This page is dedicated to the case studies related to the submitted manuscript Distributed Behavioral Cartography of Timed Automata.
The new distributed version of IMITATOR used to compute the case studies is IMITATOR 2.6.2.
We present in the following table a list of case studies computed using the inverse method using the above implementation of IMITATOR.
Case study | |P| | |X| | |D| | Tiles |
---|---|---|---|---|
SIMOP | 2 | 8 | 10 201 | 48 |
Sched3 | 2 | 13 | 286 | 59 |
SIMOP is a networked automation system studied in, e.g., [Andre10].
Sched3 is a distributed real-time system with preemption studied in [LSAF14].
For all case studies, the standard behavioral cartography was called using the following options:
> IMITATOR case_study.imi case_study.v0 -mode cover -merge -no-random
For the sequential distributed algorithm, add:
> -distributed sequential
For the random algorithm, add (where XXXX is the maximum number of failed attempts before switching to the sequential algorithm):
> -distributed randomXXXX
NP | Selection | Constraints | Total time | Master wait. | W.\ occ. (mean/std dev) | Next point time |
---|---|---|---|---|---|---|
2 | seq | 48 | 97.75 s | 96.68 % | 96.68 %/0 | 1.38 s |
3 | seq | 80 | 86.51 s | 96.68 % | 96.89 %/0.21 | 2.24 s |
4 | seq | 107 | 75.38 s | 97.28 % | 96.72 %/0.45 | 3.08 s |
5 | seq | 132 | 72.30 s | 97.37 % | 96.86 %/0.31 | 3.70 s |
6 | seq | 152 | 68.79 s | 97.11 % | 96.80 %/0.35 | 4.29 s |
7 | seq | 178 | 67.39 s | 97.27 % | 96.86 %/0.58 | 5.06 s |
8 | seq | 195 | 65.35 s | 97.10 % | 96.84 %/0.49 | 5.68 s |
9 | seq | 209 | 62.16 s | 97.29 % | 96.86 %/0.51 | 6.04 s |
10 | seq | 224 | 60.70 s | 96.50 % | 96.96 %/0.52 | 6.28 s |
12 | seq | 244 | 55.09 s | 96.99 % | 96.90 %/0.62 | 6.99 s |
14 | seq | 269 | 50.01 s | 97.01 % | 96.28 %/1.91 | 7.81 s |
16 | seq | 281 | 45.24 s | 96.99 % | 96.30 %/1.16 | 7.51 s |
18 | seq | 297 | 43.20 s | 97.33 % | 95.99 %/1.64 | 7.77 s |
20 | seq | 313 | 41.45 s | 97.14 % | 95.40 %/1.99 | 8.35 s |
22 | seq | 325 | 40.39 s | 96.84 % | 94.98 %/2.39 | 8.19 s |
24 | seq | 342 | 40.43 s | 97.26 % | 93.45 %/4.42 | 9.01 s |
3 | random10 | 62 | 64.40 s | 96.12 % | 96.97 %/0.86 | 1.46 s |
4 | random10 | 80 | 57.12 s | 97.74 % | 97.18 %/0.40 | 1.56 s |
5 | random10 | 80 | 44.94 s | 97.97 % | 97.31 %/0.68 | 1.59 s |
6 | random10 | 96 | 43.50 s | 97.79 % | 97.33 %/0.82 | 1.74 s |
7 | random10 | 116 | 43.45 s | 97.72 % | 97.50 %/0.24 | 1.64 s |
