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Beyond finite state automata

Finite State Automata give a simple syntax and a formal semantics to model
qualitative aspects of systems

Executions, sequence of actions

Modular definitions (parallelism)

Powerful checking (reachability, safety, liveness. . . )

But what about quantitative aspects:

Time (“the airbag always eventually inflates, but maybe 10 seconds after the
crash”)

Temperature (“the alarm always eventually ring, but maybe when the
temperature is above 75 degrees”)
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Model checking timed concurrent systems

y = delay

x := 0

x < period

A timed model of the system

?

|=

is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes No

Counterexample
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Formalisms

Many formalisms were proposed to model and verify timed systems

time(d) Petri nets [Merlin, 1974]

timed automata [Alur and Dill, 1994]

timed process algebras [Sun et al., 2009b]

etc.

We use here timed automata

See [Bérard et al., 2005, Srba, 2008, Bérard et al., 2013] for a comparison between timed Petri nets and timed automata
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Timed automaton (TA)
Finite state automaton (sets of locations)

and actions) augmented with a
set x of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

I S P
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Formal definition of timed automata

Definition (Timed automaton)

A timed automaton (TA)A is a 7-tuple of the formA = (L,Σ, `0, LF , X, I, E),
where

L is a finite set of locations,

`0 ∈ L is the initial location,

LF ⊆ L is the set of accepting (or final) locations,

Σ is a finite set of actions,

X is a set of clocks,

I is the invariant, assigning to every ` ∈ L a clock constraint I(`), and

E is a step (or “transition”) relation consisting of elements of the form

e = (`, g, a,R, `′), also denoted by `
g,a,R−→ `′, where `, `′ ∈ L, a ∈ Σ,

R ⊆ X is a set of clock variables to be reset by the step, and g (the step
guard) is a clock constraint.
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Clock constraints

Definition (clock constraint)

A clock constraint is a conjunction of atomic constraints

What is an atomic constraint?

Various definitions in the literature:

Originally [Alur and Dill, 1994]: x ∈ [c1, c2] with c1 ∈ N and c2 ∈ N ∪ {∞}
Comparing clock values (diagonal constraints) x1 − x2 ./ c

./ ∈ {<,≤,=,≥, >}

For now, we assume the following syntax:

x ./ c, with x ∈ X and c ∈ N
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Exercise 1

Draw the TAA = (L,Σ, l1, {l2}, X, I, E)
such that

L = {l1, l2, l3, l4},
Σ = {a1, a2, a3},
X = {x1, x2},
I(l1) = x1 ≤ 3, and I(l3) = x2 ≥ 2,

E = {(l1, x1 ≥ 2, a1, {x1}, l2),
(l1, x2 ≤ 1, a2, ∅, l3),
(l2, x2 = 1, a3, {x2}, l2),
(l2, true, a1, ∅, l3),
(l3, true, a2, {x1, x2}, l4),
(l4, x2 > 2, a3, ∅, l3)}

`1

`2

`3 `4

x1 ≤ 3

x2 ≥ 2

x2 ≥ 2
a1

x1 := 0

x2 ≤ 1
a2

x2 = 1
a3

x2 := 0

a1

a2

x1, x2 := 0

x2 > 2
a3
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Exercise 2
Give the formal TA corresponding to the timed coffee machine.

A = (L,Σ, , { }, X, I, E), with:

L = { , , },
Σ = {press?, cup?, coffee!},
X = {x, y},

I( ) = true, I( ) = y ≤ 5, and I( ) = y ≤ 8,

E = {( , true,press?, {x, y}, ),

( , x ≥ 1,press?, {x}, ),

( , y = 5, cup?, ∅, ),

( , y = 8, coffee!, ∅, )}
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Parallel composition of timed automata (1/2)

Just as finite-state automata, timed automata can be composed through parallel
composition using synchronization actions

