a3, ∅, l3)}

`1

`2

`3 `4

x1 ≤ 3

x2 ≥ 2

x2 ≥ 2
a1

x1 := 0

x2 ≤ 1
a2

x2 = 1
a3

x2 := 0

a1

a2

x1, x2 := 0

x2 > 2
a3

Étienne André Timed model checking – 2 2019–2020 11 / 82

Exercise 2
Give the formal TA corresponding to the timed coffee machine.

A = (L,Σ, , { }, X, I, E), with:

L = { , , },
Σ = {press?, cup?, coffee!},
X = {x, y},

I() = true, I() = y ≤ 5, and I() = y ≤ 8,

E = {(, true,press?, {x, y},),

(, x ≥ 1,press?, {x},),

(, y = 5, cup?, ∅,),

(, y = 8, coffee!, ∅,)}

Étienne André Timed model checking – 2 2019–2020 12 / 82

Exercise 2
Give the formal TA corresponding to the timed coffee machine.

A = (L,Σ, , { }, X, I, E), with:

L = { , , },
Σ = {press?, cup?, coffee!},
X = {x, y},

I() = true, I() = y ≤ 5, and I() = y ≤ 8,

E = {(, true,press?, {x, y},),

(, x ≥ 1,press?, {x},),

(, y = 5, cup?, ∅,),

(, y = 8, coffee!, ∅,)}

Étienne André Timed model checking – 2 2019–2020 12 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L =

L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ =

Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =

(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF =

(LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X =

X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
=

I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF)1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF)2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF)1 × L2 ∪ L1 × (LF)2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)

Étienne André Timed model checking – 2 2019–2020 13 / 82

Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ ∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧ (`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1

Étienne André Timed model checking – 2 2019–2020 14 / 82

Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧

∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧ (`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1

Étienne André Timed model checking – 2 2019–2020 14 / 82

Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ ∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧ (`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1

Étienne André Timed model checking – 2 2019–2020 14 / 82

Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ ∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧

(`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1

Étienne André Timed model checking – 2 2019–2020 14 / 82

Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ ∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧ (`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1

Étienne André Timed model checking – 2 2019–2020 14 / 82

Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ ∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧ (`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1

Étienne André Timed model checking – 2 2019–2020 14 / 82

Outline

1 Timed automata
Syntax
Concrete semantics
Specifying with timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 15 / 82

Concrete runs of timed automata

Concrete state of a TA: pair (`, w), where

` is a location,
w is a valuation of each clock

Example:
(

,
(
x=1.2
y=3.7

))

Concrete run: alternating sequence of concrete states and actions or time
elapse

Étienne André Timed model checking – 2 2019–2020 16 / 82

Concrete runs of timed automata

Concrete state of a TA: pair (`, w), where

` is a location,
w is a valuation of each clock

Example:
(

,
(
x=1.2
y=3.7

))
Concrete run: alternating sequence of concrete states and actions or time
elapse

Étienne André Timed model checking – 2 2019–2020 16 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I

0
0

x =
y =

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I

0
0

x =
y =

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S

0
0

x =
y =

0
0

press?

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S

0
0

x =
y =

0
0

5
5

press? 5

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P

0
0

x =
y =

0
0

5
5

5
5

press? 5 cup?

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P

0
0

x =
y =

0
0

5
5

5
5

8
8

press? 5 cup? 3

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I

0
0

x =
y =

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S

0
0

x =
y =

0
0

press?

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S

0
0

x =
y =

0
0

1.5
1.5

press? 1.5

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S

0
0

x =
y =

0
0

1.5
1.5

0
1.5

press? 1.5 press?

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S S

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

press? 1.5 press? 2.7

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S S S

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

press? 1.5 press? 2.7 press?

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S S S S

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

press? 1.5 press? 2.7 press? 0.8

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S S S S P

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

press? 1.5 press? 2.7 press? 0.8 cup?

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S S S S P P

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3

Étienne André Timed model checking – 2 2019–2020 17 / 82

Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Étienne André Timed model checking – 2 2019–2020 17 / 82

Timed transition systems

Definition (Timed transition system)

A timed transition system (TTS) is a tuple T T S = (S,Σ, S0, SF ,→), where

S is a set of states;

Σ is an alphabet of events;

S0 ⊆ S is a set of initial states;

SF ⊆ S is a set of final (or accepting) states; and,

→ : S × (Σ ∪ R≥0)→ 2S is a transition relation.

We write s1
a−→ s2 when (s1, a, s2) ∈ →.

Étienne André Timed model checking – 2 2019–2020 18 / 82

Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise

Étienne André Timed model checking – 2 2019–2020 19 / 82

Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise

Étienne André Timed model checking – 2 2019–2020 19 / 82

Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise

Étienne André Timed model checking – 2 2019–2020 19 / 82

Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise

Étienne André Timed model checking – 2 2019–2020 19 / 82

Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise

Étienne André Timed model checking – 2 2019–2020 19 / 82

Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise

Étienne André Timed model checking – 2 2019–2020 19 / 82

Concrete semantics of timed automata: definition (cont.)

We write (`, w)
(d,e)7→ (`′, w′) or ((`, w), (d, e), (`′, w′)) ∈ 7→ for a combination

of a delay and discrete transitions if

∃w′′ : (`, w)
d−→ (`, w′′)

e−→ (`′, w′)

Some remarks on the semantics of timed automata:

Is T T S finite?

×

Is T T S finitely branching?

×

Étienne André Timed model checking – 2 2019–2020 20 / 82

Concrete semantics of timed automata: definition (cont.)

We write (`, w)
(d,e)7→ (`′, w′) or ((`, w), (d, e), (`′, w′)) ∈ 7→ for a combination

of a delay and discrete transitions if

∃w′′ : (`, w)
d−→ (`, w′′)

e−→ (`′, w′)

Some remarks on the semantics of timed automata:

Is T T S finite?

×

Is T T S finitely branching?

×

Étienne André Timed model checking – 2 2019–2020 20 / 82

Concrete semantics of timed automata: definition (cont.)

We write (`, w)
(d,e)7→ (`′, w′) or ((`, w), (d, e), (`′, w′)) ∈ 7→ for a combination

of a delay and discrete transitions if

∃w′′ : (`, w)
d−→ (`, w′′)

e−→ (`′, w′)

Some remarks on the semantics of timed automata:

Is T T S finite?

×

Is T T S finitely branching?

×

Étienne André Timed model checking – 2 2019–2020 20 / 82

Concrete semantics of timed automata: definition (cont.)

We write (`, w)
(d,e)7→ (`′, w′) or ((`, w), (d, e), (`′, w′)) ∈ 7→ for a combination

of a delay and discrete transitions if

∃w′′ : (`, w)
d−→ (`, w′′)

e−→ (`′, w′)

Some remarks on the semantics of timed automata:

Is T T S finite?

×

Is T T S finitely branching?

×

Étienne André Timed model checking – 2 2019–2020 20 / 82

Timed words

Definition (timed word)

A timed word over an alphabet of actions Σ is a possibly infinite sequence of the
form (a0, d0)(a1, d1) · · · such that, for all integer i ≥ 0, ai ∈ Σ and di ≤ di+1.

