A Generalisation Method for Parametric Timed Automata

Étienne ANDRÉ Thomas CHATAIN Emmanuelle ENCRENAZ Laurent FRIBOURG

Laboratoire Spécification et Vérification LSV, CNRS & ENS de Cachan

Context : Real-Time Concurrent Systems

- Verification of safety property : ensure the absence of any bad behaviour (reachability property)
- A well-known method : CEGAR (Counter-Example Guided Abstraction Refinement [Clarke & Lu 2000])
 - They use (repeatedly) an example of bad behaviour in order to refine the model of the system
- We present here a generalisation method
 - We use a given example of good behaviour in order to generalise the model of the system

(日) (周) (三) (三)

Outline

- 2 The Generalisation Method
- Orrectness and Complexity
- 4 Conclusion and Future Work

Outline

1 The Modeling Framework of Parametric Timed Automata

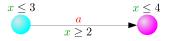
2 The Generalisation Method

- 3 Correctness and Complexity
- 4 Conclusion and Future Work

< 67 ▶

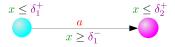
Timed Automata

- Finite state automata (sets of locations and labelled transitions) augmented with
 - A set X of clocks evolving linearly at the same rate
- Operations
 - Transition guard : property to be verified by the clocks to enable a transition
 - Location invariant: property to be verified by the clocks to stay at a location
 - Clock reset : clocks can be set to 0 at each transition



Parametric Timed Automata (PTA)

- Finite state automata (sets of locations and labelled transitions) augmented with
 - A set X of clocks evolving linearly at the same rate
 - ► A set *P* of parameters used in guards and invariants
- Operations
 - Transition guard : property to be verified by the clocks and the parameters to enable a transition
 - Location invariant : property to be verified by the clocks and the parameters to stay at a location
 - Clock reset : clocks can be set to 0 at each transition



States and Traces

- State
 - Timed automaton :
 - * a concrete state is a pair (q, v), where q is a location and v a clock valuation
 - ★ a symbolic state is a pair (q, C), where q is a location and C a constraint (conjunction of inequalities) on clocks
 - PTA: a parametric symbolic state is a triple (q, C, D), where:
 - ★ q a location,
 - * C a constraint over clocks and parameters,
 - ★ *D* a constraint over parameters
- Trace (or run) over a PTA : finite alternating sequence of locations and transitions

$$\underbrace{D^{\uparrow}}_{D^{\uparrow}} \underbrace{g_{1}^{\downarrow}}_{Q^{\uparrow}} \underbrace{CK^{\uparrow}}_{Q^{\downarrow}} \underbrace{g_{3}^{\downarrow}}_{Q^{\uparrow}} \underbrace{Q^{\uparrow}}_{Q^{\uparrow}} \underbrace{D^{\downarrow}}_{Q^{\uparrow}} \underbrace{CK^{\downarrow}}_{Q^{\downarrow}} \underbrace{Q^{\uparrow}}_{Q^{\uparrow}} \underbrace{Q^{\uparrow}}_{Q^{\downarrow}} \underbrace{Q^{\uparrow}}_{Q^{\downarrow}} \underbrace{Q^{\uparrow}}_{Q^{\downarrow}} \underbrace{Q^{\uparrow}}_{Q^{\downarrow}} \underbrace{Q^{\uparrow}}_{Q^{\downarrow}} \underbrace{Q^{\downarrow}}_{Q^{\downarrow}} \underbrace{Q^{\uparrow}}_{Q^{\downarrow}} \underbrace{Q^{\downarrow}}_{Q^{\downarrow}} \underbrace{Q^{\downarrow}} \underbrace{Q^{\downarrow}} \underbrace{Q^{\downarrow}} \underbrace{Q^{\downarrow}} \underbrace{Q^{\downarrow}} \underbrace{Q^{\downarrow}} \underbrace{Q^{\downarrow}$$

(日) (周) (三) (三)

Outline

The Modeling Framework of Parametric Timed Automata

2 The Generalisation Method

- 3 Correctness and Complexity
- 4 Conclusion and Future Work

-

< 67 ▶

Our Method

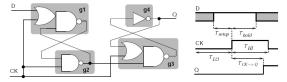
• Input

- A PTA A with initial state s_{init}
- An instantiation π of all the parameters of \mathcal{A}
 - ★ Exemplifying a good behaviour
- Output : generalisation
 - A constraint *K* on the parameters such that
 - $\star \pi \models K$
 - ★ For all instantiation $\pi' \models K$, the set of traces under π' is the same as the set of traces under π

$$\pi_{K}$$

An Example of Circuit (1/2)

• Memory circuit [Clarisó & Cortadella 04]