A1 = (L1,Σ1, (`0)1, (LF )1, X1, I1, E1)
A2 = (L2,Σ2, (`0)2, (LF )2, X2, I2, E2)

Then we defineA1 ‖ A2 as

A = (L,Σ, `0, LF , X, I, E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF )1 × L2 ∪ L1 × (LF )2

X = X1 ∪X2

I
(
(`1, `2)

)
= I(`1) ∧ I(`2)
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Parallel composition of timed automata (2/2)

(
(`1, `2), g, a, R, (`′1, `

′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ ∃g1, g2, R1, R2 : (`1, g1, a1, R1, `
′
1) ∈

E1 ∧ (`2, g2, a2, R2, `
′
2) ∈ E2 ∧ g = (g1 ∧ g2) ∧R = R1 ∪R2, or

a ∈ Σ1 \ Σ2 ∧ (`1, g, a, R, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, g, a, R, `
′
2) ∈ E2 ∧ `′1 = `1
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Concrete runs of timed automata

Concrete state of a TA: pair (`, w), where

` is a location,
w is a valuation of each clock

Example:
(

,
(
x=1.2
y=3.7

))

Concrete run: alternating sequence of concrete states and actions or time
elapse
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Example of concrete runs

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

I

0
0

x =
y =

Coffee with 2 doses of sugar

I

0
0

x =
y =
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Timed transition systems

Definition (Timed transition system)

A timed transition system (TTS) is a tuple T T S = (S,Σ, S0, SF ,→), where

S is a set of states;

Σ is an alphabet of events;

S0 ⊆ S is a set of initial states;

SF ⊆ S is a set of final (or accepting) states; and,

→ : S × (Σ ∪ R≥0)→ 2S is a transition relation.

We write s1
a−→ s2 when (s1, a, s2) ∈ →.

Étienne André Timed model checking – 2 2019–2020 18 / 82



Concrete semantics of timed automata: definition
Definition (Concrete semantics of a TA)

Given a TAA = (Σ, L, `0, LF , X, I, E), the concrete semantics ofA is given by
the timed transition system (S,E, S0, SF ,→), with

S = {(`, w) ∈ L× R|X|≥0 |

w |= I(`)}

,

S0 =

{(`0,~0)}

(with ~0 |= I(`0)), and

SF = {(`, w) ∈

S | ` ∈ LF }

,
→ consists of the discrete and (continuous) delay transition relations:

discrete transitions: (`, w)
e−→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = (`, g, a,R, `′) ∈ E, w′ = w[R], and w |= g.

delay transitions: (`, w)
d−→ (`, w + d), with d ∈ R≥0, if

∀d′ ∈ [0, d], (`, w + d′) ∈ S.

Notation:

w[R](x) =

{

0

if x ∈ R

w(x)

otherwise
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Concrete semantics of timed automata: definition (cont.)

We write (`, w)
(d,e)7→ (`′, w′) or ((`, w), (d, e), (`′, w′)) ∈ 7→ for a combination

of a delay and discrete transitions if

∃w′′ : (`, w)
d−→ (`, w′′)

e−→ (`′, w′)

Some remarks on the semantics of timed automata:

Is T T S finite?

×

Is T T S finitely branching?

×
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Timed words

Definition (timed word)

A timed word over an alphabet of actions Σ is a possibly infinite sequence of the
form (a0, d0)(a1, d1) · · · such that, for all integer i ≥ 0, ai ∈ Σ and di ≤ di+1.

Definition (timed word associated with a concrete run)

Given a concrete run ρ (l0, w0)(d0, e0)(l1, w1) · · · (di, ei)(li, wi) · · · , the timed
word associated with ρ is

(Act(e0), d0)(Act(e1),

d0 + d1) · · · (Act(ei),
∑

0≤j≤i
dj) · · ·

Notation: Act(ei) denotes the action of edge ei
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Timed words: exercise
Give the (formal) run and the associated timed words associated with the two
example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:

(
,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word: (press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5,press?

