Verification of an industrial asynchronous leader election algorithm using abstractions and parametric model checking

E. André, L. Fribourg, R. Soulat and J.-M. Mota

CNRS, THALES, U. Paris 13, ENS Paris-Saclay

January 14, 2019 VMCAI’19 Cascais – Portugal
PLAN

1. Motivation

2. Bully algorithm in the a/synchronous context

3. Adaptation of the Bully algorithm

4. Proofs
 - direct automated proof for a small number p of processes
 - proof with abstractions for ≤ 5000 processes

5. Conclusion
I. Motivation
Basic facts about leader election algorithms

- Many distributed algorithms need one process to act as a leader or coordinator.
- Does not matter which process does the job, just need to pick one.
- Election algorithm technique to pick a unique coordinator.
- Assumption: each process has a unique ID.
 Goal: find the non-crashed process with the highest ID.
- Problem (Leader election): each node eventually decides whether it is leader or not, subject to the constraint that there is a unique leader.
- Nodes are in one of the three states: leader, follower, candidate.
- When leaving the candidate mode, a node goes into a final state (either leader or follower).
II.

Bully algorithm in the a/synchronous context
Bully algorithm in the a/synchronous setting

- **Topology (here):** complete graph

- **Synchronous case:**
 - All the process clocks are synchronized; processes update their state simultaneously
 - Bully algorithm [Garcia-Molina 1982]: classical synchronous leader election

- **Asynchronous case:**
 - every process is activated *periodically*, but *period* not (exactly) the same for each process (each period takes here its value in [49,51]).
 - besides, the value of each period may slowly evolves (jitter).
 - Initially, the values of clocks are different (setoff).
Short history of asynchronous versions of Bully algorithm

• [GM 1982] claims that the asynchronous version works (with correctness proof similar to the synchronous case).

• [Stoller 1997] gives a counterexample!

• [Svensson 2008] gives a corrected version, but:

 – the algorithm requires an important modification

 – hundreds of invariants (generated by hand) are needed for the semi-automated proof.
III. A variant of Bully algorithm
General assumptions

• All the IDs of the nodes are different

• Each node has the ability to send messages to all the nodes, and can store messages received from other nodes

• Nodes are either in mode *On* or mode *Off* (failure)

• A node in mode *On* is in one of the states
 • *Follower* (the node is not competing to become leader)
 • *Candidate* (the mode is competing to become leader)
 • *Leader* (the mode has declared itself to be leader)

• Each transmitted message is of the form: *(SenderID, state)* where *state* is the state *On/Off* of the sending node
Updating algorithm (synchronous setting)

At each clock tick, every On process sends to all the other processes its ID number. Each process compares the received ID numbers to its own ID number and updates it.

```plaintext
foreach message ∈ allMessages do
  if message.SenderID > node_i.id then
    state_{next} ← Follower
    higherIDReceived ← true
  if ¬ higherIDReceived then
    if node_i.state = Follower then
      state_{next} ← Candidate
    else if node_i.state = Candidate then
      state_{next} ← Leader
    else if node_i.state = Leader then
      state_{next} ← Leader
  node_i.state ← state_{next}
```

Property P to be proven:
After a certain number of clean rounds (rounds with no crash and no recovery),

- the process On with the higher ID is Leader, and
- all the other On processes are Follower (no On process is Candidate)
Complications (asynchronous setting)

• If clock ticks are not synchronized, the messages are not emitted (and received) simultaneously
Complications due to asynchronous clocks

Table 2: Jitter values for Example 1

<table>
<thead>
<tr>
<th></th>
<th>jitter¹</th>
<th>jitter²</th>
<th>jitter³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>0.5</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Node 2</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Node 3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fig. 1: Activation of three nodes with uncertain periods and jitters

• nb of activations for nodes 1 and 3 always the same up to a difference of 1 (due to the jitters) because they have same periods.

• But nb of activations for node 2 becomes smaller than that of nodes 1 and 3 by an increasing difference, since node 2 is slower (period: 51 instead of 49).

• This phenomenon does not occur when periods are equal for all nodes, and makes this setting more challenging.
A simple solution

- To overcome this difficulty, each ID proceeds to the update not at each period end, but every two (or more) periods.

- Basic insight:

Lemma 1. Assume a node i and activation times t_i^j and t_i^{j+2}. Then in between these two activations, node i received at least one message from all nodes.
Basic assumptions

- **Instantiated model with uncertainty**
 - *Periods* and *jitters* are known to belong to given intervals.