Definition (timed word associated with a concrete run)

Given a concrete run ρ (l0, w0)(d0, e0)(l1, w1) · · · (di, ei)(li, wi) · · · , the timed
word associated with ρ is

(Act(e0), d0)(Act(e1),

d0 + d1) · · · (Act(ei),
∑

0≤j≤i
dj) · · ·

Notation: Act(ei) denotes the action of edge ei

Étienne André Timed model checking – 2 2019–2020 21 / 82

Timed words

Definition (timed word)

A timed word over an alphabet of actions Σ is a possibly infinite sequence of the
form (a0, d0)(a1, d1) · · · such that, for all integer i ≥ 0, ai ∈ Σ and di ≤ di+1.

Definition (timed word associated with a concrete run)

Given a concrete run ρ (l0, w0)(d0, e0)(l1, w1) · · · (di, ei)(li, wi) · · · , the timed
word associated with ρ is

(Act(e0), d0)(Act(e1),

d0 + d1) · · · (Act(ei),
∑

0≤j≤i
dj) · · ·

Notation: Act(ei) denotes the action of edge ei

Étienne André Timed model checking – 2 2019–2020 21 / 82

Timed words

Definition (timed word)

A timed word over an alphabet of actions Σ is a possibly infinite sequence of the
form (a0, d0)(a1, d1) · · · such that, for all integer i ≥ 0, ai ∈ Σ and di ≤ di+1.

Definition (timed word associated with a concrete run)

Given a concrete run ρ (l0, w0)(d0, e0)(l1, w1) · · · (di, ei)(li, wi) · · · , the timed
word associated with ρ is

(Act(e0), d0)(Act(e1),

d0 + d1) · · · (Act(ei),
∑

0≤j≤i
dj) · · ·

Notation: Act(ei) denotes the action of edge ei

Étienne André Timed model checking – 2 2019–2020 21 / 82

Timed words: exercise
Give the (formal) run and the associated timed words associated with the two
example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:

(
,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word: (press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5,press?

)(
,
(x=0
y=1.5

))(
2.7, press?

)
(

,
(x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
Timed word: (press?, 0)(press?, 1.5)(press?, 4.2)(cup?, 5)(coffee!, 8)

Étienne André Timed model checking – 2 2019–2020 22 / 82

Timed words: exercise
Give the (formal) run and the associated timed words associated with the two
example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word:

(press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5,press?

)(
,
(x=0
y=1.5

))(
2.7,press?

)
(

,
(x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
Timed word: (press?, 0)(press?, 1.5)(press?, 4.2)(cup?, 5)(coffee!, 8)

Étienne André Timed model checking – 2 2019–2020 22 / 82

Timed words: exercise
Give the (formal) run and the associated timed words associated with the two
example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word: (press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:

(
,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5,press?

)(
,
(x=0
y=1.5

))(
2.7,press?

)
(

,
(x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
Timed word: (press?, 0)(press?, 1.5)(press?, 4.2)(cup?, 5)(coffee!, 8)

Étienne André Timed model checking – 2 2019–2020 22 / 82

Timed words: exercise
Give the (formal) run and the associated timed words associated with the two
example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word: (press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5, press?

)(
,
(x=0
y=1.5

))(
2.7, press?

)
(

,
(x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
Timed word:

(press?, 0)(press?, 1.5)(press?, 4.2)(cup?, 5)(coffee!, 8)

Étienne André Timed model checking – 2 2019–2020 22 / 82

Timed words: exercise
Give the (formal) run and the associated timed words associated with the two
example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word: (press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5, press?

)(
,
(x=0
y=1.5

))(
2.7, press?

)
(

,
(x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
Timed word: (press?, 0)(press?, 1.5)(press?, 4.2)(cup?, 5)(coffee!, 8)

Étienne André Timed model checking – 2 2019–2020 22 / 82

Timed language

Definition (timed language)

Given a TAA, the timed language ofA is the set of timed words associated with
the runs ofA ending in a location

` ∈ LF .

Étienne André Timed model checking – 2 2019–2020 23 / 82

Timed language

Definition (timed language)

Given a TAA, the timed language ofA is the set of timed words associated with
the runs ofA ending in a location

` ∈ LF .

Étienne André Timed model checking – 2 2019–2020 23 / 82

Timed language: Example 1

Give the timed language of the following automaton [Alur and Dill, 1994]
x < 3
a, b

x = 3
a

x := 0

Étienne André Timed model checking – 2 2019–2020 24 / 82

Timed language: Example 2

Give the timed language of the following automaton

Étienne André Timed model checking – 2 2019–2020 25 / 82

Timed language: Example 3

Give the timed language of the coffee machine

Étienne André Timed model checking – 2 2019–2020 26 / 82

Accepting locations?

Timed automata may or may not be equipped with accepting locations

Often, timed automata with no accepting locations are called timed safety
automata [Henzinger et al., 1994]

In that case the timed language can be defined as:

All possible timed words read by the automaton
All possible maximal timed words read by the automaton

Maximal: infinite or that cannot be extended

All possible infinite timed words read by the automaton

Theorem
The expressive power of timed safety automata is strictly less than timed
automata with accepting locations [Henzinger et al., 1995]

Étienne André Timed model checking – 2 2019–2020 27 / 82

Accepting locations?

Timed automata may or may not be equipped with accepting locations

Often, timed automata with no accepting locations are called timed safety
automata [Henzinger et al., 1994]

In that case the timed language can be defined as:

All possible timed words read by the automaton
All possible maximal timed words read by the automaton

Maximal: infinite or that cannot be extended

All possible infinite timed words read by the automaton

Theorem
The expressive power of timed safety automata is strictly less than timed
automata with accepting locations [Henzinger et al., 1995]

Étienne André Timed model checking – 2 2019–2020 27 / 82

Deadlocks and timelocks

Timed automata can be subject to two annoying behaviors:
Deadlock: similar to finite state automata

Can be a problem of

the actual system, or a problem of the model

x ≤ 3
x = 3

a
x ≤ 5

b

Timelock: coming from the timed nature of TAs
Can

only be a problem of the model
Time cannot be blocked in reality

x ≤ 4 x ≤ 5
x = 3

a
x > 5

b

Étienne André Timed model checking – 2 2019–2020 28 / 82

Deadlocks and timelocks

Timed automata can be subject to two annoying behaviors:
Deadlock: similar to finite state automata

Can be a problem of

the actual system, or a problem of the model

x ≤ 3
x = 3

a
x ≤ 5

b

Timelock: coming from the timed nature of TAs
Can

only be a problem of the model
Time cannot be blocked in reality

x ≤ 4 x ≤ 5
x = 3

a
x > 5

b

Étienne André Timed model checking – 2 2019–2020 28 / 82

Deadlocks and timelocks

Timed automata can be subject to two annoying behaviors:
Deadlock: similar to finite state automata

Can be a problem of

the actual system, or a problem of the model

x ≤ 3
x = 3

a
x ≤ 5

b

Timelock: coming from the timed nature of TAs
Can

only be a problem of the model
Time cannot be blocked in reality

x ≤ 4 x ≤ 5
x = 3

a
x > 5

b

Étienne André Timed model checking – 2 2019–2020 28 / 82

Deadlocks and timelocks

Timed automata can be subject to two annoying behaviors:
Deadlock: similar to finite state automata

Can be a problem of

the actual system, or a problem of the model

x ≤ 3
x = 3

a
x ≤ 5

b

Timelock: coming from the timed nature of TAs
Can

only be a problem of the model
Time cannot be blocked in reality

x ≤ 4 x ≤ 5
x = 3

a
x > 5

b

Étienne André Timed model checking – 2 2019–2020 28 / 82

The Zeno problem (1/2)
Definition (Zeno run)

A run is Zeno if it contains an infinite number of actions in finite time.