8 | random10 | 114 | 38.47 s | 97.75 % | 97.62 %/0.30 | 1.59 s |
9 | random10 | 107 | 32.35 s | 97.79 % | 97.40 %/1.34 | 1.93 s |
10 | random10 | 142 | 37.94 s | 97.72 % | 97.53 %/0.23 | 1.97 s |
12 | random10 | 135 | 30.92 s | 97.72 % | 97.47 %/0.36 | 2.17 s |
14 | random10 | 153 | 28.06 s | 97.71 % | 97.06 %/0.95 | 2.38 s |
16 | random10 | 170 | 27.15 s | 97.77 % | 96.55 %/1.85 | 2.41 s |
18 | random10 | 149 | 22.48 s | 97.63 % | 95.75 %/2.57 | 2.25 s |
20 | random10 | 171 | 23.17 s | 97.76 % | 96.66 %/1.63 | 2.40 s |
22 | random10 | 206 | 25.21 s | 97.23 % | 94.89 %/3.50 | 2.63 s |
24 | random10 | 213 | 23.98 s | 97.72 % | 96.57 %/1.31 | 2.49 s |
2 | random20 | 49 | 100.73 s | 96.93 % | 96.93 %/0 | 1.29 s |
3 | random20 | 61 | 63.30 s | 96.97 % | 97.14 %/0.17 | 1.21 s |
4 | random20 | 66 | 47.04 s | 96.90 % | 97.20 %/0.49 | 1.35 s |
5 | random20 | 78 | 42.33 s | 97.70 % | 97.34 %/0.40 | 1.28 s |
6 | random20 | 88 | 40.89 s | 96.50 % | 97.33 %/0.71 | 1.68 s |
7 | random20 | 98 | 39.50 s | 96.72 % | 97.38 %/0.46 | 1.76 s |
8 | random20 | 95 | 32.74 s | 97.81 % | 97.51 %/0.37 | 1.54 s |
9 | random20 | 102 | 31.46 s | 97.77 % | 97.55 %/0.32 | 1.61 s |
10 | random20 | 105 | 29.31 s | 97.47 % | 97.51 %/0.30 | 1.63 s |
18 | random20 | 163 | 23.98 s | 97.74 % | 97.15 %/0.86 | 2.29 s |
20 | random20 | 169 | 22.16 s | 97.87 % | 96.20 %/2.16 | 2.31 s |
22 | random20 | 141 | 18.30 s | 97.66 % | 94.12 %/4.44 | 2.40 s |
24 | random20 | 185 | 21.40 s | 97.96 % | 93.97 %/4.04 | 2.58 s |
NP | Selection | Constraints | Total time | Master wait. | W.\ occ. (mean/std dev) | Next point time |
---|---|---|---|---|---|---|
2 | seq | 59 | 39.51 s | 98.47 % | 98.5 %/0 | 0.05 s |
3 | seq | 62 | 22.26 s | 98.47 % | 98.5 %/0.04 | 0.05 s |
4 | seq | 69 | 16.96 s | 98.47 % | 98.5 %/0.05 | 0.05 s |
5 | seq | 77 | 14.12 s | 98.38 % | 98.4 %/ 0.08 | 0.06 s |
6 | seq | 85 | 13.12 s | 98.48 % | 98.4 %/0.09 | 0.07 s |
7 | seq | 93 | 12.04 s | 98.45 % | 98.4 %/0.07 | 0.08 s |
8 | seq | 98 | 11.29 s | 98.46 % | 98.5 %/0.09 | 0.08 s |
9 | seq | 103 | 10.49 s | 98.53 % | 98.4 %/0.08 | 0.09 s |
10 | seq | 107 | 9.85 s | 98.45 % | 98.3 %/0.08 | 0.10 s |
12 | seq | 113 | 8.74 s | 98.29 % | 98.3 %/0.17 | 0.10 s |
14 | seq | 126 | 8.14 s | 98.23 % | 98.2 %/0.20 | 0.12 s |
16 | seq | 130 | 7.23 s | 98.08 % | 98.1 %/0.19 | 0.13 s |
18 | seq | 142 | 7.00 s | 97.73 % | 97.7 %/0.37 | 0.13 s |