)(
,
( x=0
y=1.5

))(
2.7, press?

)
(

,
( x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
Timed word: (press?, 0)(press?, 1.5)(press?, 4.2)(cup?, 5)(coffee!, 8)
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example runs of the coffee machine:

Coffee with no sugar

I S S P P I

0
0

x =
y =

0
0

5
5

5
5

8
8

8
8

press? 5 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
5, cup?

)(
,
(x=5
y=5

))(
3, coffee!

)(
,
(x=8
y=8

))
Timed word: (press?, 0)(cup?, 5)(coffee!, 8)

Coffee with 2 doses of sugar

I S S S S S S P P I

0
0

x =
y =

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

press? 1.5 press? 2.7 press? 0.8 cup? 3 coffee!

Run:
(

,
(x=0
y=0

))(
0, press?

)(
,
(x=0
y=0

))(
1.5, press?

)(
,
( x=0
y=1.5

))(
2.7, press?

)
(

,
( x=0
y=4.2

))(
0.8, cup?

)(
,
(x=0.8

y=5

))(
3, coffee!

)(
,
(x=3.8

y=8

))
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Timed language

Definition (timed language)

Given a TAA, the timed language ofA is the set of timed words associated with
the runs ofA ending in a location

` ∈ LF .
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Timed language: Example 1

Give the timed language of the following automaton [Alur and Dill, 1994]
x < 3
a, b

x = 3
a

x := 0
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Timed language: Example 2

Give the timed language of the following automaton
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Timed language: Example 3

Give the timed language of the coffee machine
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Accepting locations?

Timed automata may or may not be equipped with accepting locations

Often, timed automata with no accepting locations are called timed safety
automata [Henzinger et al., 1994]

In that case the timed language can be defined as:

All possible timed words read by the automaton
All possible maximal timed words read by the automaton

Maximal: infinite or that cannot be extended

All possible infinite timed words read by the automaton

Theorem
The expressive power of timed safety automata is strictly less than timed
automata with accepting locations [Henzinger et al., 1995]
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Deadlocks and timelocks

Timed automata can be subject to two annoying behaviors:
Deadlock: similar to finite state automata

Can be a problem of

the actual system, or a problem of the model

x ≤ 3
x = 3

a
x ≤ 5

b

Timelock: coming from the timed nature of TAs
Can

only be a problem of the model
Time cannot be blocked in reality

x ≤ 4 x ≤ 5
x = 3

a
x > 5

b
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The Zeno problem (1/2)
Definition (Zeno run)

A run is Zeno if it contains an infinite number of actions in finite time.

Example of TA containing at least one Zeno run

Example of TA containing only non-Zeno runs

, The coffee machine

I S P
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup?

x ≥ 1
press?
x := 0

y = 8
coffee!
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The Zeno problem (2/2)

Problem (Zeno runs)

An infinite number of actions in finite time is impossible in practice

Processors have finite precision

Zeno runs must be pruned when performing model checking

Some solutions:

Transform the TA (with an additional clock)
[Tripakis, 1999, Tripakis et al., 2005, Bowman and Gómez, 2006, Gómez and Bowman, 2007]

Transform the zone graph [Herbreteau et al., 2012]

Consider a different but closely related formalism [Sun et al., 2013]

Transform the TA on-the-fly [Wang et al., 2015]
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Outline

1 Timed automata
Syntax
Concrete semantics
Specifying with timed automata

2 Specifying with timed temporal logics

3 Specifying with observers

4 Decidability

5 Timed automata in practice

6 Beyond timed automata. . .
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Example: Railroad gate controller [Alur et al., 1993b]

Design three timed automata in parallel:

1 The train: once it is approaching (action approach), it will come in (action
in) after at least 5 time units, then go out (action out) and finally exit
(action exit) after at most 6 time units

2 The gate: upon reception of a lower signal, starts to lower; once it is down,
and upon reception of a raise signal, the gate raises again; the time to lower
and to raise the gate is an interval [1, 3]