Example of TA containing at least one Zeno run

Example of TA containing only non-Zeno runs

, The coffee machine

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Étienne André Timed model checking – 2 2019–2020 29 / 82

The Zeno problem (1/2)
Definition (Zeno run)

A run is Zeno if it contains an infinite number of actions in finite time.

Example of TA containing at least one Zeno run

Example of TA containing only non-Zeno runs

, The coffee machine

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Étienne André Timed model checking – 2 2019–2020 29 / 82

The Zeno problem (1/2)
Definition (Zeno run)

A run is Zeno if it contains an infinite number of actions in finite time.

Example of TA containing at least one Zeno run

Example of TA containing only non-Zeno runs

, The coffee machine

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Étienne André Timed model checking – 2 2019–2020 29 / 82

The Zeno problem (1/2)
Definition (Zeno run)

A run is Zeno if it contains an infinite number of actions in finite time.

Example of TA containing at least one Zeno run

Example of TA containing only non-Zeno runs

, The coffee machine

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Étienne André Timed model checking – 2 2019–2020 29 / 82

The Zeno problem (2/2)

Problem (Zeno runs)

An infinite number of actions in finite time is impossible in practice

Processors have finite precision

Zeno runs must be pruned when performing model checking

Some solutions:

Transform the TA (with an additional clock)
[Tripakis, 1999, Tripakis et al., 2005, Bowman and Gómez, 2006, Gómez and Bowman, 2007]

Transform the zone graph [Herbreteau et al., 2012]

Consider a different but closely related formalism [Sun et al., 2013]

Transform the TA on-the-fly [Wang et al., 2015]

Étienne André Timed model checking – 2 2019–2020 30 / 82

The Zeno problem (2/2)

Problem (Zeno runs)

An infinite number of actions in finite time is impossible in practice

Processors have finite precision

Zeno runs must be pruned when performing model checking

Some solutions:

Transform the TA (with an additional clock)
[Tripakis, 1999, Tripakis et al., 2005, Bowman and Gómez, 2006, Gómez and Bowman, 2007]

Transform the zone graph [Herbreteau et al., 2012]

Consider a different but closely related formalism [Sun et al., 2013]

Transform the TA on-the-fly [Wang et al., 2015]

Étienne André Timed model checking – 2 2019–2020 30 / 82

Outline

1 Timed automata
Syntax
Concrete semantics
Specifying with timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 31 / 82

Example: Railroad gate controller [Alur et al., 1993b]

Design three timed automata in parallel:

1 The train: once it is approaching (action approach), it will come in (action
in) after at least 5 time units, then go out (action out) and finally exit
(action exit) after at most 6 time units

2 The gate: upon reception of a lower signal, starts to lower; once it is down,
and upon reception of a raise signal, the gate raises again; the time to lower
and to raise the gate is an interval [1, 3]

3 The controller: once a train approaches (action approach), it triggers the
lower signal within [2, 3] time units; then, once the train exits (action exit),
it triggers the raise signal again within [2, 4] time units

All TAs are cyclic, i. e., repeat the same behavior forever.

Étienne André Timed model checking – 2 2019–2020 32 / 82

Example: Railroad gate controller (train)

far approaching

crossingleaving

x ≤ 6

x ≤ 6
x ≤ 6

approach!
x := 0

x ≥ 5
in!

out!

x ≤ 6
exit!

Étienne André Timed model checking – 2 2019–2020 33 / 82

Example: Railroad gate controller (gate)

up falling

downraising

y ≤ 3

y ≤ 3

lower?
y := 0

y ≥ 1
down!

raise?
y := 0

y ≥ 1
up!

Étienne André Timed model checking – 2 2019–2020 34 / 82

Example: Railroad gate controller (controller)

idle wait1

passingwait2

z ≤ 3

z ≤ 4

approach?
z := 0

z ≥ 2
lower!

exit?
z := 0

z ≥ 2
raise!

Étienne André Timed model checking – 2 2019–2020 35 / 82

Example: A hardware gate

Not
I Q

The outputQ reacts to the change of the input I (actions I↑ and I↓) after a delay
[5, 9]

[Chevallier et al., 2009]

01 11

1000

x ≤ 9

x ≤ 9

I↑

x := 0

I↓

x ≥ 5

I↓

x := 0

I↑

x ≥ 5

Étienne André Timed model checking – 2 2019–2020 36 / 82

Example: A hardware gate

Not
I Q

The outputQ reacts to the change of the input I (actions I↑ and I↓) after a delay
[5, 9]

[Chevallier et al., 2009]

01 11

1000

x ≤ 9

x ≤ 9

I↑

x := 0

I↓

x ≥ 5

I↓

x := 0

I↑

x ≥ 5

Étienne André Timed model checking – 2 2019–2020 36 / 82

Example: A nuclear power plant

Design a PTA modeling a nuclear power plant:

At first, the plant is in normal mode.

Suddenly, it may start to heat (action startHeating).

At that point, a timer is set; after p2 time units, the timer will trigger an
alarm (action alarm).

Then, p3 time units later, a watering system (action watering) starts.

This watering system lasts for at most p4 time units, after which the plant is
cool again (action cool) and goes back to the normal mode.

However, p1 time units after the plant starts to heat, the plant may explode
at any time (action boom)—unless of course it is cool again.

Étienne André Timed model checking – 2 2019–2020 37 / 82

Example: A nuclear power plant (solution)

normal heating ringing watering

boom

stop

x ≤ p1
∧x ≤ p2

x ≤ p1
∧y ≤ p3

x ≤ p1
∧y ≤ p4

startHeating
x, y := 0

y = p2
alarm
y := 0

y = p3
watering
y := 0

y ≤ p4
cool

y := 0

restart
x, y := 0

x ≥ p1
boom

x ≥ p1
boom x ≥ p1

boom

Étienne André Timed model checking – 2 2019–2020 38 / 82

Example: A real-time system
Design a (network of) timed automata modeling the following components:

1 a periodic task T1 of period 5 with offset 2, best and worst case execution
times in [3, 4]

2 a sporadic task T2 of minimum interarrival time 20, best and worst case
execution times in [1, 2]

3 a non-preemptive scheduler with fixed priority

Étienne André Timed model checking – 2 2019–2020 39 / 82

Example: A real-time system (solution)

Étienne André Timed model checking – 2 2019–2020 40 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 41 / 82

Timed temporal logics

Specify properties on the order and the delays between events

No X operator because

of dense time

Étienne André Timed model checking – 2 2019–2020 42 / 82

Timed temporal logics

Specify properties on the order and the delays between events

No X operator because

of dense time

Étienne André Timed model checking – 2 2019–2020 42 / 82

TCTL (Timed CTL) [Alur et al., 1993a]

TCTL expresses formulas on the order and the time between the future events for
some or for all paths, using a set of atomic propositions AP

Timed extension of CTL

Quantifiers over paths:

ϕ ::= p ∈ AP | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ

Quantifiers over states:
ψ ::= ϕUIϕ

I is an interval of the form [a, b], [a, b), (a, b], (a, b), [a,∞), or (a,∞), where
a, b ∈ N