20 | seq | 153 | 6.84 s | 97.41 % | 97.7 %/0.40 | 0.15 s |
22 | seq | 158 | 6.47 s | 98.02 % | 98.1 %/0.25 | 0.14 s |
24 | seq | 163 | 6.26 s | 98.47 % | 98.1 %/0.36 | 0.15 s |
2 | random10 | 60 | 40.47 s | 98.54 % | 98.54 %/0 | 0.03 s |
3 | random10 | 64 | 22.93 s | 98.63 % | 98.60 %/0.03 | 0.03 s |
4 | random10 | 71 | 16.70 s | 98.41 % | 98.44 %/0.03 | 0.04 s |
5 | random10 | 77 | 14.19 s | 98.50 % | 98.51 %/0.02 | 0.04 s |
6 | random10 | 75 | 11.62 s | 98.52 % | 98.52 %/0.03 | 0.05 s |
7 | random10 | 82 | 10.65 s | 98.59 % | 98.51 %/0.09 | 0.05 s |
8 | random10 | 81 | 9.38 s | 98.54 % | 98.53 %/0.06 | 0.06 s |
9 | random10 | 76 | 7.67 s | 98.30 % | 98.42 %/0.11 | 0.04 s |
10 | random10 | 93 | 8.47 s | 98.45 % | 98.42 %/0.09 | 0.07 s |
12 | random10 | 90 | 6.92 s | 98.53 % | 98.48 %/0.08 | 0.06 s |
14 | random10 | 83 | 5.27 s | 97.76 % | 97.91 %/0.20 | 0.05 s |
16 | random10 | 89 | 4.91 s | 96.80 % | 97.48 %/0.58 | 0.07 s |
18 | random10 | 104 | 5.23 s | 98.01 % | 97.81 %/0.30 | 0.08 s |
20 | random10 | 114 | 5.09 s | 97.47 % | 98.23 %/0.39 | 0.06 s |
22 | random10 | 96 | 4.09 s | 98.15 % | 97.79 %/0.52 | 0.09 s |
24 | random10 | 104 | 4.25 s | 97.23 % | 98.03 %/0.55 | 0.08 s |
2 | random20 | 60 | 41.04 s | 98.56 % | 98.56 %/0 | 0.04 s |
3 | random20 | 65 | 22.18 s | 98.47 % | 98.45 %/0.02 | 0.04 s |
4 | random20 | 66 | 15.45 s | 98.45 % | 98.40 %/0.04 | 0.04 s |
5 | random20 | 70 | 12.68 s | 98.32 % | 98.47 %/0.09 | 0.05 s |
6 | random20 | 76 | 11.49 s | 98.52 % | 98.47 %/0.05 | 0.05 s |
7 | random20 | 76 | 9.83 s | 98.53 % | 98.46 %/0.11 | 0.07 s |
8 | random20 | 75 | 8.44 s | 98.52 % | 98.44 %/0.08 | 0.06 s |
9 | random20 | 82 | 8.25 s | 98.43 % | 98.48 %/0.08 | 0.08 s |
10 | random20 | 80 | 7.29 s | 98.42 % | 98.48 %/0.08 | 0.06 s |
12 | random20 | 89 | 6.87 s | 98.53 % | 98.39 %/0.19 | 0.08 s |
14 | random20 | 88 | 5.64 s | 98.43 % | 98.22 %/0.17 | 0.07 s |
16 | random20 | 86 | 4.91 s | 98.14 % | 97.98 %/0.21 | 0.07 s |
18 | random20 | 99 | 5.04 s | 96.87 % | 97.77 %/0.42 | 0.11 s |
20 | random20 | 100 | 4.65 s | 97.67 % | 97.57 %/0.64 | 0.09 s |
22 | random20 | 98 | 4.23 s | 98.64 % | 97.87 %/0.63 | 0.07 s |
24 | random20 | 106 | 4.24 s | 98.2 %7 | 97.72 %/0.69 | 0.08 s |
This page makes use of valid HTML 5 and valid CSS.
Content and CSS can be reused and modified under the terms of license Creative Commons Attribution 3.0 Unported (CC BY 3.0).