3 The controller: once a train approaches (action approach), it triggers the
lower signal within [2, 3] time units; then, once the train exits (action exit),
it triggers the raise signal again within [2, 4] time units

All TAs are cyclic, i. e., repeat the same behavior forever.
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Example: Railroad gate controller (train)

far approaching

crossingleaving

x ≤ 6

x ≤ 6
x ≤ 6

approach!
x := 0

x ≥ 5
in!

out!

x ≤ 6
exit!
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Example: Railroad gate controller (gate)

up falling

downraising

y ≤ 3

y ≤ 3

lower?
y := 0

y ≥ 1
down!

raise?
y := 0

y ≥ 1
up!
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Example: Railroad gate controller (controller)

idle wait1

passingwait2

z ≤ 3

z ≤ 4

approach?
z := 0

z ≥ 2
lower!

exit?
z := 0

z ≥ 2
raise!
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Example: A hardware gate

Not
I Q

The outputQ reacts to the change of the input I (actions I↑ and I↓) after a delay
[5, 9]

[Chevallier et al., 2009]

01 11

1000

x ≤ 9

x ≤ 9

I↑

x := 0

I↓

x ≥ 5

I↓

x := 0

I↑

x ≥ 5
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Example: A nuclear power plant

Design a PTA modeling a nuclear power plant:

At first, the plant is in normal mode.

Suddenly, it may start to heat (action startHeating).

At that point, a timer is set; after p2 time units, the timer will trigger an
alarm (action alarm).

Then, p3 time units later, a watering system (action watering) starts.

This watering system lasts for at most p4 time units, after which the plant is
cool again (action cool) and goes back to the normal mode.

However, p1 time units after the plant starts to heat, the plant may explode
at any time (action boom)—unless of course it is cool again.
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Example: A nuclear power plant (solution)

normal heating ringing watering

boom

stop

x ≤ p1
∧x ≤ p2

x ≤ p1
∧y ≤ p3

x ≤ p1
∧y ≤ p4

startHeating
x, y := 0

y = p2
alarm
y := 0

y = p3
watering
y := 0

y ≤ p4
cool

y := 0

restart
x, y := 0

x ≥ p1
boom

x ≥ p1
boom x ≥ p1

boom
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Example: A real-time system
Design a (network of) timed automata modeling the following components:

1 a periodic task T1 of period 5 with offset 2, best and worst case execution
times in [3, 4]

2 a sporadic task T2 of minimum interarrival time 20, best and worst case
execution times in [1, 2]

3 a non-preemptive scheduler with fixed priority
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Example: A real-time system (solution)
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1 Timed automata

2 Specifying with timed temporal logics
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5 Timed automata in practice
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Timed temporal logics

Specify properties on the order and the delays between events

No X operator because

of dense time
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TCTL (Timed CTL) [Alur et al., 1993a]

TCTL expresses formulas on the order and the time between the future events for
some or for all paths, using a set of atomic propositions AP

Timed extension of CTL

Quantifiers over paths:

ϕ ::= p ∈ AP | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ

Quantifiers over states:
ψ ::= ϕUIϕ

I is an interval of the form [a, b], [a, b), (a, b], (a, b), [a,∞), or (a,∞), where
a, b ∈ N
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Semantics of TCTL: discrete vs. continuous

Two semantics:

Continuous semantics: signals
t

0 2.046 3.3 6.9

Discrete (point-wise) semantics: timed words
( , 0)( , 2.046)( , 3.3)( , 6.9)

Are they equivalent?

no
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Continuous semantics of TCTL

s |= p iff p holds at the current position
s |= ¬p iff p does not hold at the current position
s |= ϕ ∧ ψ iff s |= ϕ ∧ s |= ψ
s |= ϕ ∨ ψ iff s |= ϕ ∨ s |= ψ
s |= EψUIϕ iff there exists a future path and t ∈ I for which ψ holds

until t and ϕ holds at t
s |= AψUIϕ iff for all future paths, there exists t ∈ I for which ψ holds

until t and ϕ holds at t
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Illustrating TCTL operators