Étienne André Timed model checking – 2 2019–2020 43 / 82

Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
(, 0)(, 2.046)(, 3.3)(, 6.9)

Are they equivalent?

no

Étienne André Timed model checking – 2 2019–2020 44 / 82

Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
(, 0)

(, 2.046)(, 3.3)(, 6.9)

Are they equivalent?

no

Étienne André Timed model checking – 2 2019–2020 44 / 82

Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
(, 0)(, 2.046)

(, 3.3)(, 6.9)

Are they equivalent?

no

Étienne André Timed model checking – 2 2019–2020 44 / 82

Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
(, 0)(, 2.046)(, 3.3)

(, 6.9)

Are they equivalent?

no

Étienne André Timed model checking – 2 2019–2020 44 / 82

Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
(, 0)(, 2.046)(, 3.3)(, 6.9)

Are they equivalent?

no

Étienne André Timed model checking – 2 2019–2020 44 / 82

Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
(, 0)(, 2.046)(, 3.3)(, 6.9)

Are they equivalent?

no

Étienne André Timed model checking – 2 2019–2020 44 / 82

Continuous semantics of TCTL

s |= p iff p holds at the current position
s |= ¬p iff p does not hold at the current position
s |= ϕ ∧ ψ iff s |= ϕ ∧ s |= ψ
s |= ϕ ∨ ψ iff s |= ϕ ∨ s |= ψ
s |= EψUIϕ iff there exists a future path and t ∈ I for which ψ holds

until t and ϕ holds at t
s |= AψUIϕ iff for all future paths, there exists t ∈ I for which ψ holds

until t and ϕ holds at t

Étienne André Timed model checking – 2 2019–2020 45 / 82

Illustrating TCTL operators

Étienne André Timed model checking – 2 2019–2020 46 / 82

Discrete semantics of TCTL [Bouyer et al., 2017]

Informal description of the U (the rest is similar):

s |= EψUIϕ iff there exists n > 0 such that ϕ holds from point n
(with the time of point n within I)
and for each 0 < m < n, ψ holds at pointm

Note: strict version of the U, considered in [Bouyer et al., 2017] (not necessarily standard)

Étienne André Timed model checking – 2 2019–2020 47 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F

ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1

ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U

ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2

ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

(, 0)(, 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 48 / 82

TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)

Étienne André Timed model checking – 2 2019–2020 49 / 82

TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)

Étienne André Timed model checking – 2 2019–2020 49 / 82

TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)

Étienne André Timed model checking – 2 2019–2020 49 / 82

TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)

Étienne André Timed model checking – 2 2019–2020 49 / 82

TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)

Étienne André Timed model checking – 2 2019–2020 49 / 82

TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)

Étienne André Timed model checking – 2 2019–2020 49 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)

(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press))

(×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press))

(
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)

Étienne André Timed model checking – 2 2019–2020 50 / 82

Other timed temporal logics

MTL: linear time [Koymans, 1990]

Can be seen as a timed extension of LTL (just as TCTL is a timed extension of
CTL)
Variant: MITL [Alur et al., 1996]

Variant of MTL disallowing punctuality

STL: to reason about signals [Maler and Nickovic, 2004]

etc.

See, e. g., [Bouyer et al., 2017] for a partial survey

Étienne André Timed model checking – 2 2019–2020 51 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 52 / 82

Observers for timed automata

Observers (both untimed and timed) can be used for timed automata

Just as for FA:

A TA observer is an automaton that observes the system behavior

It synchronizes with other automata’s actions

It can read the clocks of the system, and/or feature its own clock(s)
It must be non-blocking

Pay attention to timelocks or deadlocks!

Its location(s) give an indication on the system property

Then verifying the property reduces to a reachability condition on the observer
(in parallel with the system)

The expressive power of observers for timed automata has been studied in [Aceto et al., 1998, Aceto et al., 2003]

Étienne André Timed model checking – 2 2019–2020 53 / 82

Exercise: An observer for the coffee machine

Design an observer for the coffee machine verifying that it must never happen
that the button can be pressed twice within a time strictly less than 1 unit of time.

Étienne André Timed model checking – 2 2019–2020 54 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 55 / 82

What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

“given three integers, is one of them the product of the other two?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

“given a timed automaton, does there exist a run from the initial state to a
given location `?”

Étienne André Timed model checking – 2 2019–2020 56 / 82

What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

“given three integers, is one of them the product of the other two?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

“given a timed automaton, does there exist a run from the initial state to a
given location `?”

Étienne André Timed model checking – 2 2019–2020 56 / 82

What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

√

“given three integers, is one of them the product of the other two?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

“given a timed automaton, does there exist a run from the initial state to a
given location `?”

Étienne André Timed model checking – 2 2019–2020 56 / 82

What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

√

“given three integers, is one of them the product of the other two?”

×

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

“given a timed automaton, does there exist a run from the initial state to a
given location `?”

Étienne André Timed model checking – 2 2019–2020 56 / 82

What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

√

“given three integers, is one of them the product of the other two?”

×

“given a context-free grammar, does it generate all strings?”

×

“given a Turing machine, will it eventually halt?”

“given a timed automaton, does there exist a run from the initial state to a
given location `?”

Étienne André Timed model checking – 2 2019–2020 56 / 82

What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

√

“given three integers, is one of them the product of the other two?”

×

“given a context-free grammar, does it generate all strings?”

×

“given a Turing machine, will it eventually halt?”

√

“given a timed automaton, does there exist a run from the initial state to a
given location `?”

Étienne André Timed model checking – 2 2019–2020 56 / 82

Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations

Étienne André Timed model checking – 2 2019–2020 57 / 82

Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations

Étienne André Timed model checking – 2 2019–2020 57 / 82

Problem: an infinite concrete semantics

Time is dense: transitions can be taken anytime
Infinite number of timed runs
Infinite number of states
Infinitely branching structure

Model checking needs a finite structure!

Étienne André Timed model checking – 2 2019–2020 58 / 82

Problem: an infinite concrete semantics

Time is dense: transitions can be taken anytime
Infinite number of timed runs
Infinite number of states
Infinitely branching structure
Model checking needs a finite structure!

Étienne André Timed model checking – 2 2019–2020 58 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability
Abstract semantics: regions
Abstract semantics: Zones
Decision problems and results

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 59 / 82

Dense time

A first remark: Some runs are equivalent
Taking the press? action at t = 1.5 or t = 1.57 is equivalent w.r.t. the
possible actions

Idea: reason with abstractions
Region automaton [Alur and Dill, 1994], and zone automaton
Example: in location , all clock values in the following zone are equivalent

y ≤ 5 ∧ y − x ≥ 4
This abstraction is finite

Étienne André Timed model checking – 2 2019–2020 60 / 82

Regions

clock x

clock y

0 1 2
0

1

2

Inspired by a similar LATEX illustration by Patricia Bouyer

Étienne André Timed model checking – 2 2019–2020 61 / 82

Regions

clock x

clock y

0 1 2
0

1

2

Inspired by a similar LATEX illustration by Patricia Bouyer

Étienne André Timed model checking – 2 2019–2020 61 / 82

Regions

clock x

clock y

0 1 2
0

1

2

Inspired by a similar LATEX illustration by Patricia Bouyer

Étienne André Timed model checking – 2 2019–2020 61 / 82

Regions

clock x

clock y

0 1 2
0

1

2

Inspired by a similar LATEX illustration by Patricia Bouyer

Étienne André Timed model checking – 2 2019–2020 61 / 82

Region graph construction
Two successors:

time-elapsing

clock reset

(see white board for the graph construction)

Étienne André Timed model checking – 2 2019–2020 62 / 82

Region graph construction: exercise

Construct the region graph of the following TA:

x ≤ 2
a

x, y := 0

y = 1
b

y := 0

Étienne André Timed model checking – 2 2019–2020 63 / 82

On the region graph finiteness

Is the region graph of TAs finite?