<table>
<thead>
<tr>
<th>Table 1: Constants (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>period(_{\text{min}})</td>
</tr>
<tr>
<td>period(_{\text{max}})</td>
</tr>
<tr>
<td>jitter(_{\text{min}})</td>
</tr>
<tr>
<td>jitter(_{\text{max}})</td>
</tr>
</tbody>
</table>

- the number \(p \) of processes is **given**
- The algorithm should work for \(p \) as **large** as possible
Extended Bully algorithm

```
Algorithm 1: UpdateNode(i)

1 if node_i.EvenActivation then
2     allMessages ← ReadMailbox()
3     higherIDReceived ← false
4     foreach message ∈ allMessages do
5         if message.SenderID > node_i.id then
6             state_next ← Follower
7             higherIDReceived ← true
8     if not higherIDReceived then
9         if node_i.state = Follower then
10            state_next ← Candidate
11         else if node_i.state = Candidate then
12            state_next ← Leader
13         else if node_i.state = Leader then
14            state_next ← Leader
15         node_i.state ← state_next
16 node_i.EvenActivation ← ¬node_i.EvenActivation
17 message = {node_i.id; node_i.state}
18 Send_To_All_Network(message)
```
Objective

• **Definition 1** (round). A *round* is a time period during which all the nodes that are *On* have sent at least one message.

• **Definition 2** (cleanness). A round is said to be *clean* if during its time period no node have been switched from *On* to *Off* or from *Off* to *On*.

The correctness property *P* that we want to prove automatically is:

« After 4 clean nodes, the node with the highest ID is recognized as the leader by all the *On* nodes of the network. »
IV. PROOFS
IV.1 Direct proof of P using SMT solving

- Using a model M of the algorithm, we get automatically a proof of P using SMT solver SafeProver [EJ17] when p is small ($p \leq 5$).

- This leads us to consider a method using abstractions to prove P for large values of p.
IV.2 Proof with abstractions

we consider two abstractions of M

- 1st abstraction M^* consists in considering one of the p processes (arbitrarily), and consider the set of other processes under the form of a single big automaton (no timing information)

- In the 2nd abstraction T, one considers two generic processes under the form of timed automaton with one parameter (the fixed value of the period lying in $[49,51]$)

we also decompose property P into several properties P_1-P_2-P_3-P_4.
Scheme of the proof

For a given number p of processes, prove:

- $P1$-$P2$ on M^* with SMT solver (SafeProver)

- $P3$ on T with parametric timed model checker (IMITATOR)
 [NB: exact statement of $P3$ depends on values of periods and jitters]

- $P4$ on M^* with SMT solver using $P1$-$P2$-$P3$ as lemmas

Method works for $p = 5000$!
Automated proof of $P1-P2$ for M^* using SMT solver SafeProver

Scheme of model M^* with node i under study interacting with other nodes

- $P1$: $(\text{Activation}(j) \geq 2 \land node_j.id \neq \text{maxId}) \Rightarrow node_j.state = \text{Follower}$
- $P2$: $(\text{Activation}(j) \geq 2 \land node_j.id = \text{maxId})$
 \[\Rightarrow node_j.state \in \{\text{Candidate, Leader}\} \]
Automated proof of \(P3 \) for \(T \) using parametric timed model checker IMITATOR

\[
\begin{align*}
Activation(i) & := 0 \\
0 & \leq c_i \leq per_i + jitter_{\text{max}} \\
\text{node}_i & \\
c_i & \geq per_i + jitter_{\text{min}} \\
Activation(i) & := Activation(i) + 1
\end{align*}
\]

Fig. 3: Component 1 of timed model \(T \)

For nodes \(\text{node}_i \) and \(\text{node}_j \), the property that we want to specify corresponds in the direct model \(M \) (without abstraction) of Section 3 to:

\[- (\text{Activation}(i) \leq 13 \; \land \; \text{Activation}(j) \leq 13) \implies |\text{Activation}(i) - \text{Activation}(j)| \leq 2.\]

In our timed abstract model \(T \), such a property becomes:

\[- (P3): \forall i \in \{1, \ldots, p\} \; \text{Activation}(j) \leq 13 \implies -2 \leq \text{Activation}(j) - \text{Activation}(i) \leq 1.\]

where \(\text{Activation}(i) \) denotes the number of activations of node \(i \) since the last clean round.
Automated proof of $P4$ for M^* using SMT solver with $P1$-$P2$-$P3$ as assumptions
Conclusion and final remarks

• We considered an asynchronous leader election algorithm

• We proved automatically its correctness property P using SMT solving for a small number p of nodes

• Using two abstractions and a decomposition of P, we verify the algorithm using SMT and parametric timed model checking for p up to 5000.

• The algorithm considered here is actually a variant of the original algorithm designed by THALES (not available for confidentiality reasons).

• The same kind of proof has been done for the original algorithm

• We are now considering to prove formally the correctness of the two abstractions
THANKS!