Étienne André Timed model checking – 2 2019–2020 46 / 82



Discrete semantics of TCTL [Bouyer et al., 2017]

Informal description of the U (the rest is similar):

s |= EψUIϕ iff there exists n > 0 such that ϕ holds from point n
(with the time of point n within I)
and for each 0 < m < n, ψ holds at pointm

Note: strict version of the U, considered in [Bouyer et al., 2017] (not necessarily standard)
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Semantics of TCTL: discrete vs. continuous (example)
Exhibit a word and a TCTL formula for which:

1 the formula holds under the continuous but not the discrete semantics

2 the formula holds under the discrete but not the continuous semantics

An example TA:

a b

c

1 ≤ x ≤ 2

x ≥ 3

A concrete run ω (continuous semantics):

t
0 3.2

Equivalent run ρ in the discrete semantics:

( , 0)( , 3.2)

ϕ1 = F≤2F ρ 6|= ϕ1 ω |= ϕ1

ϕ2 = ¬ U ρ |= ϕ2 ω 6|= ϕ2

Source: [Bouyer et al., 2017]
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TCTL: Examples

“Whatever happens, the plane will never crash in the next 10 minutes”

AG≤10minutes¬crash

“I may get a job within one year”

EF≤1year job

“I am sure to get a job within one year”

AF≤1year job

“Whenever a fire breaks, it is sure that the alarm will start ringing at least 5
seconds and at most 10 seconds later”

AG
(
fire⇒ (AF[5,10]alarm)

)

“Whatever happens, I will love you for 2 years after we marry”

AG
(
marry⇒ (AG≤2love)

)
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TCTL: Examples (coffee machine)

“Whenever the button is pressed, a coffee is necessarily eventually
delivered within 10 units of time.”

AG
(
press⇒ (AF≤10coffee)

)
(
√
)

“It must never happen that the button can be pressed twice within 1 unit of
time.”

AG(press⇒ (AG≤1¬press)) (×)

“It must never happen that the button can be pressed twice within a time
strictly less than 1 unit of time.”

AG(press⇒ (AG<1¬press)) (
√
)
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Other timed temporal logics

MTL: linear time [Koymans, 1990]

Can be seen as a timed extension of LTL (just as TCTL is a timed extension of
CTL)
Variant: MITL [Alur et al., 1996]

Variant of MTL disallowing punctuality

STL: to reason about signals [Maler and Nickovic, 2004]

etc.

See, e. g., [Bouyer et al., 2017] for a partial survey
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Observers for timed automata

Observers (both untimed and timed) can be used for timed automata

Just as for FA:

A TA observer is an automaton that observes the system behavior

It synchronizes with other automata’s actions

It can read the clocks of the system, and/or feature its own clock(s)
It must be non-blocking

Pay attention to timelocks or deadlocks!

Its location(s) give an indication on the system property

Then verifying the property reduces to a reachability condition on the observer
(in parallel with the system)

The expressive power of observers for timed automata has been studied in [Aceto et al., 1998, Aceto et al., 2003]
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Exercise: An observer for the coffee machine

Design an observer for the coffee machine verifying that it must never happen
that the button can be pressed twice within a time strictly less than 1 unit of time.
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What is decidability?