×

Example with two clocks x, y:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all integer (resp. rational) clock valuations above the greatest
constant k of the TA are equivalent” [Alur and Dill, 1994]

With this additional technicality, there is a finite number of regions in a TA

Étienne André Timed model checking – 2 2019–2020 64 / 82

On the region graph finiteness

Is the region graph of TAs finite?

×

Example with two clocks x, y:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all integer (resp. rational) clock valuations above the greatest
constant k of the TA are equivalent” [Alur and Dill, 1994]

With this additional technicality, there is a finite number of regions in a TA

Étienne André Timed model checking – 2 2019–2020 64 / 82

On the region graph finiteness

Is the region graph of TAs finite?

×

Example with two clocks x, y:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all integer (resp. rational) clock valuations above the greatest
constant k of the TA are equivalent” [Alur and Dill, 1994]

With this additional technicality, there is a finite number of regions in a TA

Étienne André Timed model checking – 2 2019–2020 64 / 82

Extrapolation: illustration

Étienne André Timed model checking – 2 2019–2020 65 / 82

Extrapolation: exercise
Construct the region graph (with the k-extrapolation) of the following TA:

x ≤ 2
a

x, y := 0

y = 1
b

y := 0

Étienne André Timed model checking – 2 2019–2020 66 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability
Abstract semantics: regions
Abstract semantics: Zones
Decision problems and results

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 67 / 82

Zone construction for timed automata

Objective: group all concrete states reachable by the same sequence of
discrete actions

Symbolic state: a location ` and a (infinite) set of states Z

For timed automata, Z can be represented by a convex polyhedron with a
special form called zone, with constraints

−d0i ≤ xi ≤ di0 and xi − xj ≤ dij

Computation of successive reachable symbolic states can be performed
symbolically with polyhedral operations: for edge e = (`, a, g, R, `′):

Succ
(
(`, Z), e

)
=
(
`′,
(
(Z ∩ g)[R] ∩ I(`′)

)↗ ∩ I(`′)
)

Étienne André Timed model checking – 2 2019–2020 68 / 82

Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
{(0, 0)}

Z0 = {(0, 0)}↗ ∩ I•

y

x

Étienne André Timed model checking – 2 2019–2020 69 / 82

Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x

Étienne André Timed model checking – 2 2019–2020 69 / 82

Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x
Z0

Étienne André Timed model checking – 2 2019–2020 69 / 82

Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x
Z0 ∩ (x ≥ 2)

Étienne André Timed model checking – 2 2019–2020 69 / 82

Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x(
Z0 ∩ (x ≥ 2)

)
[{y}]

Étienne André Timed model checking – 2 2019–2020 69 / 82

Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x
Z1 =

(
Z0 ∩ (x ≥ 2)

)
[{y}]↗

TikZ animation based on a LATEX code by Didier Lime

Étienne André Timed model checking – 2 2019–2020 69 / 82

Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y

Étienne André Timed model checking – 2 2019–2020 70 / 82

Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

x ≥ 1
a

y :=0

b
x :=0

y≥3
c

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y

Étienne André Timed model checking – 2 2019–2020 70 / 82

Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

x ≥ 1
a

y :=0

b
x :=0

y≥3
c

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y

Étienne André Timed model checking – 2 2019–2020 70 / 82

Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

x ≥ 1
a

y :=0

b
x :=0

y≥3
c

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y

1 ≤ x ≤ 4
∧ 1 ≤ x− y ≤ 3

a

Étienne André Timed model checking – 2 2019–2020 70 / 82

Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

x ≥ 1
a

y :=0

b
x :=0

y≥3
c

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y

1 ≤ x ≤ 4
∧ 1 ≤ x− y ≤ 3

y ≥ 0
∧ 1 ≤ y − x ≤ 4

a b

Étienne André Timed model checking – 2 2019–2020 70 / 82

Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

x ≥ 1
a

y :=0

b
x :=0

y≥3
c

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y

1 ≤ x ≤ 4
∧ 1 ≤ x− y ≤ 3

y ≥ 0
∧ 1 ≤ y − x ≤ 4

y ≥ 3
∧ 1 ≤ y − x ≤ 4

a b c

Étienne André Timed model checking – 2 2019–2020 70 / 82

On the zone graph finiteness

Is the zone graph of TAs finite?

×

Example:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all clock valuations above the greatest constant k of the TA are
equivalent” [Bengtsson and Yi, 2003]

Can we do more efficient?
L/U-abstractions [Behrmann et al., 2006]

Lazy abstractions [Herbreteau et al., 2013]

With this additional technicality, there is a finite number of reachable zones in a
TA

Étienne André Timed model checking – 2 2019–2020 71 / 82

On the zone graph finiteness

Is the zone graph of TAs finite?

×

Example:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all clock valuations above the greatest constant k of the TA are
equivalent” [Bengtsson and Yi, 2003]

Can we do more efficient?
L/U-abstractions [Behrmann et al., 2006]

Lazy abstractions [Herbreteau et al., 2013]

With this additional technicality, there is a finite number of reachable zones in a
TA

Étienne André Timed model checking – 2 2019–2020 71 / 82

On the zone graph finiteness

Is the zone graph of TAs finite?

×

Example:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all clock valuations above the greatest constant k of the TA are
equivalent” [Bengtsson and Yi, 2003]

Can we do more efficient?
L/U-abstractions [Behrmann et al., 2006]

Lazy abstractions [Herbreteau et al., 2013]

With this additional technicality, there is a finite number of reachable zones in a
TA

Étienne André Timed model checking – 2 2019–2020 71 / 82

More on zones

Symbolic states can be efficiently computed using Difference Bound
Matrices (DBMs)

isReachable can be applied to the abstract semantics of timed automata
(the underlying finite transition system)

The zone graph is theoretically larger than the region graph but practically
smaller

On-the-fly construction
Various optimization techniques

Étienne André Timed model checking – 2 2019–2020 72 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability
Abstract semantics: regions
Abstract semantics: Zones
Decision problems and results

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 73 / 82

Decision problems for timed automata
The finiteness of the region automaton allows us to check properties

, Reachability of a location (PSPACE-complete) [Alur and Dill, 1994]

, Liveness (Büchi conditions)

, TCTL model-checking [Alur and Dill, 1994]

Some problems impossible to check using the zone graph (but still decidable)

, non-Zenoness emptiness check [Gómez and Bowman, 2007]

Some undecidable problems

/ universality of the timed language [Alur and Dill, 1994]

/ timed language inclusion [Alur and Dill, 1994]

Some decidable subclasses
[Alur and Dill, 1994, Ouaknine and Worrell, 2003, Ouaknine and Worrell, 2004]

[Abdulla et al., 2008, Bertrand et al., 2011]

Étienne André Timed model checking – 2 2019–2020 74 / 82

Syntactic variants of timed automata

Variants of the syntax with consequences on the decidability

Can we use diagonal constraints (“x− y”)? [Bouyer, 2003]

Can we reset clocks to constants 6= 0? [Bouyer et al., 2004]

Can we reset clocks to other clocks? [Bouyer et al., 2004]

Can we reset clocks to unknown constants? [André et al., 2019]

Can we stop the elapsing of some clocks? [Cassez and Larsen, 2000]

Étienne André Timed model checking – 2 2019–2020 75 / 82

Further challenges

Controller synthesis [Sankur et al., 2013, Bacci et al., 2018]

Game theory

Timed language inclusion (using TA as a specification language)
Decidable subclasses [Ouaknine and Worrell, 2003, Ouaknine and Worrell, 2004]

Practical algorithms [Wang et al., 2017]

Robustness [De Wulf et al., 2004, Bouyer et al., 2013, Bacci et al., 2018]

Distributed algorithms [Laarman et al., 2013, Zhang et al., 2016]

Still a very active research field!