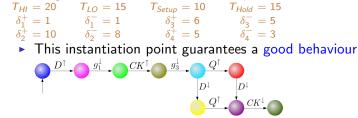
- 4 elements: g₁, g₂, g₃, g₄
- 2 input signals (D and CK), 1 output signal (Q)
- 4 internal signals: g_1 , g_2 , g_3 , g_4 (output of each element)
- Timed parameters of the system
 - Traversal delays of the gates by the electric current
 - ★ Parametric interval; example for element g_1 : $[\delta_1^-, \delta_1^+]$
 - Stabilisation time of input signal D
 - ★ T_{Setup} , T_{Hold}
 - CK low and high durations
 - * T_{LO} , T_{HI}

Étienne ANDRÉ (LSV)

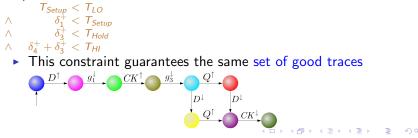
A B F A B F

An Example of Circuit (2/2)

We are given an instantiation of the parameters



Output : a constraint K



The Algorithm

Variable	Туре	Description	Initially	
i	Integer	Current step	i := 1	
K	Constraint	Output	$K := \top$	

DO

if $Post_{K}^{i}(s_{init}) = Post_{K}^{i+1}(s_{init})$ then return K fi

DO until $Post_{K}^{i}(s_{init})$ contains only π -compatible states : Select:

- a π -incompatible state (q, C, D) of $Post_{K}^{i}(s_{init})$ $(\pi \not\models D)$ - an inequality J of D such that $\pi \models K \land \neg J$ $K := K \land \neg J$ **OD** i := i + 1

OD

- 3

프 에 에 프 어

Termination and Complexity (Acyclic Case)

Proposition

The algorithm terminates if the set of traces under π contains no cyclic trace (trace passing twice by the same location).

In this case, $Post^* = Post^n$, where *n* is the number of locations.

• Complexity Analysis

- Exponential in the number of locations of \mathcal{A}
- Exponential in the number of parameters P
- Doubly exponential in the number of clocks X

Correctness

Proposition

For all instantiation $\pi' \models K$, the set of traces under π' is the same as the set of traces under π .

The set of traces are time-abstract equivalent.

(B)

Implementation

- Script written in Python with calls to HyTech
 - 1500 lines of code
- Some real cases treated
 - SPSMALL: memory circuit (ST-Microelectronics)
 - SIMOP : model of manufacturing system with sensors and controllers communicating through a network

Some computation times

Name	# PTA	# loc / PTA	# clocks	# param	# iterations	Time
SPSMALL	10	\sim 7	11	28	32	20 mn
SIMOP	5	~ 9	5	7	51	2 h

Outline

1 The Modeling Framework of Parametric Timed Automata

2 The Generalisation Method

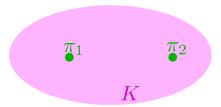
- 3 Correctness and Complexity
- 4 Conclusion and Future Work

Conclusion

- The Generalisation Method
 - Modeling of a system with parametric timed automata
 - Starting with an instantiation point of the system, we give a constraint on the parameters guaranteeing the same set of traces
- Advantage
 - Powerful even on fully parameterized big systems
 - ★ Can handle dozens of parameters
- Drawback
 - The zone (set of points) generated by the constraint is rather small compared to exhaustive point by point methods

Future Work

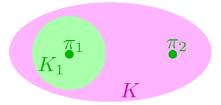
- Termination of cyclic case
- Use more than one point as input :
 - Two different points π_1 and π_2



- 一司

Future Work

- Termination of cyclic case
- Use more than one point as input : either
 - Two different points π_1 and π_2 , or
 - One constraint K_1 and one point π_2



Extra Slides

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

References

- [Clarke & Lu 2000] Counterexample-guided abstraction refinement, CAV 2000
- [Clarisó & Cortadella 2004] Verification of timed circuits with symbolic delays, ASP–DAC 2004

Parametric Timed Automaton

Definition

A parametric timed automaton is $\mathcal{A}(K) = (\Sigma, Q, q_{init}, X, P, I, \rightarrow)$, where:

- Σ is a finite set of actions (or "step labels"),
- Q is a finite set of locations (or "control states"),
- q_{init} is the initial location,
- X is a finite set of clocks,
- P is a finite set of parameters partitioned as $P = P^{l} \biguplus P^{u}$,
- K is a P-constraint on the set of parameters P,
- I is the invariant, assigning to every $q \in Q$ a conjunction $I_q(X)$ of (X, P)-atoms of the form $x \leq p^u$, for some clock variable $x \in X$ and parameter $p^u \in P^u$, and

• \rightarrow is a step (or "transition") relation consisting of elements of the form (q, g, a, ρ, q')