Definition
A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

“given three integers, is one of them the product of the other two?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

“given a timed automaton, does there exist a run from the initial state to a
given location `?”
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Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations
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Problem: an infinite concrete semantics

Time is dense: transitions can be taken anytime
Infinite number of timed runs
Infinite number of states
Infinitely branching structure

Model checking needs a finite structure!
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Dense time

A first remark: Some runs are equivalent
Taking the press? action at t = 1.5 or t = 1.57 is equivalent w.r.t. the
possible actions

Idea: reason with abstractions
Region automaton [Alur and Dill, 1994], and zone automaton
Example: in location , all clock values in the following zone are equivalent

y ≤ 5 ∧ y − x ≥ 4
This abstraction is finite
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Regions

clock x

clock y

0 1 2
0

1

2

Inspired by a similar LATEX illustration by Patricia Bouyer
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Region graph construction
Two successors:

time-elapsing

clock reset

(see white board for the graph construction)
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Region graph construction: exercise

Construct the region graph of the following TA:

x ≤ 2
a

x, y := 0

y = 1
b

y := 0
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On the region graph finiteness

Is the region graph of TAs finite?

×

Example with two clocks x, y:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all integer (resp. rational) clock valuations above the greatest
constant k of the TA are equivalent” [Alur and Dill, 1994]

With this additional technicality, there is a finite number of regions in a TA
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Extrapolation: illustration
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Extrapolation: exercise
Construct the region graph (with the k-extrapolation) of the following TA:

x ≤ 2
a

x, y := 0

y = 1
b

y := 0
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Zone construction for timed automata

Objective: group all concrete states reachable by the same sequence of
discrete actions

Symbolic state: a location ` and a (infinite) set of states Z

For timed automata, Z can be represented by a convex polyhedron with a
special form called zone, with constraints

−d0i ≤ xi ≤ di0 and xi − xj ≤ dij

Computation of successive reachable symbolic states can be performed
symbolically with polyhedral operations: for edge e = (`, a, g, R, `′):

Succ
(
(`, Z), e

)
=
(
`′,
(
(Z ∩ g)[R] ∩ I(`′)

)↗ ∩ I(`′)
)
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Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
{(0, 0)}

Z0 = {(0, 0)}↗ ∩ I•

y

x
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Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x
Z0 ∩ (x ≥ 2)
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Z0 = {(0, 0)}↗ ∩ I•

y
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)
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Zone construction for timed automata: Example

y ≤ 4
x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ I•

y

x
Z1 =

(
Z0 ∩ (x ≥ 2)

)
[{y}]↗

TikZ animation based on a LATEX code by Didier Lime
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Zone graph of timed automata
Abstract state of a TA: pair (`, C), where

` is a location, and C is a constraint on the clocks (“zone”)

Abstract run: alternating sequence of abstract states and actions

Example

x≤3 x≤4

Possible abstract run from the zone graph of this TA

0 ≤ x ≤ 3
∧ x = y
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On the zone graph finiteness

Is the zone graph of TAs finite?

×

Example:

y = 1
y := 0

Solution: k-extrapolation

Idea: “all clock valuations above the greatest constant k of the TA are
equivalent” [Bengtsson and Yi, 2003]

Can we do more efficient?
L/U-abstractions [Behrmann et al., 2006]

Lazy abstractions [Herbreteau et al., 2013]

With this additional technicality, there is a finite number of reachable zones in a
TA
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More on zones

Symbolic states can be efficiently computed using Difference Bound
Matrices (DBMs)

isReachable can be applied to the abstract semantics of timed automata
(the underlying finite transition system)

The zone graph is theoretically larger than the region graph but practically
smaller

On-the-fly construction
Various optimization techniques
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Decision problems for timed automata
The finiteness of the region automaton allows us to check properties

, Reachability of a location (PSPACE-complete) [Alur and Dill, 1994]

, Liveness (Büchi conditions)

, TCTL model-checking [Alur and Dill, 1994]

Some problems impossible to check using the zone graph (but still decidable)

, non-Zenoness emptiness check [Gómez and Bowman, 2007]

Some undecidable problems

/ universality of the timed language [Alur and Dill, 1994]

/ timed language inclusion [Alur and Dill, 1994]

Some decidable subclasses
[Alur and Dill, 1994, Ouaknine and Worrell, 2003, Ouaknine and Worrell, 2004]

[Abdulla et al., 2008, Bertrand et al., 2011]
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Syntactic variants of timed automata