Étienne André Timed model checking – 2 2019–2020 76 / 82

Further challenges

Controller synthesis [Sankur et al., 2013, Bacci et al., 2018]

Game theory

Timed language inclusion (using TA as a specification language)
Decidable subclasses [Ouaknine and Worrell, 2003, Ouaknine and Worrell, 2004]

Practical algorithms [Wang et al., 2017]

Robustness [De Wulf et al., 2004, Bouyer et al., 2013, Bacci et al., 2018]

Distributed algorithms [Laarman et al., 2013, Zhang et al., 2016]

Still a very active research field!

Étienne André Timed model checking – 2 2019–2020 76 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 77 / 82

Software supporting timed automata

Timed automata have been successfully used since the 1990s

Tools for modeling and verifying models specified using TA

HyTech (also hybrid, parametric timed automata) [Henzinger et al., 1997]

Kronos [Yovine, 1997]

TReX (also parametric timed automata) [Annichini et al., 2001]

Uppaal [Larsen et al., 1997]

Roméo (parametric time Petri nets) [Lime et al., 2009]

PAT (also other formalisms) [Sun et al., 2009a]

IMITATOR (also parametric timed automata) [André et al., 2012]

Étienne André Timed model checking – 2 2019–2020 78 / 82

Some case studies and application domains

Scheduling and real-time systems
[Fehnker, 1999, Abdeddaïm and Maler, 2001, Adbeddaïm et al., 2006, Abdeddaïm and Masson, 2012]

Protocols
Bounded retransmission protocol [D’Argenio et al., 1997]

Audio-video protocol [Havelund et al., 1997]

Fast Reservation Protocol [Tripakis and Yovine, 1998]

IEEE 1394a root contention protocol [Simons and Stoelinga, 2001]

Hardware circuits
[Bozga et al., 2002, Chevallier et al., 2009]

Health and biology [Schivo et al., 2014]

Monitoring [Waga et al., 2016, Waga et al., 2018]

Survey on the industrial use of Uppaal [Larsen et al., 2018]

Étienne André Timed model checking – 2 2019–2020 79 / 82

Outline

1 Timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .

Étienne André Timed model checking – 2 2019–2020 80 / 82

What’s beyond timed automata. . . ?

Stopping clocks: stopwatch automata [Cassez and Larsen, 2000]

/ Undecidable
, Interesting application domains

Adding costs: energy [Behrmann et al., 2001, Alur et al., 2004]

Enriching TA with tasks [Fersman et al., 2007]

Adding unknown parameters [Alur et al., 1993b]

Allowing non-linear clocks: hybrid automata [Henzinger, 1996, Asarin et al., 2012]

Adding probabilities [Kwiatkowska et al., 2002]

Statistical model checking [Legay et al., 2010]

Étienne André Timed model checking – 2 2019–2020 81 / 82

Towards a parametrization. . .
Challenge 1: systems incompletely specified

Some delays may not be known yet, or may change

Challenge 2: Robustness [Markey, 2011]

What happens if 8 is implemented with 7.99?
Can I really get a coffee with 5 doses of sugar?

Challenge 3: Optimization of timing constants
Up to which value of the delay between two actions press? can I still order a
coffee with 3 doses of sugar?

Challenge 4: Avoiding numerous verifications
If one of the timing delays of the model changes, should I model check again
the whole system?

A solution: Parametric analysis
Consider that timing constants are unknown (parameters)
Find good values for the parameters s.t. the system behaves well

Étienne André Timed model checking – 2 2019–2020 82 / 82

Towards a parametrization. . .
Challenge 1: systems incompletely specified

Some delays may not be known yet, or may change

Challenge 2: Robustness [Markey, 2011]

What happens if 8 is implemented with 7.99?
Can I really get a coffee with 5 doses of sugar?

Challenge 3: Optimization of timing constants
Up to which value of the delay between two actions press? can I still order a
coffee with 3 doses of sugar?

Challenge 4: Avoiding numerous verifications
If one of the timing delays of the model changes, should I model check again
the whole system?

A solution: Parametric analysis
Consider that timing constants are unknown (parameters)
Find good values for the parameters s.t. the system behaves well

Étienne André Timed model checking – 2 2019–2020 82 / 82

Source and references

Étienne André Timed model checking – 2 2019–2020 83 / 82

General references

Timed Automata: Semantics, Algorithms and Tools [Bengtsson and Yi, 2003]

Systems and Software Verification [Bérard et al., 2001]

Principles of Model Checking [Baier and Katoen, 2008]

Timed temporal logics [Bouyer et al., 2017]

Étienne André Timed model checking – 2 2019–2020 84 / 82

References I
Abdeddaïm, Y. and Maler, O. (2001).
Job-shop scheduling using timed automata.
In Berry, G., Comon, H., and Finkel, A., editors, CAV, volume 2102 of LNCS, pages 478–492. Springer.

Abdeddaïm, Y. and Masson, D. (2012).
Real-time scheduling of energy harvesting embedded systems with timed automata.
In RTCSA, pages 31–40. IEEE Computer Society.

Abdulla, P. A., Deneux, J., Ouaknine, J., Quaas, K., and Worrell, J. (2008).
Universality analysis for one-clock timed automata.
Fundamenta Informaticae, 89(4):419–450.

Aceto, L., Bouyer, P., Burgueño, A., and Larsen, K. G. (2003).
The power of reachability testing for timed automata.
Theoretical Computer Science, 300(1-3):411–475.

Aceto, L., Burgueño, A., and Larsen, K. G. (1998).
Model checking via reachability testing for timed automata.
In Steffen, B., editor, TACAS, volume 1384 of LNCS, pages 263–280. Springer.

Adbeddaïm, Y., Asarin, E., and Maler, O. (2006).
Scheduling with timed automata.
Theoretical Computer Science, 354(2):272–300.

Alur, R., Courcoubetis, C., and Dill, D. L. (1993a).
Model-checking in dense real-time.
Information and Computation, 104(1):2–34.

Étienne André Timed model checking – 2 2019–2020 85 / 82

References II

Alur, R. and Dill, D. L. (1994).
A theory of timed automata.
Theoretical Computer Science, 126(2):183–235.

Alur, R., Feder, T., and Henzinger, T. A. (1996).
The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146.

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993b).
Parametric real-time reasoning.
In Kosaraju, S. R., Johnson, D. S., and Aggarwal, A., editors, STOC, pages 592–601, New York, NY, USA. ACM.

Alur, R., La Torre, S., and Pappas, G. J. (2004).
Optimal paths in weighted timed automata.
Theoretical Computer Science, 318(3):297–322.

André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012).
IMITATOR 2.5: A tool for analyzing robustness in scheduling problems.
In Giannakopoulou, D. and Méry, D., editors, FM, volume 7436 of LNCS, pages 33–36. Springer.

André, É., Lime, D., and Ramparison, M. (2019).
Parametric updates in parametric timed automata.
In Pérez, J. A. and Yoshida, N., editors, FORTE. Springer.
To appear.

Étienne André Timed model checking – 2 2019–2020 86 / 82

References III

André, É. and Soulat, R. (2013).
The Inverse Method.
FOCUS Series in Computer Engineering and Information Technology. ISTE Ltd and John Wiley & Sons Inc.
176 pages.

Annichini, A., Bouajjani, A., and Sighireanu, M. (2001).
TReX: A tool for reachability analysis of complex systems.
In Berry, G., Comon, H., and Finkel, A., editors, CAV, volume 2102 of LNCS, pages 368–372. Springer.

Asarin, E., Mysore, V., Pnueli, A., and Schneider, G. (2012).
Low dimensional hybrid systems – decidable, undecidable, don’t know.
Information and Computation, 211:138–159.

Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K. G., Markey, N., and Reynier, P. (2018).
Optimal and robust controller synthesis – using energy timed automata with uncertainty.
In Havelund, K., Peleska, J., Roscoe, B., and de Vink, E. P., editors, FM, volume 10951 of LNCS, pages 203–221.
Springer.

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.
Behrmann, G., Bouyer, P., Larsen, K. G., and Pelánek, R. (2006).
Lower and upper bounds in zone-based abstractions of timed automata.
International Journal on Software Tools for Technology Transfer, 8(3):204–215.

Étienne André Timed model checking – 2 2019–2020 87 / 82

References IV
Behrmann, G., Fehnker, A., Hune, T., Larsen, K. G., Pettersson, P., Romijn, J., and Vaandrager, F. W. (2001).
Minimum-cost reachability for priced timed automata.
In Benedetto, M. D. D. and Sangiovanni-Vincentelli, A. L., editors, HSCC, volume 2034 of LNCS, pages
147–161. Springer.

Bengtsson, J. and Yi, W. (2003).
Timed automata: Semantics, algorithms and tools.
In Desel, J., Reisig, W., and Rozenberg, G., editors, Lectures on Concurrency and Petri Nets, Advances in
Petri Nets, volume 3098 of LNCS, pages 87–124. Springer.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., and Schnoebelen, Ph. (2001).
Systems and Software Verification. Model-Checking, Techniques and Tools.
Springer.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2005).
Comparison of the expressiveness of timed automata and time Petri nets.
In Pettersson, P. and Yi, W., editors, FORMATS, volume 3829 of LNCS, pages 211–225. Springer.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2013).
The expressive power of time Petri nets.
Theoretical Computer Science, 474:1–20.

Bertrand, N., Bouyer, P., Brihaye, T., and Stainer, A. (2011).
Emptiness and universality problems in timed automata with positive frequency.
In Aceto, L., Henzinger, M., and Sgall, J., editors, ICALP, Part II, volume 6756 of LNCS, pages 246–257.
Springer.

Étienne André Timed model checking – 2 2019–2020 88 / 82

References V

Bouyer, P. (2003).
Untameable timed automata!
In Alt, H. and Habib, M., editors, STACS, volume 2607 of LNCS, pages 620–631. Springer.

Bouyer, P., Dufourd, C., Fleury, E., and Petit, A. (2004).
Updatable timed automata.
Theoretical Computer Science, 321(2-3):291–345.

Bouyer, P., Laroussinie, F., Markey, N., Ouaknine, J., and Worrell, J. (2017).
Timed temporal logics.
In Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., and Mardare, R., editors, Models, Algorithms,
Logics and Tools, volume 10460 of LNCS, pages 211–230. Springer.

Bouyer, P., Markey, N., and Sankur, O. (2013).
Robustness in timed automata.
In Abdulla, P. A. and Potapov, I., editors, RP, volume 8169 of LNCS, pages 1–18. Springer.
Invited paper.

Bowman, H. and Gómez, R. (2006).
How to stop time stopping.
Formal Aspects of Computing, 18(4):459–493.

Bozga, M., Hou, J., Maler, O., and Yovine, S. (2002).
Verification of asynchronous circuits using timed automata.
Electronic Notes in Theoretical Computer Science, 65(6):47–59.

Étienne André Timed model checking – 2 2019–2020 89 / 82

References VI
Cassez, F. and Larsen, K. G. (2000).
The impressive power of stopwatches.
In Palamidessi, C., editor, CONCUR, volume 1877 of LNCS, pages 138–152. Springer.

Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., and Xu, W. (2009).
Timed verification of the generic architecture of a memory circuit using parametric timed automata.
Formal Methods in System Design, 34(1):59–81.

D’Argenio, P. R., Katoen, J.-P., Ruys, T. C., and Tretmans, J. (1997).
The bounded retransmission protocol must be on time!
In Brinksma, E., editor, TACAS, volume 1217 of LNCS, pages 416–431. Springer.

De Wulf, M., Doyen, L., Markey, N., and Raskin, J. (2004).
Robustness and implementability of timed automata.
In Lakhnech, Y. and Yovine, S., editors, FORMATS and FTRTFT, volume 3253 of LNCS, pages 118–133. Springer.

Fehnker, A. (1999).
Scheduling a steel plant with timed automata.
In RTCSA, pages 280–286. IEEE Computer Society.

Fersman, E., Krcál, P., Pettersson, P., and Yi, W. (2007).
Task automata: Schedulability, decidability and undecidability.
Information and Computation, 205(8):1149–1172.

Gómez, R. and Bowman, H. (2007).
Efficient detection of Zeno runs in timed automata.
In Raskin, J. and Thiagarajan, P. S., editors, FORMATS, volume 4763 of LNCS, pages 195–210. Springer.

Étienne André Timed model checking – 2 2019–2020 90 / 82

References VII
Havelund, K., Skou, A., Larsen, K. G., and Lund, K. (1997).
Formal modeling and analysis of an audio/video protocol: an industrial case study using UPPAAL.
In RTSS, pages 2–13. IEEE Computer Society.

Henzinger, T. A. (1996).
The theory of hybrid automata.
In Vardi, M. Y. and Clarke, E. M., editors, LiCS, pages 278–292. IEEE Computer Society.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997).
HyTech: A model checker for hybrid systems.
Software Tools for Technology Transfer, 1:110–122.

Henzinger, T. A., Kopke, P. W., and Wong-Toi, H. (1995).
The expressive power of clocks.
In Fülöp, Z. and Gécseg, F., editors, ICALP, volume 944 of LNCS, pages 417–428. Springer.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994).
Symbolic model checking for real-time systems.
Information and Computation, 111(2):193–244.

Herbreteau, F., Srivathsan, B., and Walukiewicz, I. (2012).
Efficient emptiness check for timed Büchi automata.
Formal Methods in System Design, 40(2):122–146.

Herbreteau, F., Srivathsan, B., and Walukiewicz, I. (2013).
Lazy abstractions for timed automata.
In Sharygina, N. and Veith, H., editors, CAV, volume 8044 of LNCS, pages 990–1005. Springer.