Variants of the syntax with consequences on the decidability

Can we use diagonal constraints (“x− y”)? [Bouyer, 2003]

Can we reset clocks to constants 6= 0? [Bouyer et al., 2004]

Can we reset clocks to other clocks? [Bouyer et al., 2004]

Can we reset clocks to unknown constants? [André et al., 2019]

Can we stop the elapsing of some clocks? [Cassez and Larsen, 2000]
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Further challenges

Controller synthesis [Sankur et al., 2013, Bacci et al., 2018]

Game theory

Timed language inclusion (using TA as a specification language)
Decidable subclasses [Ouaknine and Worrell, 2003, Ouaknine and Worrell, 2004]

Practical algorithms [Wang et al., 2017]

Robustness [De Wulf et al., 2004, Bouyer et al., 2013, Bacci et al., 2018]

Distributed algorithms [Laarman et al., 2013, Zhang et al., 2016]

Still a very active research field!
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Software supporting timed automata

Timed automata have been successfully used since the 1990s

Tools for modeling and verifying models specified using TA

HyTech (also hybrid, parametric timed automata) [Henzinger et al., 1997]

Kronos [Yovine, 1997]

TReX (also parametric timed automata) [Annichini et al., 2001]

Uppaal [Larsen et al., 1997]

Roméo (parametric time Petri nets) [Lime et al., 2009]

PAT (also other formalisms) [Sun et al., 2009a]

IMITATOR (also parametric timed automata) [André et al., 2012]
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Some case studies and application domains

Scheduling and real-time systems
[Fehnker, 1999, Abdeddaïm and Maler, 2001, Adbeddaïm et al., 2006, Abdeddaïm and Masson, 2012]

Protocols
Bounded retransmission protocol [D’Argenio et al., 1997]

Audio-video protocol [Havelund et al., 1997]

Fast Reservation Protocol [Tripakis and Yovine, 1998]

IEEE 1394a root contention protocol [Simons and Stoelinga, 2001]

Hardware circuits
[Bozga et al., 2002, Chevallier et al., 2009]

Health and biology [Schivo et al., 2014]

Monitoring [Waga et al., 2016, Waga et al., 2018]

Survey on the industrial use of Uppaal [Larsen et al., 2018]
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What’s beyond timed automata. . . ?

Stopping clocks: stopwatch automata [Cassez and Larsen, 2000]

/ Undecidable
, Interesting application domains

Adding costs: energy [Behrmann et al., 2001, Alur et al., 2004]

Enriching TA with tasks [Fersman et al., 2007]

Adding unknown parameters [Alur et al., 1993b]

Allowing non-linear clocks: hybrid automata [Henzinger, 1996, Asarin et al., 2012]

Adding probabilities [Kwiatkowska et al., 2002]

Statistical model checking [Legay et al., 2010]
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Towards a parametrization. . .
Challenge 1: systems incompletely specified

Some delays may not be known yet, or may change

Challenge 2: Robustness [Markey, 2011]

What happens if 8 is implemented with 7.99?
Can I really get a coffee with 5 doses of sugar?

Challenge 3: Optimization of timing constants
Up to which value of the delay between two actions press? can I still order a
coffee with 3 doses of sugar?

Challenge 4: Avoiding numerous verifications
If one of the timing delays of the model changes, should I model check again
the whole system?

A solution: Parametric analysis
Consider that timing constants are unknown (parameters)
Find good values for the parameters s.t. the system behaves well
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General references

Timed Automata: Semantics, Algorithms and Tools [Bengtsson and Yi, 2003]

Systems and Software Verification [Bérard et al., 2001]

Principles of Model Checking [Baier and Katoen, 2008]

Timed temporal logics [Bouyer et al., 2017]
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Source of the graphics

Titre: Clock 256
Auteur: Everaldo Coelho
Source: https://commons.wikimedia.org/wiki/File:Clock_256.png
Licence: GNU LGPL

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
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