Étienne André Timed model checking – 2 2019–2020 91 / 82

References VIII

Koymans, R. (1990).
Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299.

Kwiatkowska, M. Z., Norman, G., Segala, R., and Sproston, J. (2002).
Automatic verification of real-time systems with discrete probability distributions.
Theoretical Computer Science, 282(1):101–150.

Laarman, A., Olesen, M. C., Dalsgaard, A. E., Larsen, K. G., and Van De Pol, J. (2013).
Multi-core emptiness checking of timed Büchi automata using inclusion abstraction.
In Sharygina, N. and Veith, H., editors, CAV, volume 8044 of LNCS, pages 968–983, Heidelberg, Germany.
Springer.

Larsen, K. G., Lorber, F., and Nielsen, B. (2018).
20 years of UPPAAL enabled industrial model-based validation and beyond.
In Margaria, T. and Steffen, B., editors, ISoLA, Part IV, volume 11247 of LNCS, pages 212–229. Springer.

Larsen, K. G., Pettersson, P., and Yi, W. (1997).
UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–152.

Legay, A., Delahaye, B., and Bensalem, S. (2010).
Statistical model checking: An overview.
In Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G. J., Rosu, G., Sokolsky, O., and
Tillmann, N., editors, RV, volume 6418 of LNCS, pages 122–135. Springer.

Étienne André Timed model checking – 2 2019–2020 92 / 82

References IX
Lime, D., Roux, O. H., Seidner, C., and Traonouez, L.-M. (2009).
Romeo: A parametric model-checker for Petri nets with stopwatches.
In Kowalewski, S. and Philippou, A., editors, TACAS, volume 5505 of LNCS, pages 54–57. Springer.

Maler, O. and Nickovic, D. (2004).
Monitoring temporal properties of continuous signals.
In Lakhnech, Y. and Yovine, S., editors, FORMATS and FTRTFT, volume 3253 of LNCS, pages 152–166. Springer.

Markey, N. (2011).
Robustness in real-time systems.
In Bate, I. and Passerone, R., editors, SIES, pages 28–34. IEEE Computer Society Press.

Merlin, P. M. (1974).
A study of the recoverability of computing systems.
PhD thesis, University of California, Irvine, CA, USA.

Ouaknine, J. and Worrell, J. (2003).
Universality and language inclusion for open and closed timed automata.
In Maler, O. and Pnueli, A., editors, HSCC, volume 2623 of LNCS, pages 375–388. Springer.

Ouaknine, J. and Worrell, J. (2004).
On the language inclusion problem for timed automata: Closing a decidability gap.
In LICS, pages 54–63. IEEE Computer Society.

Sankur, O., Bouyer, P., Markey, N., and Reynier, P. (2013).
Robust controller synthesis in timed automata.
volume 8052 of LNCS, pages 546–560. Springer.

Étienne André Timed model checking – 2 2019–2020 93 / 82

References X

Schivo, S., Scholma, J., Wanders, B., Camacho, R. A. U., van der Vet, P. E., Karperien, M., Langerak, R., van de
Pol, J., and Post, J. N. (2014).
Modeling biological pathway dynamics with timed automata.
IEEE Journal of Biomedical and Health Informatics, 18(3):832–839.

Simons, D. P. L. and Stoelinga, M. (2001).
Mechanical verification of the IEEE 1394a root contention protocol using Uppaal2k.
International Journal on Software Tools for Technology Transfer, 3(4):469–485.

Srba, J. (2008).
Comparing the expressiveness of timed automata and timed extensions of Petri nets.
In Cassez, F. and Jard, C., editors, FORMATS, volume 5215 of LNCS, pages 15–32. Springer.

Sun, J., Liu, Y., Dong, J. S., Liu, Y., Shi, L., and André, É. (2013).
Modeling and verifying hierarchical real-time systems using Stateful Timed CSP.
ACM Transactions on Software Engineering and Methodology, 22(1):3.1–3.29.

Sun, J., Liu, Y., Dong, J. S., and Pang, J. (2009a).
PAT: Towards flexible verification under fairness.
In Bouajjani, A. and Maler, O., editors, CAV, volume 5643 of LNCS, pages 709–714. Springer.

Sun, J., Liu, Y., Dong, J. S., and Zhang, X. (2009b).
Verifying stateful timed CSP using implicit clocks and zone abstraction.
In Breitman, K. K. and Cavalcanti, A., editors, ICFEM, volume 5885 of LNCS, pages 581–600. Springer.

Étienne André Timed model checking – 2 2019–2020 94 / 82

References XI
Tripakis, S. (1999).
Verifying progress in timed systems.
In Katoen, J., editor, ARTS, volume 1601 of LNCS, pages 299–314. Springer.

Tripakis, S. and Yovine, S. (1998).
Verification of the fast reservation protocol with delayed transmission using the tool Kronos.
In RTAS, pages 165–170. IEEE Computer Society.

Tripakis, S., Yovine, S., and Bouajjani, A. (2005).
Checking timed büchi automata emptiness efficiently.
Formal Methods in System Design, 26(3):267–292.

Waga, M., Akazaki, T., and Hasuo, I. (2016).
A Boyer-Moore type algorithm for timed pattern matching.
In Fränzle, M. and Markey, N., editors, FORMATS, volume 9884 of LNCS, pages 121–139. Springer.

Waga, M., Hasuo, I., and Suenaga, K. (2018).
MONAA: A tool for timed pattern matching with automata-based acceleration.
In MT@CPSWeek, pages 14–15. IEEE.

Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J. S., Yang, X., and Li, X. (2015).
A systematic study on explicit-state non-Zenoness checking for timed automata.
IEEE Transactions on Software Engineering, 41(1):3–18.

Wang, X., Sun, J., Wang, T., and Qin, S. (2017).
Language inclusion checking of timed automata with non-Zenoness.
IEEE Transactions on Software Engineering, 43(11):995–1008.

Étienne André Timed model checking – 2 2019–2020 95 / 82

References XII

Yovine, S. (1997).
Kronos: A verification tool for real-time systems.
International Journal on Software Tools for Technology Transfer, 1(1-2):123–133.

Zhang, Z., Nielsen, B., and Larsen, K. G. (2016).
Time optimal reachability analysis using swarm verification.
In Ossowski, S., editor, SAC, pages 1634–1640. ACM.

Étienne André Timed model checking – 2 2019–2020 96 / 82

License

Étienne André Timed model checking – 2 2019–2020 97 / 82

Source of the graphics

Titre: Clock 256
Auteur: Everaldo Coelho
Source: https://commons.wikimedia.org/wiki/File:Clock_256.png
Licence: GNU LGPL

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Étienne André Timed model checking – 2 2019–2020 98 / 82

https://commons.wikimedia.org/wiki/File:Clock_256.png
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

License of this document

These slides can be republished, reused and modified according to the terms of
the license Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Unported (CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/

Author: Étienne André
(LATEX source available on demand)

Étienne André Timed model checking – 2 2019–2020 99 / 82

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://lipn.univ-paris13.fr/~andre/

	Timed automata
	Syntax
	Concrete semantics
	Specifying with timed automata

	Specifying with timed temporal logics
	Specifying with observers
	Decidability
	Abstract semantics: regions
	Abstract semantics: Zones
	Decision problems and results

	Timed automata in practice
	Beyond timed automata…

